Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1983 Jan 1;157(1):173–188. doi: 10.1084/jem.157.1.173

Analysis of the defects responsible for the impaired regulation of Epstein-Barr virus-induced B cell proliferation by rheumatoid arthritis lymphocytes. I. Diminished gamma interferon production in response to autologous stimulation

PMCID: PMC2186886  PMID: 6294213

Abstract

T cells of patients with rheumatoid arthritis (RA) do not control the rate of B lymphoblast transformation induced by Epstein-Barr virus (EBV) as efficiently as T cells from healthy individuals; thus, lymphoblast cell lines are established more readily in RA lymphocytes in vitro after EBV infection. In the present experiments, we have asked whether this T cell regulation can be reproduced by lymphocytes. We found that normal T cells, activated in allogeneic or autologous mixed leukocyte reactions (MLR), produce lymphokines that inhibit in vitro EBV-induced B cell proliferation. Allogeneic MLR supernatants inhibited EBV-induced DNA synthesis 62 +/- 4% (mean +/- SE) at 10 d post- infection, whereas autologous MLR supernatants suppressed it 50 +/- 3%. RA T cell supernatants produced in an allogeneic MLR suppressed as well as normal T cell supernatants (64 +/- 5% inhibition). In contrast, supernatants from RA autologous MLR had little inhibitory activity. EBV- induced DNA synthesis at 10 d was reduced only 8 +/- 3%, compared with the 50 +/- 3% suppressive activity of normal autologous MLR supernatants. The magnitude of the proliferative responses in the autologous MLR regenerating the lymphokines was similar in the normal and RA populations. After depletion of adherent cells from the RA auto- MLR stimulators, supernatant inhibitory activities increased to normal levels (from 11 +/- 6 [SE] to 52 +/- 6% [SE]). The inhibitory factor involved in the regulation of in vitro EBV infection is a protein with a molecular weight of approximately 50,000. Its activity is eliminated by hearing at 56 degrees C and by exposure to acid at pH 2. The inhibitory activity is blocked by mixing the MLR supernatants with a polyvalent antisera or monoclonal antibodies specific for human gamma interferon. Gamma interferon produced by activating T cells in allo- or auto-MLR can reproduce T cell-mediated regulation of EBV-induced B cell proliferation, and the failure of RA auto-MLR to generate that lymphokine parallels the defective T cell regulation of EBV-induced B cell proliferation characteristic of RA lymphoid cells.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altman A., Katz D. H. Production and isolation of helper and suppressor factors. J Immunol Methods. 1980;38(1-2):9–41. doi: 10.1016/0022-1759(80)90328-2. [DOI] [PubMed] [Google Scholar]
  2. Bardwick P. A., Bluestein H. G., Zvaifler N. J., Depper J. M., Seegmiller J. E. Altered regulation of Epstein-Barr virus induced lymphoblast proliferation in rheumatoid arthritis lymphoid cells. Arthritis Rheum. 1980 Jun;23(6):626–632. doi: 10.1002/art.1780230603. [DOI] [PubMed] [Google Scholar]
  3. Bird A. G., Britton S. A new approach to the study of human B lymphocyte function using an indirect plaque assay and a direct B cell activator. Immunol Rev. 1979;45:41–67. doi: 10.1111/j.1600-065x.1979.tb00272.x. [DOI] [PubMed] [Google Scholar]
  4. DIAGNOSTIC criteria for rheumatoid arthritis: 1958 revision by a committee of the American Rheumatism Association. Ann Rheum Dis. 1959 Mar;18(1):49–53. [PMC free article] [PubMed] [Google Scholar]
  5. De Ley M., Van Damme J., Billiau A., De Somer P. The preparation of antibodies directed against human immune interferon. J Virol Methods. 1981 Oct;3(3):149–153. doi: 10.1016/0166-0934(81)90049-5. [DOI] [PubMed] [Google Scholar]
  6. Depper J. M., Bluestein H. G., Zvaifler N. J. Impaired regulation of Epstein-Barr virus-induced lymphocyte proliferation in rheumatoid arthritis is due to a T cell defect. J Immunol. 1981 Nov;127(5):1899–1902. [PubMed] [Google Scholar]
  7. Friedman S. M., Irigoyen O. H., Gay D., Chess L. MLC-derived human helper factor(s) that promote B cell differentiation: induction, functional characterization, and role of Ia antigens. J Immunol. 1980 Jun;124(6):2930–2935. [PubMed] [Google Scholar]
  8. Germain R. N., Benacerraf B. Helper and suppressor T cell factors. Springer Semin Immunopathol. 1980 May;3(1):93–127. doi: 10.1007/BF00199927. [DOI] [PubMed] [Google Scholar]
  9. Hochkeppel H. K., de Ley M. Monoclonal antibody against human IFN-gamma. Nature. 1982 Mar 18;296(5854):258–259. doi: 10.1038/296258a0. [DOI] [PubMed] [Google Scholar]
  10. Kirchner H., Tosato G., Blaese R. M., Broder S., Magrath I. T. Polyclonal immunoglobulin secretion by human B lymphocytes exposed to Epstein-Barr virus in vitro. J Immunol. 1979 Apr;122(4):1310–1313. [PubMed] [Google Scholar]
  11. Kuntz M. M., Innes J. B., Weksler M. E. Lymphocyte transformation induced by autologous cells. IV. Human T-lymphocyte proliferation induced by autologous or allogeneic non-T lymphocytes. J Exp Med. 1976 May 1;143(5):1042–1054. doi: 10.1084/jem.143.5.1042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Lai P. K., Alpers M. P., MacKay-Scollay E. M. Epstein-Barr herpesvirus infection: inhibition by immunologically induced mediators with interferon-like properties. Int J Cancer. 1977 Jul 15;20(1):21–29. doi: 10.1002/ijc.2910200106. [DOI] [PubMed] [Google Scholar]
  13. Langford M. P., Georgiades J. A., Stanton G. J., Dianzani F., Johnson H. M. Large-scale production and physicochemical characterization of human immune interferon. Infect Immun. 1979 Oct;26(1):36–41. doi: 10.1128/iai.26.1.36-41.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. MacDermott R. P., Stacey M. C. Further characterization of the human autologous mixed leukocyte reaction (MLR). J Immunol. 1981 Feb;126(2):729–734. [PubMed] [Google Scholar]
  15. Miller G., Lipman M. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci U S A. 1973 Jan;70(1):190–194. doi: 10.1073/pnas.70.1.190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Moody C. E., Casazza B. A., Christenson W. N., Weksler M. E. Lymphocyte transformation induced by autologous cells. VIII. Impaired autologous mixed lymphocyte reactivity in patients with acute infectious mononucleosis. J Exp Med. 1979 Dec 1;150(6):1448–1455. doi: 10.1084/jem.150.6.1448. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Moss D. J., Rickinson A. B., Pope J. H. Long-term T-cell-mediated immunity to Epstein-Barr virus in man. III. Activation of cytotoxic T cells in virus-infected leukocyte cultures. Int J Cancer. 1979 May 15;23(5):618–625. doi: 10.1002/ijc.2910230506. [DOI] [PubMed] [Google Scholar]
  18. Perussia B., Mangoni L., Engers H. D., Trinchieri G. Interferon production by human and murine lymphocytes in response to alloantigens. J Immunol. 1980 Oct;125(4):1589–1595. [PubMed] [Google Scholar]
  19. Pryjma J., Muñoz J., Galbraith R. M., Fudenberg H. H., Virella G. Induction and suppression of immunoglobulin synthesis in cultures of human lymphocytes: effects of pokeweed mitogen and Staphylococcus aureus Cowan I. J Immunol. 1980 Feb;124(2):656–661. [PubMed] [Google Scholar]
  20. Sakane T., Steinberg A. D., Green I. Failure of autologous mixed lymphocyte reactions between T and non-T cells in patients with systemic lupus erythematosus. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3464–3468. doi: 10.1073/pnas.75.7.3464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Schuurman R. K., Gelfand E. W., Dosch H. M. Polyclonal activation of human lymphocytes in vitro. I. Characterization of the lymphocyte response to a T cell-independent B cell mitogen. J Immunol. 1980 Aug;125(2):820–826. [PubMed] [Google Scholar]
  22. Thorley-Lawson D. A., Chess L., Strominger J. L. Suppression of in vitro Epstein-Barr virus infection. A new role for adult human T lymphocytes. J Exp Med. 1977 Aug 1;146(2):495–508. doi: 10.1084/jem.146.2.495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thorley-Lawson D. A. The suppression of Epstein-Barr virus infection in vitro occurs after infection but before transformation of the cell. J Immunol. 1980 Feb;124(2):745–751. [PubMed] [Google Scholar]
  24. Thorley-Lawson D. A. The transformation of adult but not newborn human lymphocytes by Epstein Barr virus and phytohemagglutinin is inhibited by interferon: the early suppression by T cells of Epstein Barr infection is mediated by interferon. J Immunol. 1981 Mar;126(3):829–833. [PubMed] [Google Scholar]
  25. Tosato G., Steinberg A. D., Blaese R. M. Defective EBV-specific suppressor T-cell function in rheumatoid arthritis. N Engl J Med. 1981 Nov 19;305(21):1238–1243. doi: 10.1056/NEJM198111193052102. [DOI] [PubMed] [Google Scholar]
  26. Weksler M. E., Kozak R. Lymphocyte transformation induced by autologous cells. V. Generation of immunologic memory and specificity during the autologous mixed lymphocyte reaction. J Exp Med. 1977 Dec 1;146(6):1833–1838. doi: 10.1084/jem.146.6.1833. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES