Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1984 Feb 1;159(2):508–523. doi: 10.1084/jem.159.2.508

Allosuppressor and allohelper T cells in acute and chronic graft-vs- host disease. V. F1 mice with secondary chronic GVHD contain F1- reactive allohelper but no allosuppressor T cells

PMCID: PMC2187239  PMID: 6229596

Abstract

We studied the alloreactive properties of donor T cells obtained from F1 mice that had recovered from the allosuppression of acute graft-vs.- host disease (GVHD) and showed mild symptoms of chronic GVHD, i.e., so- called secondary chronic GVHD. To this end, we used (B10 x DBA/2)F1 mice that had been injected with 10(8) B10 spleen cells 100-150 d previously. Such GVHD F1 mice were repopulated by lympho-hematopoietic cells of donor (B10) origin, which exhibited split tolerance towards the host: Whereas F1-specific donor T helper (Th) cells as well as T cells proliferating in the mixed lymphocyte reaction were readily demonstrable, F1-specific T suppressor (Ts) and T killer (Tk) cells were not, or were hardly, detectable; responses against third-party alloantigens were normal. Upon adoptive transfer to nonirradiated secondary recipients, the B10 cells obtained from the repopulated GVH F1 mice induced F1-specific enlargement of the draining popliteal lymph node and enhancement of the IgG formation therein. B10 cells of the same kind were unable, however, to induce lethal GVHD upon transfer to 950 rad-irradiated secondary (B10 x DBA/2)F1 recipients. We conclude that alloactivated donor Ts/Tk cells disappear from the host at a relatively early stage of GVHD, i.e., at the end of acute GVHD , presumably because they are short-lived. By contrast, the longevity of alloactivated donor Th cells causes the symptoms of secondary chronic GVHD.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bach F. H., Widmer M. B., Bach M. L., Klein J. Serologically defined and lymphocyte-defined components of the major histocompatibility complex in the mouse. J Exp Med. 1972 Dec 1;136(6):1430–1444. doi: 10.1084/jem.136.6.1430. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cantor H., Boyse E. A. Regulation of cellular and humoral immune responses by T-cell subclasses. Cold Spring Harb Symp Quant Biol. 1977;41(Pt 1):23–32. doi: 10.1101/sqb.1977.041.01.006. [DOI] [PubMed] [Google Scholar]
  3. Cantor H., Gershon R. K. Immunological circuits: cellular composition. Fed Proc. 1979 Jun;38(7):2058–2064. [PubMed] [Google Scholar]
  4. Claman H. N., Miller S. D., Sy M. S., Moorhead J. W. Suppressive mechanisms involving sensitization and tolerance in contact allergy. Immunol Rev. 1980;50:105–132. doi: 10.1111/j.1600-065x.1980.tb00309.x. [DOI] [PubMed] [Google Scholar]
  5. Elkins W. L. Cellular immunology and the pathogenesis of graft versus host reactions. Prog Allergy. 1971;15:78–187. [PubMed] [Google Scholar]
  6. Ford W. L., Burr W., Simonsen M. A lymph node weight assay for the graft-versus-host activity of rat lymphoid cells. Transplantation. 1970 Sep;10(3):258–266. doi: 10.1097/00007890-197009000-00007. [DOI] [PubMed] [Google Scholar]
  7. Gleichmann E., Van Elven E. H., Van der Veen J. P. A systemic lupus erythematosus (SLE)-like disease in mice induced by abnormal T-B cell cooperation. Preferential formation of autoantibodies characteristic of SLE. Eur J Immunol. 1982 Feb;12(2):152–159. doi: 10.1002/eji.1830120210. [DOI] [PubMed] [Google Scholar]
  8. Hathaway W. E., Githens J. H., Blackburn W. R., Fulginiti V., Kempe C. H. Aplastic anemia, histiocytosis and erythrodermia in immunologically deficient children. Probable human runt disease. N Engl J Med. 1965 Oct 28;273(18):953–958. doi: 10.1056/NEJM196510282731803. [DOI] [PubMed] [Google Scholar]
  9. Hurtenbach U., Shearer G. M. Analysis of murine T lymphocyte markers during the early phases of GvH-associated suppression of cytotoxic T lymphocyte responses. J Immunol. 1983 Apr;130(4):1561–1566. [PubMed] [Google Scholar]
  10. Ishikawa H., Kubota E., Wilkinson N. M., Saito K. Modulation of F1 cytotoxic potentials by GvHR: suppression of cytotoxic T cell responses of F1 mice correlates with F1 inability to resist the proliferation of GvHR-inducing parental T lymphocytes. J Immunol. 1982 Sep;129(3):1181–1188. [PubMed] [Google Scholar]
  11. Julius M. H., Simpson E., Herzenberg L. A. A rapid method for the isolation of functional thymus-derived murine lymphocytes. Eur J Immunol. 1973 Oct;3(10):645–649. doi: 10.1002/eji.1830031011. [DOI] [PubMed] [Google Scholar]
  12. Krown S. E., Coico R., Scheid M. P., Fernandes G., Good R. A. Immune function in fully allogeneic mouse bone marrow chimeras. Clin Immunol Immunopathol. 1981 May;19(2):268–283. doi: 10.1016/0090-1229(81)90069-6. [DOI] [PubMed] [Google Scholar]
  13. Meo T., Vives J., Miggiano V., Shreffler D. A major role for the Ir-1 region of the mouse H-2 complex in the mixed leukocyte reaction. Transplant Proc. 1973 Mar;5(1):377–381. [PubMed] [Google Scholar]
  14. Parks D. E., Weigle W. O. Regulation of B cell unresponsiveness by suppressor cells. Immunol Rev. 1979;43:217–240. doi: 10.1111/j.1600-065x.1979.tb00423.x. [DOI] [PubMed] [Google Scholar]
  15. Pickel K., Hoffmann M. K. Suppressor T cells arising in mice undergoing a graft-vs-host response. J Immunol. 1977 Feb;118(2):653–656. [PubMed] [Google Scholar]
  16. Pickel K., Hoffmann M. K. The Ly phenotype of suppressor T cells arising in mice subjected to a graft-versus-host reaction. J Exp Med. 1977 May 1;145(5):1169–1175. doi: 10.1084/jem.145.5.1169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Pollack M. S., Kirkpatrick D., Kapoor N., Dupont B., O'Reilly R. J. Identification by HLA typing of intrauterine-derived maternal T cells in four patients with severe combined immunodeficiency. N Engl J Med. 1982 Sep 9;307(11):662–666. doi: 10.1056/NEJM198209093071106. [DOI] [PubMed] [Google Scholar]
  18. Rao A., Allard W. J., Hogan P. G., Rosenson R. S., Cantor H. Alloreactive T-cell clones. Ly phenotypes predict both function and specificity for major histocompatibility complex products. Immunogenetics. 1983;17(2):147–165. doi: 10.1007/BF00364755. [DOI] [PubMed] [Google Scholar]
  19. Rolink A. G., Gleichmann E. Allosuppressor- and allohelper-T cells in acute and chronic graft-vs.-host (GVH) disease. III. Different Lyt subsets of donor T cells induce different pathological syndromes. J Exp Med. 1983 Aug 1;158(2):546–558. doi: 10.1084/jem.158.2.546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rolink A. G., Pals S. T., Gleichmann E. Allosuppressor and allohelper T cells in acute and chronic graft-vs.-host disease. II. F1 recipients carrying mutations at H-2K and/or I-A. J Exp Med. 1983 Feb 1;157(2):755–771. doi: 10.1084/jem.157.2.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rolink A. G., Radaszkiewicz T., Pals S. T., van der Meer W. G., Gleichmann E. Allosuppressor and allohelper T cells in acute and chronic graft-vs-host disease. I. Alloreactive suppressor cells rather than killer T cells appear to be the decisive effector cells in lethal graft-vs.-host disease. J Exp Med. 1982 May 1;155(5):1501–1522. doi: 10.1084/jem.155.5.1501. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rolink A. G., Van der Meer W., Melief C. J., Gleichmann E. Intra-H-2 and T cell requirements for the induction of maximal positive and negative allogeneic effects in vitro. Eur J Immunol. 1983 Mar;13(3):191–197. doi: 10.1002/eji.1830130303. [DOI] [PubMed] [Google Scholar]
  23. Shand F. L. Ly and Ia phenotype of suppressor T cells induced by graft-vs.-host reaction. Eur J Immunol. 1977 Oct;7(10):746–748. doi: 10.1002/eji.1830071019. [DOI] [PubMed] [Google Scholar]
  24. Shulman H. M., Sullivan K. M., Weiden P. L., McDonald G. B., Striker G. E., Sale G. E., Hackman R., Tsoi M. S., Storb R., Thomas E. D. Chronic graft-versus-host syndrome in man. A long-term clinicopathologic study of 20 Seattle patients. Am J Med. 1980 Aug;69(2):204–217. doi: 10.1016/0002-9343(80)90380-0. [DOI] [PubMed] [Google Scholar]
  25. Singer A., Hathcock K. S., Hodes R. J. Self recognition in allogeneic radiation bone marrow chimeras. A radiation-resistant host element dictates the self specificity and immune response gene phenotype of T-helper cells. J Exp Med. 1981 May 1;153(5):1286–1301. doi: 10.1084/jem.153.5.1286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Sprent J., Boehmer H. V., Nabholz M. Association of immunity and tolerance to host H-2 determinants in irradiated F1 hybrid mice reconstituted with bone marrow cells from one parental strain. J Exp Med. 1975 Aug 1;142(2):321–331. doi: 10.1084/jem.142.2.321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Tsoi M. S., Storb R., Dobbs S., Medill L., Thomas E. D. Cell-mediated immunity to non-HLA antigens of the host by donor lymphocytes in patients with chronic graft-vs-host disease. J Immunol. 1980 Nov;125(5):2258–2262. [PubMed] [Google Scholar]
  28. Van Elven E. H., Rolink A. G., Veen F. V., Gleichmann E. Capacity of genetically different T lymphocytes to induce lethal graft-versus-host disease correlates with their capacity to generate suppression but not with their capacity to generate anti-F1 killer cells. A non-H-2 locus determines the inability to induce lethal graft-versus-host disease. J Exp Med. 1981 Jun 1;153(6):1474–1488. doi: 10.1084/jem.153.6.1474. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Van Oudenaren A., Hooijkaas H., Benner R. Improvement of the protein A plaque assay for immunoglobulin secreting cells by using immunoglobulin-depleted guinea pig serum as a source of complement. J Immunol Methods. 1981;43(2):219–224. doi: 10.1016/0022-1759(81)90026-0. [DOI] [PubMed] [Google Scholar]
  30. Wegmann T. G., Rosovsky J., Carlson G. A., Diener E., Drell D. W. Models for the production of stable hematopoietic chimerism across major histocompatibility barriers in adults. J Immunol. 1980 Oct;125(4):1751–1757. [PubMed] [Google Scholar]
  31. Weinberger O., Germain R. N., Burakoff S. J. Responses to the H-2Kba mutant involve recognition of syngeneic Ia molecules. 1983 Mar 31-Apr 6Nature. 302(5907):429–431. doi: 10.1038/302429a0. [DOI] [PubMed] [Google Scholar]
  32. Whisler R. L., Wajda K. J., Newhouse Y. G. Phenotypic characteristics of peripheral blood T cells regulating colony growth by nontransformed human B lymphocytes. J Immunol. 1983 Feb;130(2):665–670. [PubMed] [Google Scholar]
  33. van Rappard-van der Veen F. M., Rolink A. G., Gleichmann E. Diseases caused by reactions of T lymphocytes towards incompatible structures of the major histocompatibility complex. VI. Autoantibodies characteristic of systemic lupus erythematosus induced by abnormal T-B cell cooperation across I-E. J Exp Med. 1982 May 1;155(5):1555–1560. doi: 10.1084/jem.155.5.1555. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. von Boehmer H., Hudson L., Sprent J. Collaboration of histoincompatible T and B lymphocytes using cells from tetraparental bone marrow chimeras. J Exp Med. 1975 Oct 1;142(4):989–997. doi: 10.1084/jem.142.4.989. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES