
I N D U C T I O N  OF  I M M U N O G L O B U L I N  I S O T Y P E  

S W I T C H I N G  IN C U L T U R E D  1.29 B L Y M P H O M A  CELLS 

Character iza t ion  o f  the  Accompany ing  

R e a r r a n g e m e n t s  o f  Heavy  Chain Genes 

BY JANET STAVNEZER, SONIA SIRLIN, ANn JOAN ABBOTT 

From the Sloan-Kettering Institute, New York 10021 

A clone of  B cells bearing IgM can be induced to switch to the expression of 
other isotypes, i.e., to other Ig heavy (H) 1 chain constant region (CH) genes, while 
maintaining expression of the identical H chain variable region (VH) gene (1, 2). 
Studies of the structure of Ig genes in cells that have undergone isotype switching 
have led to the conclusion that the isotype switch, except to 6, is effected by 
DNA recombinations between tandemly repeated switch (S) sequences located 
5' to each CH gene, resulting in the deletion of  the/~ gene and the other C H 

genes located 5' to the C.  gene to be expressed (in myelomas, hybridomas, B 
cell lymphoma, and normal splenic B cells treated with lipopolysaccharide 
[LPS]) (3-11). The production of 6 is an exception. Cloned cell lines that 
simultaneously produce both # and ~ contain ~ genes in the same context as in 
#-producing cells, and therefore must produce # and 6 by alternative RNA 
processing and/or  termination of transcription (12-14). In response to antigenic 
challenge, a large number of cells in the spleen express # and another isotype 
(other than 6) simultaneously (15, 16). It is not yet known whether this is due to 
a transient 6-like mechanism in which alternative RNA processing/termination 
occurs (17), or whether these double-producing cells have recently undergone 
switch-recombination and have deleted their # genes but still contain t~ messenger 
RNA (mRNA) and protein. 

Another question still unanswered is what induces switching, i.e., whether 
antigen and/or  T cells are required (18-20). Also unknown is how the isotype 
to be expressed is determined. As one B cell clone can generate multiple isotypes, 
it is generally believed that splenic B cells are not committed to one isotype (1, 
21-23), but whether subpopulations of B cells become restricted in their isotype 
potential during maturation is unknown. 

One major reason that these and other questions about the mechanism of 
isotype switching have remained unanswered is the lack of clonal or purified 
populations of IgM + cells that could be induced to undergo isotype switching in 
vitro. In this report, we demonstrate that the murine B cell lymphoma 1.29 
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provides such a system. The 1.29 lymphoma arose spontaneously in 1961 as an 
ascites in the I/St strain of  mice (24). It consists of cells expressing either IgM or 
IgA, with identical idiotype (25), and with identical VH genes (9, and D. Klein 
and J. Stavnezer, manuscript in preparation). 

We have previously established that the IgM + cells contain two H chain 
chromosomes bearing two rearranged # genes: an expressed # gene (which has 
undergone VDJ4 [variable-diversity-joining] recombination), and a nonexpressed 
p gene that has undergone a DJ~ recombination (Fig. 1) (9, and J. Stavnezer, 
unpublished data). In the IgM + cells, the CH genes 3' to the ~ genes are present 
in the germline configuration on both chromosomes. In the IgA + cells present 
in the lymphoma, both # genes have been deleted, having undergone switch- 
recombination events between St* and Sa sequences on the expressed H chain 
chromosome, and between SV and S3's sequences on the nonexpressed chromo- 
some. These recombinations resulted in the deletion of  all the CH genes, except 
a, from the expressed chromosome, and deletion of  the ~ and a genes from the 
nonexpressed chromosome. The CH genes 3' to the 3's genes are in the germline 
configuration on the nonexpressed chromosome. The configuration of the Ig 
light chain genes is identical in the IgM + and IgA + cells (9). The structure of the 

and a genes established that the IgM + and IgA ÷ cells in the 1.29 lymphoma 
are related by switch-recombination events, but not whether this is an active 
ongoing process. 

In this manuscript, we describe the development of  an in vitro system in which 
purified or cloned IgM + cells, derived from the 1.29 lymphoma, have been 
induced to switch most often to IgA and, less frequently, to IgE or IgG2. The 
isotype switching can occur in the absence of  T cells or macrophages. DNA 
recombinations that accompany the isotype switch are characterized. 
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FIGURE l. Diagram (not to scale) of H chain gene chromosomes in the IgM ÷ and lgA + cells 
from the 1.29 lymphoma. The  upper figures illustrate that the IgM + cells contain an expressed 
# gene produced by a VDJH4 recombination, and a nonexpressed # gene that has undergone 
DQs~-JH~ recombination (26 and J. Stavnezer, unpublished data). The  lower diagrams illustrate 
that in the lgA + cells that have switched in vivo and are present in the lymphoma, both the 
expressed and nonexpressed H chain chromosomes have undergone DNA recombinations 
within or near the tandemly repeated switch (S) sequences; the expressed chromosome has 
switched to cz and the nonexpressed to ~3 (9). The  approximate locations of the Bgl II (Bg) 
sites are indicated. 
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Mater ia l s  a n d  M e t h o d s  
Mice. 1.29 tumor cells were passaged intraperitoneally in I/St (I X BALB/c Fl) or in I 

X C57BL/6F1 mice. 
Cell Culture. 1.29# cells were cultured in RPMI 1640 (Gibco Laboratories, Grand 

Island, NY) containing 50% fetal calf serum (FCS) (HyCIone Laboratories, Logan, UT), 
1 mM glutamine (Gibco Laboratories), 50 #M/3-mercaptoethanol, insulin (0.1 #/mi) (Eli 
Lilly and Co., Indianapolis, IN), penicillin (100 U/ml), streptomycin (100 #g/ml) (Gibco 
Laboratories), and kanamycin (100 U/ml) (Gibco Laboratories). For induction of switch- 
ing, 1.29# cells were centrifuged from the culture medium, washed once in RPMI 1640, 
and resuspended in RPMI 1640 containing 10% FCS, 1 mM glutamine, 50 #M /3- 
mercaptoethanoi, 0.1 mM nonessential amino acids (Gibco Laboratories), 1 mM sodium 
pyruvate (Gibco Laboratories), penicillin, streptomycin, and kanamycin. Various inducers 
were added for 3 or 4 d, after which time they were removed by aspirating the culture 
fluid from above the cells; subsequently, the cells were fed with 10% FCS/RPMI 1640, 
when necessary. 

Immunofluorescent Antibodies. A rat monoclonai anti-mouse IgM (R33/24) from G. 
Hammerling (University of Cologne, Federal Republic of Germany), conjugated to 
fluorescein isothiocyanate (FITC) was used for all the immunofluorescence experiments 
(given by R. Sitia, University of Genoa, Italy, and U. Hammerling, Sloan-Kettering 
Institute, New York). 

Two different rhodamine-conjugated anti-mouse IgA antisera were used: (a) a rabbit 
antiserum produced by immunization with the myeioma protein j r58,  which was absorbed 
to render it class-specific, and purified by affinity chromatography (from R. Sitia), and (b) 
goat antiserum (IgG fraction), purified by affinity chromatography to render it class- 
specific (Cappei Laboratories, Cochranville, PA). 

An FITC-conjugated rabbit anti-mouse 3'Fc antiserum (from U. Hammerling) was 
used to detect the binding of the mouse monoclonal anti-I.29 Id antibody (T 10/219), or 
used directly to search for the presence of IgG in 1.29 cells. 

An FITC-conjugated goat anti-rabbit Ig antiserum (from U. Hammerling) was ab- 
sorbed with 1.29 cells and used to detect the binding of a rabbit anti-IgE antiserum (from 
Z. Ovary, New York University) that had been absorbed with 1.29# cells. 

Nonimmunofluorescent Antibodies. The mouse monoclonal anti-I.29 Id antibody ('Y2~, 
ic) (T10/219) (27) was produced by a hybridoma that was derived from a fusion of NS. 1 
myeloma cells and spleen cells from C57BL/6 mice previously injected with IgA from the 
ID150 hybridoma (derived by fusion of 1.29 cells and NS. 1) (28). This antibody precipi- 
tated IgM and IgA from the 1.29 IgM (ID43) and IgA (ID150) bybridomas but did not 
react with normal mouse serum. Ammonium sulfate-precipitated material from hybri- 
doma culture supernatants containing anti-I.29 Id antibody were given by N. Tada 
(Tokai University, Kanagawa, Japan). The precipitated proteins were dialyzed against 
phosphate-buffered saline (PBS) and filtered through a 0.45-t~m filter. This reagent 
consisted of ~96% FCS and 4% anti-Id antibody (determined by the yield of the purified 
anti-Id from this crude preparation, as assayed by absorbance at 230 nm). This reagent is 
termed ammonium sulfate-precipitated anti-Id antibody. The amounts used are given as 
actual amount ofanti-Id antibody calculated to be present. The antibody was tested at 5- 
125 #g/ml. 

Anti-Id antibody was purified from the preparation of ammonium sulfate-precipitated 
anti-Id by binding to protein A Sepharose (Pharmacia Fine Chemicals, Piscataway, NJ), 
and eluting the antibody with 0.1 M glycine-HCi, pH 3. Nonbound and bound fractions 
were dialyzed against RPMI 1640 and filtered to sterilize. Antibody was added to the 
cultures at 5-25 #g/ml. Other antibodies used in attempts to induce isotype switching 
were: (a) a monoclonal anti-IgD ~ (given by N. Tada) (29), which had been prepared 
identically with, and used at the same total protein concentration as the crude anti-Id 
antibody, (b) culture supernatants (not concentrated or purified) from the rat anti-mouse 
IgM hybridoma R33/24 (100 #l/ml of culture), (c) goat anti-IgM (IgG fraction) (Cappel 
Laboratories), tested at 25-100 #g/ml, (d) goat anti-IgM (affinity-purified; given by W. 
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Paul, National Institutes of Health, Bethesda, MD (30), tested at 50 #g/ml, (e) goat anti- 
mouse IgA (IgG fraction) (Cappel Laboratories), tested at 50-500/zg/ml. 

Immunofluorescenee Microscopy. Cells were pelleted from culture media and suspended 
in RPMI 1640 without serum, and 50/zl was spotted onto poly-L-lysine-coated microspot 
slides. After 20 rain, 2 ~1 of 16% bovine serum albumin in PBS was added. 10 rain later, 
the spots were washed extensively with 1% FCS in PBS containing 0.2% sodium azide. 
Slides were placed in 95% ethanol for 15 rain to several days at -20°C to fix the cells, in 
order to permit the anti-Ig reagents to stain the cytoplasm. In early experiments, cells 
were cytocentrifuged onto slides and fixed in 95% ethanol. Slides were soaked overnight 
or longer in 1% FCS in PBS with 0.2% sodium azide, which greatly reduced the nonspecific 
staining. 

To stain the cells, slides were wiped dry around the cell spots, 10 #1 of an appropriate 
dilution of antibody was added to each spot, and the slides were placed in a humidified 
chamber at room temperature for 30 min. Nonbound antibodies were removed by soaking 
in PBS for 1.5 h to several hours. 

Restriction Enzyme Digestion, Gel Elearophoresis, and DNA Blotting. These procedures 
were performed as described (9); the hybridization mixtures contained 50% deionized 
formamide, 0.02% bovine serum albumin, 0.02% polyvinyl pyrrolidine, 0.02% Ficoli, 50 
~g/mi Escherichia coli DNA, 1 mg/ml yeast RNA, 900 mM NaC1, 90 mM sodium citrate, 
0.6 mM disodium EDTA, and 5% dextran sulfate. The hybridization reactions were 
incubated overnight at 42°C. If the DNA fragment used as the probe contained highly 
reiterated sequences, annealing was performed using one-half the amount of NaCI (450 
mM NaCI), and the blots were washed at 60-65°C instead of 50-52°C. 

RNA Blots. RNA and raP-labeled Hind III fragments of X bacteriophage DNA, used 
as molecular weight markers, were denatured with glyoxal and dimethylsulfoxide, elec- 
trophoresed in 1% agarose gels with 10 mM phosphate buffer, pH 7 (31), and blotted 
onto diphenylthioether paper (32). To reuse blots, hybridized probes were removed by 
incubation of the blots for 2-3 h at 68°C in 75% formamide (Bethesda Research 
Laboratories, Gaithersburg, MD), 50 mM sodium phosphate, pH 7, and 5 mM disodium 
EDTA, pH 7. 

Hybridization Probes. All hybridization probes were nick-translated fragments isolated 
from plasmids or A phage, encoding Ig H-gene segments from the BALB/c genome, or 
Ig Cn cDNA. M2-5B was a 2.1-kb Hind III fragment that encoded the 5' portion of the 
Ct~ gene and 5' flanking sequences (Fig. 5)(33). Jm-2 was a 1.1-kb Barn HI fragment, and 
Jua-4 was a 2-kb Barn HI-Eco RI fragment (Fig. 5) from pjo and pjll, respectively (33). 
The probe for Ca, labeled a in Fig. 5, was a 1.4-kb Msp I fragment from pa(J558) ~s (33). 
The probe for C~/s was a 2-kb Barn HI-Kpn I fragment encoding the genomic 3'3 gene, 
from the recombinant )~ phage SL51 (34), which we have subcloned into pKB111 (35). 
All the above probes were from K. Marcu (State University of New York, Stony Brook, 
NY). The probe for C~, labeled ~ in Fig. 5, was a 2.9-kb Barn-Hind III fragment that 
encoded the 5' half of the genomic C~ gene and 5' flanking sequences (36) (from T. 
Honjo, Osaka University, Osaka, Japan). The probe for C~'2b was a 0.8-kb Pst I-Kpn I 
fragment from p~/2b(11) 7 (37) (from R. Perry, Institute for Cancer Research, Fox Chase, 
PA). This probe also hybridized with 3'~a sequences. The probe for C~'~ was a 0.7-kb Hinc 
II-Hind III fragment from the cDNA plasmid pH21-1 (from W. Salser, University of 
California at Los Angeles)(38). The probe for C6 was a 0.6-kb Pvu II-Hind III fragment 
from the plasmid clone p654J (39) (from P. Tucker, University of Texas, Dallas, TX). 

Resu l t s  

Source of Pure IgM + Cells. T w o  preparat ions o f  pure  IgM + cells isolated f rom 
the 1.29 lymphoma by U. Hammer l ing  (9, and U. Hammerl ing,  unpublished 
data) were adapted to cul ture and used as starting material for  the isotype 
switching experiments:  (a) 1.29/z cells were obtained by sorting IgM ÷ cells f rom 
the 1.29 tumor  on the fluorescence-activated~cell sorter,  and were subsequently 
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passaged intraperitoneally in mice. The expression of  cytoplasmic IgM and IgA 
was assayed at several passages by immunofluorescence microscopy (IFM) of 
ethanol-fixed cells, staining simultaneously with an FITC-conjugated monoclonai 
rat anti-mouse IgM and rhodamine-conjugated, affinity-purified goat or rabbit 
anti-mouse IgA. The 1.29# cells were found to express only IgM; for example, 
at passage 17, no IgA ÷ cells were detected among 18,400 cells, i.e., <0.01% of 
the 1.29# cells were IgA ÷. (b) Cells that we called IgM.S were obtained in a 
separate sorting experiment, and were subsequently further purified by placing 
100, 1,000, or 10,000 of the IgM + cells into 36 Millipore filter chambers, which 
were implanted into mice. Only one of  the chambers yielded 1.29 cells, and these 
cells were 100% IgM ÷. After 25 intraperitoneal passages, the IgM.S cells re- 
mained >99% IgM +. These IgM ÷ cell lines were adapted to culture. 

IgM + Cells Can Switch to Expression of lgA. When 1.29# or IgM.S cells were 
placed into culture, a low level of  switching to IgA occurred; after 1 or 2 mo 
they were 1-2% IgA + and 98% IgM +, and after 3 mo they were >99% IgM +. 
We attempted to induce the cultured IgM + cells to undergo isotype switching by 
treatment with LPS, a B cell mitogen that induces isotype switching in cultured 
normal spleen cells (15). At various times after the addition of LPS, cells were 
cytocentrifuged onto slides, fixed with cold 95% ethanol, and stained with 
antibodies against IgM and IgA. 6 d after induction, an increased number of 
IgA + cells were observed, and many of  the IgA + cells also stained within the 
cytoplasm with anti-IgM (Fig. 2). The double-staining cells must have been 
derived by isotype switching from the IgM ÷ cells, and not by the outgrowth of 
any IgA + cells that could be contaminating the IgM ÷ cell lines, since we have 
previously demonstrated that IgA + cells present in the 1.29 tumor have deleted 
the Cu genes from both of  their H chain chromosomes, and thus cannot 
synthesize IgM (9). The double-producing cells apparently had recently switched 
from IgM to IgA synthesis, because at later times after the addition of  LPS, the 
IgA + cells no longer also contained IgM (see below). 

To obtain further proof of  active switching, eight clones of IgM ÷ cells were 
produced by plating one or three 1.29~t cells in 20 #1 of  medium, in microtiter 
wells. Two clones were obtained from the 50 wells that had received one cell 
per well, and six clones from 50 wells that had received three cells per well. The  
clones were >99% IgM +, as no IgA + cells were detected among >1,000 cells 
examined. The clones were tested for their ability to switch to IgA. Six of the 
eight clones yielded IgA ÷ cells. This provided unequivocal proof that the IgM ÷ 
cells could switch to IgA, as the level of  contamination of the starting population 
of  cultured 1.29# cells with IgA ÷ cells was <1.0%. The experiments described 
below were performed on the noncloned 1.29/~ cell line, except as indicated. 

LPS Induces Switching. The standard induction protocol was to place 0.5 x 
106 cells in 1 ml of culture fluid and add LPS. On day 4, the LPS was removed 
and the cells were resuspended in 1-2 ml of  RPMI 1640 containing 10% FCS. 
At various intervals, a sample of  cells from each well was counted, spotted onto 
a poly-L-lysine-coated slide, and assayed by IFM to determine the percent of  
cells that were IgA + and/or  IgM ÷. 

One of several similar experiments is presented in Table I. When 1.29# cells 
were simply changed from medium containing 50% FCS and insulin (0.1 U/ml), 
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FIGURE 2. IFM of 1.29# cells treated with LPS for 6 d. Top row: phase-contrast pictures of 
the same fields photographed in the lower two rows with ultraviolet epi-illumination after the 
reaction of cytocentrifuged, fixed cells with anti-IgM and anti-lgA. Middle row: IgM was 
detected with an FITC-conjugated monoclonal rat ant i-mouse IgM (R33/24, from G. Ham- 
merling). Bottom row: IgA was detected with a rhodamine-labeled rabbit anti-mouse IgA 
(from R. Sitia). 

in which they were cultured, and placed into medium with 10% FCS and without 
insulin (well 1), a small transient increase in the percent of IgA ÷ cells occurred. 
When cells were treated with 10/~g/ml LPS (well 2), 8% became IgA ÷ by 8 d 
after LPS addition, and 5 of  the 16 IgA ÷ cells counted also contained cytoplasmic 
IgM. The proportion of IgA ÷ cells increased until day 15, at which time 43% of 
the cells were IgA ÷. The fraction of  the IgA ÷ cells that also stained with anti- 
IgM was maximal at day 4, and thereafter decreased so that on day 15 only a 
small proportion of  the IgA ÷ cells contained IgM. By 18 d after initiation of  the 
LPS pulse, the proportion of IgA ÷ ceils in the culture began to decrease, and by 
35 d after LPS addition, this culture was 100% IgM ÷. The return to IgM 
expression occurred in all cultures that were followed for this duration, except 
for a few cultures that switched to such a great extent that they became ~ 100% 
IgA ÷ (see below). 

Anti-I.29 Id (Anti-idiotype) and LPS Together Induce Maximal Switch- 
ing. Because we expected that the antigen receptor would be involved in 
triggering isotype switching, we attempted to induce switching with anti-Ig 
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FIGURE 3. Detection of cytoplasmic IgE in cultured 1.29 cells. Cloned IgE* cells or 1.29# 
cells were spotted onto poly-L-lysine-coated slides, fixed in 95% ethanol, and stained with 
rabbit anti-lgE (from Z. Ovary), followed by an FITC-labeled anti-rabbit IgG (U. Hammerling). 
The phase-contrast pictures in the upper two panels correspond to the fields below, which 
were photographed with ultraviolet epi-illumination. 

antibodies. Two preparations of  anti-Id were derived from the culture superna- 
tant of  a mouse hybridoma producing an ant i - I .29 Id (T10/219) (27): (a) 
ammonium sulfate-precipitated proteins, and (b) purified anti-Id. Both of  these 
preparations were highly effective in inducing switching in 1.29tz cells when 
added together with LPS (10 ttg/ml) for 4 d (Table I). 8 d after induction, 30% 
of  the cells were IgA ÷ in well 3, which had been treated with LPS plus the 
ammonium sulfate-precipitated anti-Id, and 14% of the cells were IgA + in well 
4, which had been treated with LPS plus purified anti-Id. The  percent of  IgA + 
cells may have been greater in well 3 than in well 4 because the amount  of  anti- 
Id present in the ammonium sulfate-precipitated preparation added to well 3 
( -25  #g) was greater than the amount  of  purified anti-Id added to well 4 (5 ttg). 
Anti-Id and LPS appeared to synergize, because treating the cells with a greater 
amount  of  LPS (50 #g/ml) did not produce a greater proport ion of  IgA + cells 
(not shown) and purified anti-Id alone did not induce switching (well 5). The  
ammonium sulfate-precipitated anti-Id did induce switching by itself, but it is 
likely that this preparation was contaminated with LPS from the large amount  
of  FCS it contained. 

The  total number  of  viable cells present in each culture, originating from 0.5 
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X 106 cells, is given in brackets (x 10 -6) in Table I for time points up to 22 d. 
The cell number increased by four- to eightfold in the first 4 d of culture in the 
presence or absence of LPS. At 4 d the cell viability was slightly lower in LPS- 
treated cultures (average, 69%) than in cultures without LPS (average, 83%), 
but by 8 d there was a significant decrease in cell viability in all cultures treated 
with LPS. For example, cells treated with LPS alone (well 2), or with ammonium 
sulfate-precipitated anti-Id plus LPS (well 3) were 16% viable. Cells treated with 
purified anti-Id plus LPS (well 4) were 31% viable, whereas cells treated with 
purified anti-Id alone were 84% viable. The proportion of cells that were IgA + 
or IgM ÷ at days 4 - I  1 was approximately the same whether live only or both live 
and dead cells were counted, which indicates that IgM ÷ and IgA + cells were not 
differentially viable under these conditions. Thus, the increase in IgA ÷ cells in 
LPS-treated cultures was not simply due to the differential viability of  IgM ÷ and 
IgA + cells. 

Do 1.29# Cells Switch to Isotypes Other Than IgA?. At early times (8-11 d) after 
the addition of LPS, cells appeared that did not stain with either anti-IgM or 
anti-IgA ("null" in Table I). These cells were shown to express IgE with the 1.29 
Id by indirect IFM on fixed cells using anti-IgE and anti-I.29 Id antibodies. 
Duplicate slides from the experiment presented in Table I (for days 4 and 11) 
were stained with rhodamine-conjugated goat anti-IgA and a rabbit anti-IgE 
antiserum, followed by an FITC-conjugated anti-rabbit Ig antiserum. The 
percent of  cells that were IgE + corresponded with the percent of  cells that were 
null in cell populations stained with anti-IgM and anti-IgA. On day 4, the percent 
of  cells that were IgE + was slightly greater than the percent that were null, as 
expected if some of the IgE + cells also contained IgM (data not shown). Although 
IgA + cells preferentially accumulated in the treated cultures, a transient increase 
in IgE ÷ cells, which was maximal at 8 d, was observed in a number of experiments, 
and IgE ÷ cells did predominate in a few cultures. One culture of  1.29# cells that 
had been maintained in 10% FCS/RPMI 1640 in the absence of insulin and 
inducers for 10 wk, became 90% IgE ÷, 10% IgM ÷. From this culture, seven IgE + 
clones were obtained by the limiting dilution method (as described for the IgM ÷ 
clones). Fig. 3 shows that the cloned IgE + cells, but not the 1.29# cells, stained 
with rabbit anti-IgE. 

Ig H Chain RNA Expressed in 1.29 Cells. Ig H chain RNA present in 1.29 cells 
were examined in an attempt to corroborate the results of  the IFM assays. Fig. 
4 A illustrates a blot of total cell RNA from 1.29 cells that had been hybridized 
with the #, a, or ~ probes (indicated below each panel). The in vivo line of 1.29# 
cells contained Ig # mRNA but not a or ~ mRNA (lane 1 in all three panels). 
1.29# cells that had been induced to switch, and were 85% IgA +, 15% IgM + 
(lane 2), contained a mRNA and reduced amounts of  tz mRNA. Cloned IgA ÷ 
cells (lane 3) contained a mRNA but no # or ~ mRNA. Two IgE ÷ clones (lanes 
4 and 5) conta ined,  mRNA (40, 41), but also # RNA that were probably sterile 
transcripts from the nonexpressed DJ-C# allele (42, 43). As the # gene on the 
nonexpressed chromosome had been deleted from the cloned IgA ÷ cells (9), no 
sterile ~t RNA were present in these cells (lane 3). 

To  determine if 1.29 cells that had been treated with switch inducers switched 
to other isotypes besides IgA and IgE, we searched for the expression of t~, "r3, 
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FIGURE 4. Blots of 1.29 cell RNA hybridized with probes for H chain genes. Total cell RNA 
were denatured with dimethylsulfoxide and glyoxal (30), electrophoresed on an agarose gel in 
10 mM phosphate, pH 7, and transferred to diazophenylthioetber paper (32). (A) Blot 
hybridized sequentially with the #, a, and ~ probes. The lanes contained 20 #g of total cell 
RNA (except as noted) from: lane 1, in vivo 1.29# cells; 2, 1.29# cells induced to switch (85% 
IgA +, 15% IgM + cells); 3, BFO.3 cells (cloned IgA + cell line); 4 and 5, cloned IgE ÷ cells, 40 
and 20 #g, respectively. The sizes of the ~ mRNA were as expected (40, 41). The # RNA 
detected in the cloned IgE + cells (lanes 4 and 5) are smaller than # mRNA and must be 
transcribed from the nonexpressed DJ2-C# gene present in these cells. The very faint RNA 
band detected by the ¢ probe in 1.29# cells (lane 1 in ~ blot) is smaller than ¢ mRNA and is 
transcribed from nonrearranged ~ genes (44). (b) Blot hybridized with 3'2b probe. Lanes 
contained 20 #g of total cell RNA from: lane 1, IgM.S cells treated with LPS 18 d earlier 
(92% null, 8% lgM+); lane 2, 1.29# cells treated with LPS 17 d earlier (2% IgA +, 75% null, 
23% IgM÷). Null cells did not stain with either anti-IgM or anti-IgA. In these experiments, 
cells were incubated at a higher cell density and with a higher concentration of LPS (50 #g/ 
ml) than normally used. The size of the 3"2 mRNA(3.4 and 1.6 kb) agrees with the sizes 
reported by Rogers et al. (45). The #, a, 4, and 3'2 mRNA were all hybridized with a probe for 
the 1.29 VH gene, and all were poly(A) + (44 andJ. Stavnezer, unpublished data). 

y~, a n d  3'2 m R N A .  Smal l  a m o u n t s  o f  po ly (A)  + R N A  the  size o f  3 m R N A  were  
d e t e c t e d  in u n t r e a t e d  I g M . S  cells (44), a l t h o u g h  no  I g D  has b e e n  d e t e c t e d  in 
1.29 cells (25). N o  3"~ o r  3'1 m R N A  w e r e  d e t e c t e d .  H o w e v e r ,  s ign i f ican t  a m o u n t s  
o f  Y2 m R N A s  w e r e  d e t e c t e d  by  a Y2b c D N A  p r o b e  (37) in s o m e  c u l t u r e s  o f  1.29# 
o r  I g M . S  cells t ha t  h a d  b e e n  t r e a t e d  wi th  L P S  2 - 3  wk p r ev ious ly  (Fig.  4 B). 
S ince  the  3"2b p r o b e  h y b r i d i z e s  wi th  b o t h  3'2b a n d  3"2a sequences ,  we d o  n o t  ye t  
k n o w  w h e t h e r  these  m R N A  e n c o d e  Y~b a n d / o r  3'2a chains ,  In  conc lus ion ,  1.29 
cells c u l t u r e d  in v i t ro  u n d e r  o u r  c o n d i t i o n s  switch mos t ly  to  I g A  and ,  to  a lesser  
e x t e n t ,  to  IgE  a n d  I g G 2 ,  b u t  n o t  to  I g G 3  o r  I g G  1. 

DNA Rearrangements Accompany Switching. T o  d e t e r m i n e  i f  r e a r r a n g e m e n t s  
o f  H cha in  genes  a c c o m p a n y  t h e  i so type  switch a n d  to  sea rch  fo r  i n t e r m e d i a t e  
D N A  r e a r r a n g e m e n t s  in t he  p roces s  o f  swi tching ,  we p e r f o r m e d  S o u t h e r n  b lo ts  
on  D N A  f r o m  1.29 cells a t  va r ious  t imes  a f t e r  i n d u c t i o n  wi th  L P S  a n d / o r  an t i -  
I g  r eagen t s .  D N A  f r o m  the  to ta l  p o p u l a t i o n  o f  cells in t he  cu l tu r e s  was ana lyzed ,  
us ing  t h e  e n z y m e s  i n d i c a t e d  in Figs.  5 a n d  6. 

T h e  D N A  f r a g m e n t s  used  as p r o b e s  in t hese  e x p e r i m e n t s  a r e  i n d i c a t e d  as 
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FIGURE 5. Restriction enzyme maps of expressed and germline #, a, and e genes within 1.29 
cells. The DNA regions within the probes are indicated by black bars above the maps. TheJn  
and CH gene segments are indicated by black rectangles on the maps. S#, Sa, and S~ indicate 
the approximate location of the tandemly repeated S sequences (7, 46). The approximate 
location of S.-Sa and S~-S~ recombinations derived from the mapping data are indicated by 
dots or dashes along the maps and the change in thickness of the lines. The maps were derived 
from numerous genomic DNA blotting experiments and from published data (9, 36). As the 
maps of the a and ~ genes differ in I/St mice (lgh-C') and BALB/c mice (Igh-C') (47), the sites 
in the germline Ca gene were established by mapping a cloned germline a gene (]. Stavnezer, 
unpublished data). The position of the expressed VH gene was confirmed by DNA sequencing 
(D. Klein and J. Stavnezer, manuscript in preparation). (A) Maps of (1) the ge rml ine ,  gene 
present within I/St liver cells, and the expressed # gene within (2) in vivo IgM + cells and (3) 
in vitro IgM + cells. (B) Maps of (4) the germline a gene in the in vivo IgM + liver cells, and (5) 
shortened nonexpressed a gene present 3 d after the addition of anti-Id to the 1.29# cells. 
Maps of the expressed a genes from: (6) IgA + cells cloned from the in vivo 1.29 tumor, (7) 
1.29# cells treated with anti-ld (labeled 1.29# anti-ld 23d [1] in Fig. 7), (8) cells labeled 1.29# 
anti-ld 23d (2) in Fig. 7, (9) cells treated with LPS (labeled 1.29#-LPS) or treated with LPS 
and passaged twice in vivo (labeled 1.29#-LPS, 2P in Fig. 7). The Kpn I sites were not mapped 
in fragments 7-9. (C) Maps of (10) the germline ¢ gene and the nearby C3'~= gene (positioned 
using data from Shimizu et al. [48]) and (I 1) the rearranged expressed t gene present in cloned 
IgE + cells (labeled clones 4, 5, and 6 in Fig. 7). Restriction enzymes: B, Bam HI; Bg, Bgl II; E, 
Eco RI; H, Hind III; K, Kpn I; P, Pst I; S, Sst I (Sac I). 
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FIGURE 6. Maps of the predominant nonexpressed DJ~-C# segments present in 1.29 cells. 
The numbers on the right refer to the lengths in kilobases of the Bgl II fragments encoding 
the DJ~ segment and the 5' portion of the C# gene corresponding to each map. The lines 
without restriction sites indicated within and 3' to the C# gene indicate identity with (1) the 
in vivo segment. (1) Map of the nonexpressed D J-C# gene segment present in the in vivo lines 
of 1.29# and IgM.S. The recombined DJ2 segment is indicated by the most 5' rectangle, 
labeled D J; Js and J4 are indicated by the thinner bars to the right of DJ2. The presence of the 
recombined DQ52-J~ segment has been determined by partial nucleotide sequencing (J. Stav- 
nezer, unpublished data). This map is of the DNA segment that contains the 7.7-kb Bgl II 
fragment in Fig. 7, lanes 3, 4, and 19. (2) Map of the predominant form of the nonexpressed 
DJ~ segment in 1.29u and IgM.S cells in culture. The S# region, which has increased in size 
relative to that in the in vivo cells, is indicated by the length of the added sequences, plus 0.7 
kb. (3-6) Maps of the D J-C# segments detected in cells treated for 3 d with ammonium sulfate- 
precipitated anti-Id (Fig. 7, lanes 9 and 24). (3) The largest DJ~-C# segment appears to have 
resulted from a further addition of 0.6 kb to the S# region. This fragment corresponds to the 
largest fragment marked with a dot in Fig. 7, lane 9. Segments 4 and 5 resulted from deletions 
of 0.8 and 1.5 kb, relative to segment 2, from the S# region. Segment 6 has deleted 3.1 kb, 
including sequences 5' to the S# region, but not 3' to it. From the genomic DNA mapping 
data, it is possible that the Jm segment has been deleted. This map (6) corresponds to the 
smallest fragment in Fig. 7, lanes 9 and 24. 

black bars (above the restriction enzyme maps) labeled JH1-2, JH3-4, M2-5B, a (33), 
and e (36). As the expressed Vn gene has undergone a recombination with the 
Jn4 gene segment, thereby deleting the Jm-3 genes, the probe for the Jm.2 genes 
will not anneal with the expressed VDJ4 allele. The Jm-2 probe will, however, 
anneal with the recombined DJla2 gene segment from the nonexpressed H chain 
chromosome (9) (Fig. 6), enabling us to use the JHi-2 probe to distinguish the 
expressed and nonexpressed alleles. 

Fig. 7 shows blots of Bgl II fragments of 1.29 cell DNA annealed with the IgH 
chain probes indicated below each blot. The Jn3-4 probe detected two rearranged 
J.-C# Bgi II fragments in the IgM.S and 1.29# cells passaged in vivo (lanes 3 and 
4), the larger of which (16 kb) encodes the expressed VDJ4-C# gene, and the 
smaller of which (7.7 kb) encodes the nonexpressed DJH2-C# allele (9). The 
fragments detected by the JHs.4 probe, which also annealed with the Jm-2 probe, 
are indicated by small black dots on the right edge of the bands detected by the 
JH3-4 probe. 

IgA + cells from the 1.29 tumor, i.e., cells that have switched in vivo, of which 
the cloned cell line BFO.3 is typical (25), contain an expressed a gene present 
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on a large Bgl II fragment (25.5 kb in BFO.3 cells), which anneals with both the 
JH3-4 and a probes (lanes 6 and 30), but not with the Jm-2 probe (9). This 
assignment has been verified by analyses of cloned a genes and of ot RNA in 1.29 
cells (data not shown). The map of this expressed 0~ gene segment is given in Fig. 
5 B, 6. The nonexpressed DJH2 segment in BFO.3 cells (the 17 kb Bgl II fragment 
in lane 6, marked with a dot) has recombined with the 3'3 gene, as demonstrated 
by the fact that BFO.3 cells contain one rearranged 3'3 gene (and no germline 3'3 
gene), which comigrates with the nonexpressed DJn2 segment using two different 
restriction enzymes, and by analysis of  a DJ2-C3'3 segment cloned from BFO.3 
cells (data not shown). 

S# Regions Undergo Deletions and Expansions When the IgM + Cells Are Adapted 
to Culture. The expressed and nonexpressed t~ gene segments differed in size 
between the in vivo and in vitro lines of 1.29# and IgM.S cells. The expressed # 
fragment has undergone a small (~0.3 kb) deletion in the Su region in both the 
1.29~ and IgM.S in vitro cell lines relative to the in vivo lines. This was not 
apparent in Bgl II digests, but was obvious with other enzymes (see maps; Fig. 
5 A, 2 and 3). The nonexpressed DJmC# fragment was 0.7 kb larger in three 
independently produced in vitro lines (two 1.29# lines and one IgM.S line) than 
in the in vivo lines from which they were derived. (Fig. 7, compare lanes 4 and 
5; see also maps of nonexpressed DJ-C# segments in Fig. 6, 1 and 2.) The 
nonexpressed DJn-C# fragments in the in vitro 1.29# cells were heterogeneous 
in size, as indicated by the fuzzy edges of the 8.4-kb Bgl II band detected by the 
JH~-4, Jnl-2, and M2-5B probes (Fig. 7, lanes 5, 14, and 20). The tandemly 
repeated S# sequences lie between the Sst I and Hind III sites located 5' to the 
C# gene segment (indicated on the map of the germline C# gene, Fig. 5 A, 1 and 
on the map of the in vivo DJ-C# segment, Fig. 6, 1), although they may extend 
beyond these sites, as their exact borders have not been defined (7). Our mapping 
data indicate that the increase in size of the nonexpressed DJ-C~ fragment in 
cultured IgM ÷ cells was due to an increase in size of the S# region (Fig. 6, 1 and 
2), whereas regions 3' to S# remained unaltered. The blot in Fig. 7, which was 
annealed with the M2-5B probe, contains a band marked 3' # that corresponds 
to the 6-kb Bgl II fragment encoding the C# gene and 3' flanking sequences. 
This band is identical in size in liver and 1.29 cells (Fig. 7, lanes 18-20 and 22- 
26), except it is absent from cells that have deleted both # genes, e.g., BFO.3 
(lane 21). Thus, the alterations in size of the nonexpressed DJ-C# segment were 
localized to the 5' side of the C# gene. 

S# Regions On the Nonexpressed Allele Underwent Deletions and Further Expansion 
Shortly After Induction. When ammonium sulfate-precipitated anti-Id was added 
to 1.29 cells for 3 d, most of  the nonexpressed DJ-C# fragments, but not the 
expressed VDJ-C# fragments, underwent a variety of deletion events to yield 
three different predominant smaller fragments (Fig. 7, lanes 9 and 24). Maps 
obtained by digestion of 1.29 cell DNA with Sst I, Hind III, Pst I, Eco RI, and 
Barn HI, and by hybridization with the JH and M2-5B probes indicate that these 
deletions occurred within and 5' to the S# region (Fig. 6, 4-6). The fragment 
mapped in Fig. 6 has undergone a 3.1-kb deletion that appears to include Ju4, 
according to our genomic DNA mapping data. At this early time after adding 
anti-Id, some of the DJ2-C# fragments have not undergone deletion, but instead 
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have enlarged by 0.6 kb, as indicated by the presence of a faint 9-kb fragment 
(the largest fragment marked by a dot in Fig. 7, lane 9). 

The large variety of nonexpressed DJ-CIz fragments that were observed after 
3 d of treatment were not observed at later times after induction, but rather 
such cultures usually contained only two Bgl II fragments from the nonexpressed 
allele (Fig. 7, cf. lanes 7, 10, 11, 15, and 25). Surprisingly, the smaller DJ-C# Bgl 
II fragments present after 3 d of induction were not present at later times. We 
did not detect recombination of any other CH gene with the nonexpressed DJ 
segment in these cultures, except with the Ca gene in one experiment (I.29/~- 
LPS, Fig. 7, lanes 7 and 38). In this culture of 1.29tz cells that had been treated 
with LPS 31 d earlier, the nonexpressed DJ~2 segment was present on two 
different Bgl II fragments detected by the JH3.4 probe (marked by dots in lane 
7). The smaller fragment (8.4 kb) annealed with the M2-SB probe (lane 22), 
whereas the larger fragment (18 kb) annealed with the a probe (lane 38). Note 
that the smaller a band in 1.29#-LPS cells appears to be a doublet consisting of 
a germline a gene and a slightly larger a fragment. 

These LPS-treated cells were subsequently passaged in mice two times. This 
resulted in an increase of the IgA + cells from 30% before passage in vivo to 73% 
after passage (lanes 8, 23, and 39). The expressed # gene and the 8.3-kb Bgl II 
fragment that encoded the nonexpressed DJH~-C# fragment have mostly disap- 
peared, but the larger DJm-Ca fragment (18 kb) remained (lanes 8 and 39). 

The IgE + clones contained nonexpressed DJ2-C/~ fragments that differed in 
size from the DJ~-C# fragments in the LPS- or anti-Id-treated cultures (Fig. 7, 
compare lanes 7 and 11 with 12 and 13), which further attests to the heteroge- 
neity in the sites of recombination on the nonexpressed chromosome. 

Switch Regions of Nonrearranged ot Genes Have Undergone Deletions 3 d After 
Addition of Anti-ld. Within 3 d after the addition of ammonium sulfate-precip- 
itated anti-Id, some of the DNA fragments encoding the nonrearranged Ca gene 
had undergone a 0.9-kb deletion. The shortened a fragment can be seen in a 
blot of  Bam HI-digested DNA as a band migrating slightly faster than the 
germline a fragment (Fig. 8 A, compare lanes 1 and 7-9 with 5). The shortened 
a fragment did not anneal with the JHs-4 probe (data not shown). The map of 
this fragment indicates that the deletion occurred within the Sa region (Fig. 5 
B, 5). This 0.9-kb deletion was observed in four of five different cultures of 
1.29# cells that had been treated with anti-Id for 3 d (Fig. 8 A, lanes 1 and 7-9). 
The one culture that did not exhibit this deletion (Fig. 8 A, lane 6) did not 
subsequently undergo switching. Cultures that had undergone large amounts of 
switching to IgA expression (>30% IgA +) did not display the shortened a 
fragment (lanes 3 and 10-15), whereas one culture that was 30% IgA + did have 
this fragment (lane 2). 

Switching to IgA Is Effected by S#-Sa Recombination. 3 d after treatment of 1.29t~ 
cells with ammonium sulfate-precipitated anti-Id, no rearranged expressed 0~ 
genes were detected (Fig. 7, lane 33; Fig. 8, lanes 6-9), probably because the 
proportion of cells containing the expressed a gene fragment was too small (0- 
3% of the cells were IgA÷). 

Rearranged, expressed 0z gene fragments in amounts that approximately 
correlated with the proportion of IgA + cells were apparent in cultures of 1.29# 



592 ISOTYPE SWITCHING BY CULTURED B LYMPHOMA CELLS 

FIGURE 8. Blots of 1.29 cell DNA digested with Barn HI. DNA were prepared from untreated 
1.29# or BFO.3 cells, or from cultures of 1.29 # cells that had been treated with the indicated 
reagents. Blots were annealed with the a (A) or Jns4 (B) probes. (A) The Barn HI fragments 
(12.6-15 kb) labeled expressed ["(exp) a"] in A, lanes 2 and 3 and 10-16, co-migrated with 
bands detected by the Jns.4 probes (B, lanes 3-7). (Jus4 data for lanes 2 and 3 in A are not 
shown.) The germline a band did not comigrate with bands detected by the Jn~  probe. 
Smaller a gene fragments present in lanes 1 and 2 and 7-9 in A also did not co-migrate with 
bands detected with the Jn~-4 probe. (B) The Jns-4 probe detected: (1) the expressed a segment 
(12.6-15 kb), (2) the expressed # segment, which was slightly larger (8.3 kb) in the in vivo line 
of 1.29u cells (lane 1) than in the in vitro lines (8 kb) (lanes 2-5), and (3) smaller fragments 
from the nonexpressed DJ~-Ct~ segment, which comigrated with fragments detected by the 
M2-5B probe (not shown), except in BFO ceil DNA (lane 7), where the nonexpressed DJ 
segment comigrated with a fragment detected by the 3'3 probe (not shown). The percent of 
the cells that were lgA + in the cultures analyzed in A were: (1) 3, (2) 30, (3) 50, (4-7) 0, (8) 
1.1, (9) 2, (10) 27, (I 1) 99, (12) 32, (13) 74, (14) 58, (15) 100, and (16) 100 cloned IgA + cell 
line, The DNAs present in lanes 12-16 in A were identical to those present in lanes 3-7 in B. 

cells t ha t  h a d  been  t r e a t e d  23 d p r e v i o u s l y  wi th  t he  a m m o n i u m  s u l f a t e - p r e c i p i -  
t a t e d  a n t i - I d  (Fig.  7, lanes  34 a n d  35), o r  15 d e a r l i e r  wi th  L P S  (Fig.  8 A, lane  
12), o r  15 d e a r l i e r  wi th  L P S  plus  a n t i - I d  a n t i b o d y  (Fig.  8A,  lanes  13 a n d  14). 
E x p r e s s e d  a genes  w e r e  d e t e c t e d  in c u l t u r e s  tha t  c o n t a i n e d  a t  least  12% I g A  + 
cells.  T h e  r e s t r i c t i o n  e n z y m e  m a p s  o f  t he se  r e a r r a n g e d ,  e x p r e s s e d  a g e n e s  
i nd i ca t e  tha t  t he  D N A  r e c o m b i n a t i o n s  tha t  e f fec t  swi tch ing  f r o m  I g M  to I g A  in 
c u l t u r e d  1.29 cells o c c u r  wi th in  o r  i m m e d i a t e l y  5 '  to  t he  SU a n d  S a  r e g i o n s  (Fig.  

5 B, 7-9). 
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IgE + Cells Contain a Rearranged, Expressed ~ Gene. Southern blots were also 
performed on genomic DNA from the IgE + clones. These clones (clones 4, 5, 
and 6) contained one germline E gene and one rearranged ~ gene, which migrated 
at the same position as the expressed V.DJ  gene segment when the DNA was 
digested with Bgl II (Fig. 7, lanes 12, 1 ~ a 9  and 43). The maps of  the germline 

gene and the predominant expressc ...... ~0 . . . . .  ,e segment in 1.29 cells are given in 
Fig. 5 C, 10 and 11. The DNA recumo,,,ation between the expressed tz and 
germline ~ genes that effected the switch to IgE expression occurred within or 
very close to the S~t and S~ regions, as revealed by the positions of  the Sst I and 
Hind III sites located 5' to the expressed ~ gene (Fig. 5 C, 11). 

Do the Sites of Switch Recombination Differ Among Different Expressed ot 
Genes? Maps of  three rearranged, expressed a genes present in three different 
cultures of  cells that had switched in vitro (Fig. 5 B, 7-9) indicate that these 
fragments were produced either by the use of  different sites of  S/z-Sa recombi- 
nation or by different DNA deletion events 5' to the site of switch recombination. 
The fragments bearing the expressed ol genes mapped in Fig. 5 B, 7-9,  are from 
DNA shown in Fig. 8 A, lanes 2 and 3 and in Fig. 7, lanes 31, 34, and 35, 
respectively (lanes 34 and 35 are from different gels). The presence of  three 
different expressed a fragments in these three populations suggests that these 
cultures were each dominated by a different clone of  IgA cells. Consistent with 
this hypothesis is the fact that the IgA + cells in these cultures did not increase 
significantly in number until late, 15 d, after addition of  the ammonium sulfate- 
precipitated anti-Id antibody or 23 d after addition of  LPS. By contrast, in 
experiments in which cells were treated with LPS or LPS plus anti-Id, and in 
which switching occurred more rapidly, e.g., in the experiment presented in 
Table I, the sizes of  the Barn HI fragments containing expressed ot genes were 
much more similar among different cultures (Fig. 8 A, lanes 10-15; Fig. 8 B, 
lanes 3-6,  which contain the same DNA as in 8 A, lanes 12-15, annealed with 
theJH3-4 probe). Because the sizes of  the Barn HI fragments bearing rearranged, 
expressed a genes are very similar among these different cultures, it is probable 
that the apparent homogeneity, seen in Southern blots, of the expressed a 
fragments within these cultures was not due primarily to clonal outgrowth, but 
to a limited variation in the sites of  switch recombination. This hypothesis will 
be examined by analyses of  cloned DNA fragments containing the sites of  S~t-Sa 
recombination. 

Discussion 
IgM + Cells From the L 29 Lymphoma Can Be Induced to Undergo Isotype Switching 

in Culture. Two types of  evidence proved that IgM ÷ cells from the 1.29 
lymphoma can undergo H chain switching in vitro. (a) Cells containing both IgM 
and IgA within their cytoplasm appeared in cultures treated with LPS or anti-Id 
plus LPS. The fact that the double-stained cells appeared at early times after 
induction (4-11 d) and disappeared at later times argues that the double-stained 
cells were cells that had recently switched to IgA synthesis. (b) Cloned IgM ÷ cells, 
derived from the 1.29# cell line, could also be induced to switch to IgA. 

Although a low amount of  switching occurred in cells cultured in the absence 
of  exogenous inducers, much more switching was induced by treatment with 
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LPS and even more by the addition of  both LPS and a crude or a purified 
monoclonal anti-Id antibody. The fact that, in cultures treated for 4 d with LPS 
or LPS plus anti-Id, a much greater proportion of  the IgA ÷ cells also contained 
IgM than in cultures that did not receive these inducers argues that these reagents 
actually induced switching, rather than simply permitting the preferential out- 
growth of  previously existing IgA + cells. 

The viability of LPS-treated cultures was only slightly lower than that of 
untreated cultures at day 4, although by 8 d after LPS treatment the cell viability 
was very low. By 11-15 d, the viability again increased. Thus, the accumulation 
of  IgA + cells, which began after 4 d but before 8 d, started before the general 
increase in cell viability. Since the percent of  cells that were IgA + 4-11 d after 
induction was similar whether only live or both live and dead cells were counted, 
the accumulation of IgA + cells was not due simply to their preferential viability 
after LPS treatment. However, it is possible that a portion of the increase in 
IgA ÷ cells could be due to more rapid proliferation after LPS treatment. 

Anti-Id and LPS appeared to be synergistic because the purified anti-Id by 
itself did not induce any switching, nor did an increase in the amount of LPS 
added produce a greater proportion of  IgA ÷ cells. It is possible that the mono- 
clonal anti-Id antibody by itself did not induce switching because it could not 
sufficiently cross-link the Ig receptors on the cell surface. Because anti-Id and 
LPS presumably interact with different receptors (49, 50), they could, potentially, 
stimulate synergistically. 

Hamano and Asofsky (51) have described an IgM ÷ B cell hybridoma that could 
be induced by anti-IgM in the absence of  LPS to switch to IgG2a expression. 
Thus far, three different anti-IgM antibodies have failed to reproducibly induce 
1.29~ cells to switch: one monoclonal rat anti-mouse IgM, and two goat anti- 
mouse IgM antibodies, one of which had been shown to be effective in inducing 
Ig secretion when added to B cells in the presence of T cell factors (31, 52). The 
rat monoclonai anti-IgM did induce a small amount of  switching in one experi- 
ment (not shown). Anti-IgM in the presence of  LPS killed 1.29~ cells and did not 
induce switching. 

The role of T cells in the induction of switching is problematic. The evidence 
presented here and that of Mongini et al. (19, 20) demonstrates that switching 
can occur in the absence of T cells. It has also been shown, however, that T cells 
or T cell factors can enhance the switching to certain isotypes by antigen- or 
LPS-stimulated B cells (18-20, 53). It is possible that the addition of T cells to 
LPS- or anti-Id-stimulated 1.29u cells would augment the number of  cells that 
have undergone isotype switching and/or would influence the choice of  isotype. 

Specificity oflsotype Switching. A number of  experiments (1, 20-23) indicate 
that splenic IgM + B cells are not committed to switch to a specific isotype. Under 
our conditions, however, 1.29 cells switch most frequently to IgA, and less 
frequently to IgE or IgG2, but not at all to IgG3 or IgG1. Furthermore, in the 
IgM + cells from the 1.29 iymphoma, the state of activation, as assayed by level 
of methylation and by transcription, of  the nonrearranged o~ and ~ genes, differs 
from that of the ~'1 genes (44; J. Stavnezer and S. Sirlin, manuscript in prepara- 
tion). Thus, 1.29 cells may represent a differentiated state of B cells predeter- 
mined to switch only to certain isotypes. Further evidence for precommittment 
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of subpopulations of B cells to certain isotypes is found in the work of Kawanishi 
et al. (18). These authors showed that a higher proportion of IgM + B cells from 
Peyer's patches than from spleen would switch to IgA when stimulated with LPS 
in the presence of  cloned IgA-switch helper T cells. The data indicate that, in 
the absence of  T cells, B cell clones are not restricted to switching to only one 
isotype, nor can they switch to all isotypes. Instead, they appear to be capable of 
switching to a subset of  isotypes. Furthermore, our data support that of  others 
(20-23, 54) indicating that the precursors for IgG +, IgA +, and IgE ÷ cells are not 
distinct. 

From an examination of ~" mRNA in 1.29 cells treated with LPS, we concluded 
that switching to IgG2, but not to IgG3 or IgG1, occurred in some cultures. 
This result is inconsistent with the hypothesis that the frequency of  switching to 
the various 7 subclasses in the absence of T cells is determined simply by the 
order of  CH genes on the chromosome, with genes located 5' being favored (8, 
19). These data also argue against the hypothesis that switching occurs succes- 
sively among ~' subclasses (8, 19, 34). Similarly, although the appearance of IgE + 
cells among 1.29# cells that have been treated with LPS and/or  anti-Id was 
usually transient, it does not appear likely that IgA + cells were usually derived 
from IgE + cells, because among 74 IgE ÷ cells examined in cultures that were 
actively switching to IgE and IgA, no cells were observed that stained with both 
anti-IgE and anti-IgA simultaneously. 

DNA Rearrangements Occur Within 3 d After Induction of lsotype Switching. By 
3 d after the addition of the ammonium sulfate-precipitated anti-Id to 1.29# 
cells, two types of  DNA rearrangements were observed. (a) The So~ region 
associated with some of the nonrearranged ot gene fragments underwent a 0.9- 
kb deletion. Because this shortened a gene fragment disappeared from cultures 
that contained a large proportion of IgA + cells, it is possible that this deletion 
event is an intermediate in the process of switching. This could be the conse- 
quence of  the binding of  the switch recombinase enzyme to the Sa region, which 
results in a recombination of  sequences within the So~ region, independently of 
a recombination with the S# region. This is consistent with the fact that the 
occurrence of deletions within the Sa region was not necessarily followed by 
switching, as a number of  the IgM ÷ cell lines cloned from 1.29~ cells have a 
genes bearing the shortened Sa region (data not shown). This deletion may be 
part of an aborted attempt to switch. It is likely that the deletion occurred only 
on the expressed H chain chromosome, because in cultures that had switched 
extensively, the shortened a gene was not detected. Instead, a normal-sized 
germline a gene fragment was present, which must be from the nonexpressed H 
chain chromosome. The cloned IgE ÷ cell lines have also suffered a deletion 
within the Sa region of  one of  their two a genes, but of 0.6 kb rather than of 
0.9 kb. (b) The other type of recombination event detected within 3 d after 
induction involved S# sequences and the region 5' to the S# sequences on the 
nonexpressed chromosome only. From an examination of the intensity of bands 
produced by annealing blots with the Jm-~ and M2-5B probes, one can conclude 
that ~90% of the DJ.2-Cu fragments from the nonexpressed chromosome have 
undergone recombination that resulted in either an increase in size or a deletion 
of  sequences (Fig. 7, lanes 9 and 24). The rapidity with which recombinations 
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occurred and the variety of  recombination events that were detected was sur- 
prising, especially since no recombination events involving the S# region of  the 
expressed chromosome were detected at this early time. It is possible that 
recombination events between S# and Sa sequences on the expressed chromo- 
some occur much less frequently or more slowly because the S# and Sa regions, 
which are located ~200 kb apart, must first be juxtaposed. To explain why no 
deletion events were detected involving only the S# region of  the expressed # 
gene, we suggest that DNA recombination events on the expressed chromosome 
are limited in their variety, perhaps because they are more specifically controlled. 
It is possible that the two alleles could be distinguished by the recombination 
machinery because the expressed allele may be transcribed at a higher rate than 
the nonexpressed allele. The steady state level of  RNA in IgM.S cells from the 
expressed allele is ~100 times greater than the amount of RNA from the 
nonexpressed allele, as judged by hybridization with the Jm-4 and Jm-~ probes, 
respectively (not shown). These probes each hybridize to approximately the same 
number of  nucleotides in spliced RNA in 1.29 cells. 

We have not detected a rearranged expressed a gene at very early times after 
the addition of  anti-Id. However, it is obvious, from the occurrence of  DNA 
recombinations within cells that had been treated for 3 d with anti-Id, that a 
DNA recombinase able to recombine switch sequences has been activated in 
these cells. It is likely that we have not detected a rearranged expressed a gene 
fragment at this early time because only a small percent of  the cells have 
undergone switch recombination (<3% of the cells in the culture after 3 d of  
induction expressed IgA). By 15 d after the addition of  LPS or anti-Id plus LPS 
to 1.29# cells, predominant rearranged Bam HI fragments bearing expressed a 
genes were detected (Fig. 8, lanes 12-14). These data are consistent with the 
hypothesis that switching in 1.29 cells is effected by DNA recombinations. 

The results of  Hurwitz and Cebra (10) and Radbruch and Sablitsky (11) 
suggest that DNA recombinations that effect switching occur at early times after 
the addition of  switch-inducers to normal B cells. These authors treated spleen 
cells with LPS and, after 4 or 6 d, isolated LPS blasts that did not express IgM, 
or that had membrane-bound IgG3. Both groups found that ~50% of the C# 
genes had been deleted from these cells. It was not possible, however, to 
determine whether the C# genes had been deleted from the expressed and/or 
nonexpressed H chain chromosome, since the cells were not clonal in origin. 

Specificity of Recombination Sites. Examination of independent switching events 
in a cloned cell line may lead to an understanding of the specificity of  the DNA 
sequences recombined during switch recombination. Although the overall size 
of the fragments containing the sites of  S#-Sa recombination appeared identical 
among several cultures of  1.29 cells that had switched in vitro, it is likely that the 
actual sites of recombination differ. The size of  Sac I fragments bearing the 
rearranged expressed a gene in IgA + cells from the noncloned tumor also 
appeared identical in genomic Southern blots (9). However, the sites of S#-Sa 
recombination among six different expressed a genes cloned from IgA + cells in 
the tumor all appeared to differ from each other when examined by mapping 
with restriction enzymes that recognize four basepair sequences within the Sac I 
fragments (J. Stavnezer, unpublished data). These differences were produced by 
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independent switch recombination events, because the sites of S#-Sa recombi- 
nation in two independent clones of the expressed a gene present in a long-term 
culture of  the cloned IgA + cell line (BFO.3), appeared identical by the same 
criterion (D. Klein and J. Stavnezer, manuscript in preparation). The lack of 
specificity as to the precise sites recombined is as expected from an examination 
of myeloma cell DNA (7, 55). 

1.29 as a Model for H Chain Switching. The 1.29 cell line differs from other 
cell lines capable of undergoing isotype switching in vitro, i.e., pre-B cell lines 
(56-58) and various myeloma and hybridomas (59), as switching in these systems 
occurs spontaneously at a low frequency and cannot be induced by LPS, a 
reagent that induces switching in cultured normal B cells (15, 60). In myeloma 
and hybridoma cells that switch in vitro, DNA recombinations do not occur 
within or near the tandemly repeated switch sequences (59, 61), whereas in 1.29 
cells and in cells that have switched in vivo, DNA recombinations have occurred 
within or immediately 5' to the S sequences (7, 46, 55). Finally, switching by 
myelomas and hybridomas generally occurs to the CH gene located immediately 
3' to the gene being expressed (59, 62), whereas, like 1.29 cells, single clones of 
normal B cells appear to be capable of switching from IgM directly to IgA or to 
IgE (20, 21, 54, 63). Therefore,  the 1.29 cell line provides a unique and 
apparently physiological model for isotype switching by normal mature B cells. 

S u m m a r y  

The murine B cell lymphoma 1.29 contains cells expressing surface IgM or 
IgA with identical heavy chain variable regions (9, 25, and D. Klein and J. 
Stavnezer, unpublished data). Purified IgM ÷ cells from the lymphoma have been 
adapted to culture and induced to switch to IgA, IgE, or IgG2 by treatment with 
lipopolysaccharide (LPS) or by treatment with a monoclonal anti-I.29 antiidi- 
otype plus LPS. Clones of  IgM + cells have been obtained and induced to switch. 
Under optimal conditions, 30% of  the cells in the culture expressed IgA 8 d 
after the inducers were added, and by 15 d 90% of the cells were IgA ÷. In 
actively switching cultures, up to 50% of the cells whose cytoplasm stained 
positively with anti-IgA stained simultaneously with anti-IgM, which indicates 
that the appearance of  IgA ÷ cells in the cultures was due to isotype switching 
and not to clonal outgrowth. Examination by Southern blotting experiments of 
the Ig heavy chain genes in 1.29 cells before and after switching revealed that 
isotype switching was accompanied by DNA recombinations that occurred within 
or immediately 5' to the tandemly repeated switch sequences. Within 3 d after 
the addition of inducers of  switching, the nonexpressed chromosome underwent 
a variety of  deletions or expansions within the S# region, and a portion of the 
So~ regions had undergone a 0.9-kb deletion. In cultures that contained at least 
12% IgA ÷ cells, rearranged, expressed a genes, produced by recombination 
between the S# region within the expressed # gene and the Sa region, were 
detected. 
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Note added in proof." By hybridizing RNA blots with DNA probes specific for either the ~'2b or ~,2a 
genes (encoding the CHs domains, given by Drs. S. Tilley and B. Birshstein, Albert Einstein Medical 
College, NY), we have established that 1.29# cells switch to IgG2a but not to IgG2b. 
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