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Systemic autoimmune diseases, such as systemic lupus erythematosus (SLE)! in
humans, are characterized by abnormal immune recognition and destruction of mul-
tiple organs and tissues. The immune defect appears to involve both T and B cells,
although the nature of the primary disturbance(s) that ultimately leads to loss of
immunologic self-tolerance is unknown. Many of the systemic autoimmune diseases
are accompanied by serological evidence of autoimmunity in the form of circulating
antibodies to tissue and blood macromolecules (1-3). The presence of various au-
toantibodies is specific for disease, and certain autoantibodies are diagnostic of par-
ticular autoimmune syndromes (2, 3). The titers of some types of autoantibodies,
for example anti-IgG (rheumatoid factors [RF]) in rheumatoid arthritis (4, 5) and
antibodies to dsDNA in SLE (1, 6), correlate with disease activity. Anti-DNA in
particular have been implicated in pathogenesis by direct evidence of DNA-anti-DNA
complexes in diseased kidney (6, 7), as well as evidence that injected anti-DNA is
nephritogenic (8, 9). Understanding what causes the production of autoantibodies .
should provide insight into the cause of the disease itself.

We have exploited the MRL//pr mouse model for SLE to study the etiology of
humoral autoimmunity. Disease in this strain is dependent on the recessive lpr gene
and unknown background genes (10, 11). Although the MRL/lpr syndrome is different
from human SLE in that the lpr gene causes proliferation of an unusual subset of
T cells (12), MRL/Ipr disease is strikingly similar in a number of aspects to human
disease. These mice develop multi-system autoimmunity, including a lupus-like
nephritis (11), arthritis (13) and antinuclear antibodies, antibodies to ribonucleopro-
teins (14), and antibodies to ssDNA and dsDNA (15).

The study of somatic cell hybrids formed with unmanipulated spleen cells from
MRUL/Ipr mice has recently allowed us to address the question: is the stimulus for
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production of autoantibodies nonspecific polyclonal B cell activation or specific
(auto)antigen-driven B cell activation? The advantage of the cell hybridization ap-
proach is that it captures both specifically and nonspecifically activated spleen cells;
antigen-activated B cells captured in this way have been shown to accurately reflect
the humoral immune response (16), and panels of hybrids from polyclonally acti-
vated B cells are indeed polyclonal (17, 18). Recently, we showed that the V gene
sequences and rearrangements of spontaneous monoclonal RFs from MRL//pr mice
were the product of specific B cell activation mediated via the antigen receptor (19).

We now present a similar analysis of a classical SLE autoantibody: anti-DNA.
This analysis shows that anti-DNA, like RFs, are oligoclonal and are the result of
specific receptor-driven stimulation, providing strong evidence that this is the case
for MRL/Ipr autoimmunity in general. Furthermore, knowledge of both V region
sequences and antibody specificities shows that: (a) somatic mutations can give rise
to the disease-specific anti-dsDNA and that such mutations are selected for; () argi-
nine residues play an important role in determining specificity; and (¢) antiidiotypes
that recognize the majority of anti-DNA are probably not specific for any one family
of V regions. These results have important implications for both etiology and therapy
of autoimmunity.

Materials and Methods

Antibodies.  All mAbs were derived from fusions of spleen cells from MRL//pr mice (ob-
tained from The Jackson Laboratory, Bar Harbor, ME) with myeloma cell lines. The genera-
tion and initial characterization of antibodies from mouse 1 and 2 were described previously
(20, 21). Hybridomas from mouse 3 (28 wk of age) were prepared according to the procedure
of Marshak-Rothstein et al. (22). Half of the spleen cells were fused with the cell line SP2/0,
the other half with Ag8. Somatic cell hybrids from mice 4 and 5 were generated according
to the technique of Oi and Herzenberg (23), using the myeloma cell line NSI as the fusion
partner. Mouse 4 was 14 wk old and mouse 5 was 21 wk old. Hybridoma supernatants were
screened for antibodies to denatured calf thymus DNA by an ELISA, as described (24). The
frequency of anti-DNA hybridomas was 0.19 and 0.06 for mouse 3 and 4, respectively. The
frequency was not determined for the other mice. Cells from randomly selected positive wells
were cloned twice by limiting dilution. The H and L chain isotypes of the anti-DNA mAbs
were determined using subclass-specific reagents (Litton Bionetics, Charleston, SC).

Specificity Analysis.  Tissue culture supernatants of each antibody were collected at mid-
log phase of growth and stored at 4°C with 0.02% NaNs;. The concentration of antibody
in the supernatants was determined by ELISA, using the following purified myeloma pro-
teins as standards. FLOPC/21 (IgG3) was purchased from Sigma Chemical Co. (St. Louis,
MO). The myeloma cell lines 7043 (1gG2a), 2413 (IgG2b), 7210 (IgG1), and 3741 (IgM) (25),
were maintained in this laboratory and purified from ascites fluid by standard column chro-
matography methods.

A standard direct binding ELISA (26) was used to determine mAb binding to ssDNA.
A novel assay was used to assess antibody binding to both ss- and dsDNA in solution (Radic,
M. Z., and M. Weigert, manuscript in preparation). Briefly, salmon sperm DNA (Sigma
Chemical Co.) was purified by treatment with protease and multiple phenol and chloroform
extractions, followed by repeated precipitation in ethanol. It was then photobiotinylated using
the reagent and protocol of Vector Laboratories, Inc. (Burlingame, CA). From this stock,
dsDNA was prepared by treating with S1 nuclease, followed by Hae III digestion to yield
flush ends. ssDNA was prepared by denaturing dsDNA at 90°C in 10 mM Tris (pH 7.2),
1 mM EDTA for 10 min before dilution in ice-cold PBS-BSA. Dilutions of antibody superna-
tants in PBS, containing 1% BSA, were incubated with biotinylated DNA (concentration,
2 pg/ml), for 3 h at 37°C. The incubation mixtures were then transferred to microtiter plates
that were precoated with 5 pg/ml goat anti~mouse « antibody (Fisher Biotech, Fair Lawn,
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NJ). After a 2-h incubation at 37°C, the plates were washed twice with PBS, containing 0.05%
Tween 20. Alkaline phosphatase-conjugated streptavidin (Fisher Biotech) was then added
according to the recommended dilution, and incubated for 30 min at 37°C. The plates were
again washed twice before the addition of a 1% paranitrophenyl phosphate solution in 50
mM NaHCO;, 10 mM MgCly; pH 9.6. Relative binding affinities were determined by cal-
culating the concentration of antibody that generated half-maximum absorbance at 405 nm
for both denatured and native DNA. The data (Table II) is represented as the ratio of the
half-maximal concentration of native dsDNA over ssDNA. To establish the validity of this
assay, two anti-DNA mAbs, H241 and C11, were used as standards because their specificities
for dsDNA and ssDNA have been well characterized. H241 recognizes both dsDNA and ssDNA
(27), whereas C11 is specific just for ssDNA (24). In this assay, H241 bound to both forms
of DNA. C11 bound to ssDNA and showed no significant binding to dsDNA, even at anti-
body concentrations 30-fold higher than the concentration to achieve half-maximal ssDNA
binding.

Oligonucleotides.  Oligonucleotides complementary to the 5 border of the mRNA encoding
the C regions of the H and « isotypes were synthesized on an oligonucleotide synthesizer
(Applied Biosystems, Inc., Foster City, CA). These were purified by electrophoresis through
20% polyacrylamide, 7 M urea gels, followed by absorption to Sep-Pak C18 cartridges (Waters
Associates, Milford, MA), and elution in 20% acetonitrile. Sequences of oligonucleotides
complementary to the g, 3, and «, and crosscomplementary to 1, 2. and Y2, C regions
were as previously reported (28, 29). The J1 probe (sequence YTGATTTCCAGCTTC-
CTGCCTCCAC3"), was a gift from Dr. Andrew Caton (Wistar Institute, Philadelphia, PA).

RNA Isolation and Nucleotide Sequencing. The majority of the V regions were sequenced
by synthesizing cDNA from poly(A)* RNA using oligonucleotide primers labeled with 32P
at the 5’ end. cDNA was purified and sequenced by a rapid chemical degradation technique,
as described by Shlomchik et al. (29). The V,, and V, regions of hybridomas DP7 and DP11
and the V,, regions of DP1 and 12 were sequenced directly from the poly(A)* RNA tem-
plate by the oligonucleotide-primed dideoxy chain termination method according to Geliebter
et al. (30). The nucleic acid sequences were compared with Ig sequences stored in the
EMBL/GenBank Data Libraries.

Results

The Anti-DNA Response in MRL/lpr Mice Is Oligoclonal. The V, and Vi regions
of 31 anti-DNA mAbs from five MRL//pr mice were sequenced and the results are
shown in Table I, which summarizes the V., Dy, Ju, Vi, and J« segments used.
The data show that for each mouse, most antibodies can be grouped into one or
more sets, based on their use of the same or highly similar V4 and V1 genes. For
instance, all antibodies from mouse 1 (set A), two from mouse 2 (set B), five from
mouse 3 (set C), and five from mouse 4 (set D) are coded for by V. and V, genes,
which are 98-100% homologous. Mouse 5 is more complex, with three such sets
(E, F, and G).

Use of the same V gene pairs among antibodies of individual mice, but rarely
between mice, suggests that antibodies of a set are derived from a single B cell precursor.
This possibility was borne out by more detailed analysis of the sequences of the third
complementarity determining region (CDR3) of V, and the rearranged V,, and Vi
alleles. Because of nucleotide addition (31) and deletion during VD] joining, the
nucleotide sequence in the CDR3 of the H chain is highly variable, even among
antibodies with specificity for the same hapten (32; T. Manser, personal communi-
cation). Identity of CDR3 nucleotide sequence from unrelated B cells is very un-
likely (see Appendix). As shown in Table I and Fig. 1, members of a set defined
by identical Vyu, Dy, and J. segment usage had identical V,, CDR3 sequences as
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TasLE I
Summary of Sequence Data of Anti-DNA-producing Hybridomas

Mouse Cell Clone Isotype Vi group Jx V, family Dy Ju CDR3
1 1A11 A IgG2b 4 4 J558 SP 2-5,7 4 11
1 4H8 A IgG2b 4 4 J558 SP 2-5,7 4 11
1 2F2 A I1gG2b 4 4 J558 SP 2-5,7 4 11
1 3H9 A IgG2b 4 4 J558 SP 2-5,7 4 11
2 60 IgG2a 9 1 Vgams3 SP 2/SP 2-7 4 11
2 6P IgG1 12-13 2 ND ND ND

2 6N B IgG2a 24 2 J558 SP 2/FL 16-1 2 9
2 6Q B IgG2a 24 2 J558 SP 2/FL 16-1 2 9
3 57 c IgG3 8 5 J558 Q 52 2 i1
3 541 c 1gG3 8 5 J558 Q 52 2 11
3 S54 (o] 1gG3 8 5 J558 Q 52 2 11
3 S57 C 1gG3 8 5 J558 Q 52 2 11
3 $204 Cc ND 8 5 ND ND ND ND
3 $106 1gG3 24 4 7183 SP 2-5,7,8 3 11
3 D23 IgM 2 1 J558 FL 16-2 3 8
3 D20 1gG2a 8 5 J558 FL 16-2 3 12
4 1E-81 IgG2a 1 2 J558 FL 16-1 3 9
4 3E12 D IgGt 31 2 7183 SP 2-5,7 1 10
4 6G6 D IgG1 31 2 7183 SP 2-5,7 1 10
4 3G9 D IgGl 31 2 7183 SP 2-5,7 1 10
4 2E3 D IgGl 31* 2 7183 SP 2-5,7 1 10
4 6B8 D IgGl 31 2 7183 SP 2-5,7 1 10
5 DP1 IgM 1 2 $107 SP 2/SP 2-5,7,8 3 4
5 DP12 IgM 23 2 7183 SP 2-3,4,5,6,7 2 7
5 DP7 E IgG3 9 1 J558 SP 2-8 3 6
5 DP11 E 1gG3 9 1 J558 SP 2-8 3 6
5 DP15 (E) ND 9 1 ND ND ND ND
5 DP17 F IgG1 19 1 J558 FL 16-2 3 11
5 DP9 F IgG1 19 1 J558 FL 16-2 3 1
5 DP13 G  IgGl 8 5 ND ND ND ND
5 DP18 (G) ND 8 5 ND ND ND ND

-

Hybrids were assigned to clones according to the criteria outlined in the text. Clone names
are not given for cells without siblings. Clone assignments of DP15 and DP17 are in paren-
theses to indicate they are based on « chain sequence only; no V,, sequence was obtained.
V. and Vi assignments to homology groups are made based on >80% sequence homology
to known prototypes. The nomenclature for Vi group numbers is as described by Potter
et al. (39), and for V,, families by Brodeur and Riblet (33), except that Vgam3.8 is the name
given to a family of V, genes identified by Winter et al. (34). Dy designations are by ho-
mology to the closest known BALB/c gene (46). The CDR3 length is defined as the number
of amino acids between the last amino acid encoded by V,, genes (two residues after the in-
variant cysteine) and the invariant tryptophan residue encoded by all Jys.

This V¢ sequence does not meet the criteria for assignment to a known V group (39). We
therefore assign it to a new Vy group, 31.
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well. This criterion alone makes it unlikely that members within a set are indepen-
dently derived. Even using a conservative model system (the highly restricted re-
sponse to p-azophenylarsonate) and conservative statistical assumptions, we find the
chance of two unrelated B cells having identical CDR 3 nucleotide sequences is 0.067
and the chance of three unrelated B cells sharing CDR3 sequence is 0.023 (see Ap-
pendix).

Related B cells can also be identified by the context of their unexpressed V,; and
VL alleles if these are not in the germline configuration. Identity of restriction frag-
ment lengths at the unexpressed alleles of unrelated B cells is unlikely (see Appendix).
Southern analysis of the H chain alleles of members in sets A, C, D, and E showed
that in each case, the majority of hybrids in a putative clone had identical restriction
fragment lengths at both alleles, whereas patterns differed between clones (data not
shown). In the rest of the members of these clones and in clones B, F, and G, the
expected fragment containing the unexpressed allele was absent, which we attribute
to segregation of chromosomes after cell fusion. The restriction patterns at the «
alleles were uninformative, as all clones either had unrearranged alleles or multiple
members that segregated the unexpressed allele.

In summary, the majority of the DNA antibodies in individual mice are members
of one or a few clones (Table I, since each set meets at least two of the three criteria
for clonal relatedness discussed above. The majority (50-100%) of the DNA anti-
bodies of all five of the MRL//pr mice are produced by just one or a few clones.
These clones must, therefore, have undergone a significant amount of in vivo expan-
sion. Given that hybridization immortalizes 1 of 10*~10° of splenic B cells (16; our
unpublished data), even two related hybrids represent clones on the order of 2 x
10* to 2 x 10° cells. This analysis also identified six hybridomas that could not be

Ficure 1. Nucleotide sequences of H chain (V) regions of anti-DNA antibodies. The lettered
subparts of the figure show homologous sets of sequences all belonging to the same V,, family,
with the exception of D, which includes sequences from two V,, families. Sequences that are from
clonally related hybridomas (see text) are grouped, followed by a space. Sequences in each sub-
part are compared with a single prototype (the names of which are underlined), with the excep-
tion of D, which uses two prototypes. Identities are indicated by dashes. The translation of the
prototypes are given above the nucleotide sequence. Spaces are introduced to maximize align-
ment; a gap is introduced at the end of the V-encoded region (i.e., two codons after the invariant
cys codon) to maximize homology with J,. Spaces at 5’ ends of some sequences indicate that
these regions have not been determined. Arginine codons in V,, CDR3 or that result from differ-
ences with the consensus or prototype sequence are designated with Arg. The Arg designating
codons at position 77 of the V,, of DP7 (AGA) and DP11 (CGC) are marked by an asterisk to
indicate that both codons encode arginine. The start of the framework (FR) and CDR (44), are
separated by vertical spaces, and the top line of each sequence group gives the name of each subregion
(e.g., CDRI or FR2). A bar has been placed over nucleotides with homology to a known BALB/c
germline D gene. Two bars over the same sequence indicate a possible fusion of two D gene seg-
ments. The direction of the arrow indicates whether sense or antisense strand of the D gene is
translated (see text for details). The sources of prototype sequences are: (4) VH133.16 from a
mAb from a C57Bl/6 mouse (43). Gaps in the reported sequence of VH133.16 have been filled
with the consensus of all members in the group. These regions are designated with lower case
letters. (B) VH31, an NPP-like pseudogene from BALB/c (87). Asterisks denote stop codons in
its sequence. (C) VH283, a germline gene from the 7183 family (88). (D) 6G6, a rearranged
VuS107 family gene cloned from a CBA hybridoma (89), and pH3-6a, a cDNA clone from
C57Bl/6 splenic mRNA (90); the sequence is from the Vgam3 family. In (4), the sequence of
1A11 has been corrected compared with Shlomchik et al. (20). These sequence data have been
submitted to the EMBL/GenBank Data Libraries.
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assigned to sets with multiple members (i.e., “singlets”). Of course, singlets would
be found in a small sample of cells from a mouse made up, concurrently, of clones
of different sizes. Mouse 5, with three clones (of size 3, 2, and 2) illustrates this.
Thus, a singlet could represent an expanded clone of fewer cells than clones from
which we have found multiple examples. Alternatively, they could represent cells
without siblings.

Ig Vi and Vi Usage. 1g V gene usage can be interpreted in the context of the
inherited V gene repertoire of inbred mice. At present, 13 V, and 30 V, groups
(based on >80% nucleotide sequences homology) have been identified (33-39). It
is estimated by Southern hybridization that there are ~125 V, and ~150-250 V
genes (33, 40). Our panel of 31 antibodies (combined with the nine examples de-
scribed by others [36, 41, 42]) shows that anti-DNA antibodies are encoded by at
least five different V, families and 13 different V, groups (Table I).

In spite of the V gene diversity among DNA antibodies, certain V gene prefer-
ences emerge in this extensive survey. A single J558 V. gene is probably used in
three separate clones. D20, clone A, and clone E are 96% homologous, and closely
homologous to a Vy gene, 133.16, described previously (43) (Fig. 1 A). The restric-
tion fragment length of the rearranged allele in the three clones is the same (ad-
justing for different J. usage), also consistent with their utilizing the same V,, gene
(data not shown). DNA blotting data with oligonucleotides overlapping the muta-
tions at sites 160 and 173 in 3H9 confirms this (Mascelli, M. and M. Weigert, manu-
script in preparation). This V,, gene is preferentially selected; assuming 100 germ-
line V,, genes, the likelihood of choosing the same gene three times in 15 samples
by chance is 0.03. Another possible preference is for V8 in that different members
of this group are found in 3 of the 15 independently derived sets. This frequency
would indicate a significant bias (p = 0.05) if the V,8 group constituted not >5.7%
of the V, repertoire. However, V,8 is thought to comprise at least 10% of the V
gene repertoire (40), therefore this V8 incidence does not represent a significant bias.

The Vi of clone D is just 77% homologous to V9 (44), its closest relative, and
therefore does not meet criteria for assignment to a known V, group. We therefore
assign it a new V, group, 31. Finding a new V, group in this survey of antibodies
to a novel antigen does not necessarily mean that this group is uniquely associated
with the DNA antibodies of the autoimmune mouse, as statistical models predicted
that six Vi groups were as yet unidentified (39).

Jus Du, Jx Usage and Junctional Diversity. No restriction to a particular J., J«, or
D. segment was seen: all J., J« gene segments, as well as representatives from each
D. family, were found (Table I). This variety of gene segment usage leads to con-
siderable phenotypic variation of the V; CDR3 of these antibodies, both in amino
acid composition and length. Two unusual features of anti-DNA V. CDR3s, rela-
tive to other antibodies, were noted. One is similar to the observation of Elilat et
al. (42) that the anti-DNA antibodies A52 and D42 read their Dy segments in a
frame different from other antibodies. As noted by Kaartinen and Mikeli (45), most
antibodies read Ds in the same frame. Here, 5 of the 13 independent clones (5106,
D20, DPI, clone E, and clone F) show a D reading frame shifted one nucleotide
backward or forward from the preferred reading frame. One interesting consequence
of this shift is that in three cases (clone E, clone F, and S106), these reading frames
yield arginine codons.
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A second unusual feature of anti-DNA or V,, CDR3s is that fusion of two D seg-
ments may have occurred during V, assembly. D-D fusion has been previously in-
voked to explain sequences of CDR3 of other antibodies (18, 46-48). As illustated
in Fig. 1, C and D, for antibodies 60 and DP12, one of the Ds participating in the
fusion is inverted relative to the other segments. For 6N (Fig. 1 4) the CDR3 seg-
ment is formed by the fusion of two inverted D gene segments. The 5' D segment
matches the noncoding strand of the SP2 core sequence in seven of eight nucleo-
tides, and the 3' region matches the noncoding strand of F1.16-1 in seven of eight
nucleotides. The 5 CDR3 region of 60 is a perfect match of six nucleotides with
an SP2 gene segment and the 3’ region matches 8 of 10 nucleotides of the noncoding
strand of a different D segment. Likewise, the 5 CDR3 region of DP12 is a perfect
match of seven nucleotides with an SP2 gene, and at the 3' end, six of seven nucleo-
tides match the noncoding strand of SP2 -5, -7, or -8. In two of these three examples,
inverted Ds encode arginine residues.

Somatic Mutation.  As shown in Figs. 1 and 2, there are numerous intraclonal differ-
ences, indicative of somatic mutation during clonal expansion. These intraclonal
comparisons provide a minimum estimate, because mutations shared by all members
of a clone will not be recognized. However, as discussed above for clones A, E, and
D20, the likely germline donor Vy sequence is known, and the exact frequency of
mutation can be determined. The comparison of the V, genes of clone A to the
germline V, (Fig. 1 A4) reveals a shared mutation not apparent from intraclonal
comparison. We surmise that this mutation represents an early event in the expan-
sion of this clone. D20, a singlet, is identical to the germline V sequence.

Specificity Analysis.  Anti-DNA detected by screening hybridoma supernatants for
binding to denatured calf thymus DNA were further analyzed by both solid and
solution phase DNA binding assays. These assays confirmed the initial screen in
that all examples bound denatured ssDNA (20, 21, Table II, and data not shown).

Most members of clones (with certain exceptions discussed below) had indistin-
guishable binding activities for ssDNA by either assay, for instance, clones C, E,
and F (Table II, and data not shown). Interclonal comparisons, on the other hand,
showed pronounced differences. This can readily be seen in Table II for ssDNA binding
of clones D and F. Since these antibodies are the same H chain isotype, these differ-
ences are attributable to V gene sequence. Such interclonal differences are consis-
tent with the high degree of V region diversity between clones.

Interclonal differences in dsDNA binding were also apparent, including several
examples for which no dsDNA binding was detectable (Table IT). Nevertheless, one
or more members of each clone bound dsDNA. Thus, at the levels of hybridomas,
this characteristic serologic feature of autoimmunity is also seen. Among the sin-
glets, a clear distinction is seen between the IgM and IgG antibodies. Whereas all
IgG singlets bound dsDNA, the IgM singlets only bound ssDNA. In this respect,
these IgM antibodies are similar to the anti-DNA seen in normal individuals and
may result from a different activation mechanism than the IgG anti-DNA typical
of autoimmune disease.

Intraclonal differences are seen for both ds- and ssDNA binding. These differ-
ences can only result from somatic mutation, therefore, the structural basis for differ-
ences in specificity can be attributed to limited amino acid substitutions. These sub-
stitutions often include mutations to arginine or asparagine, amino acids known
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to play a central role in DNA-protein interactions (49, 50). For example, 3H9, a
member of clone A, has acquired an additional arginine in CDR2 of its H chain.
This arginine could account for the unique ability of this member of clone A to
bind dsDNA, as well as to bind ssDNA with higher affinity than the other members
of clone A. DP7 and DP11 (clone E) both bind dsDNA but differ significantly in
affinity. Again, the somatic mutations that must determine this difference include
a serine to arginine replacement in CDRI1 of the Vi of DP11. However, this muta-
tion did not lead to a significant difference in affinity for ssDNA. Thus, even though
arginine has the potential for binding to epitopes unique to dsDNA, as well as epi-
topes shared by both ds- and ssDNA (such as phosphodiester linkages), the arginine
of DP11 may be constrained to interact just with dsDNA moieties.

Discussion

MRL/{pr mice develop a progressive autoimmune syndrome serologically and patho-
logically similar to human SLE (2, 10, 11, 14, 51). To examine the B cells that secrete
these pathologic autoantibodies, we have constructed hybridomas from unmanipu-
lated splenic lymphocytes of unimmunized older MRL/{pr mice. In these mice, the
frequency of such spontaneous hybridomas that secrete self-specific antibodies (e.g.,
anti-dsDNA [this work] and anti-Ig [52]) is much higher than the frequency among
preimmune LPS-stimulated B cells of several normal mouse strains (53-55) or un-
manipulated B cells of normal C57Bl/6 x DBA/2 F; mice (56). We have determined
the specificity and V region sequences of monoclonal anti-DNA autoantibodies from
five different MRL//pr mice. These data allow us to draw several important conclu-
sions about the mechanism of humoral autoimmunity in MRL//pr, the genetic basis
of anti-DNA specificity, and the possible structural basis for idiotypes.

Pathologic Anti-DNA Are the Result of Oligoclonal B Cell Expansion

Since the anti-DNA repertoire in a mouse is large (54, 55, 57), a polyclonal activa-
tion model would predict 2 multiclonal response. However, at least half of the hybrids
from each of the mice were members of expanded clones. Therefore, the model of
autoimmunity that accounts for anti-DNA production via polyclonal activation is
inconsistent with our data, and this model does not apply to the MRL/ipr syndrome.

Clonal Expansion Is Specific and Receptor Driven

The oligoclonal composition of the anti-DNA from each mouse establishes that
the activation and propagation of DNA-specific B cells in MR L/ipr mice is selective.
Although the selective expansion of certain B cells could be independent of the an-
tigen receptors, our data indicate that for anti-DNA, selection is dependent on receptor
specificity. This conclusion comes from features of the genes encoding the receptors

Ficure 2. Nucleotide sequences of L chain (V) regions of anti-DNA antibodies. The sequences
are organized as in Fig. 1. Sequences from the same V group as defined by Potter et al. (39)
are together. In some cases a prototype and its translation are given; where no prototype is given,
the topmost sequence of each homology group is translated. Prototypes are: (4) Vi1, a BALB/c
germline gene from this group (91), and V41, a BALB/c germline gene from the V(9 group
(92); and (B) H144Vy, an mRNA sequence from an influenza hemagglutinin-specific IgM hy-
bridoma expressing the consensus sequence of a V8 group gene (Clarke and Weigert, manu-
script submitted for publication), and anti-PC, a consensus from a set of highly homologous
sequences from PC-specific antibodies thought to all express a single (different) V8 group gene.
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TasLe II
Solution Phase DNA Binding of mAbs

50% Maximal binding

Mouse Cell Clone ssDNA dsDNA ss/dsDNA
pg/ml
1 1A11 A 0.55 + 0.02 >1.1 -
1 4H8 A 0.57 + 0.04 >4.0 -
1 3HO* A 0.12 + 0.01 032 + 0.04 0.4
3 $106 2.2 + 020 1.55 ¢ 0.15 1.4
3 D20 0.65 + 0.07 0.43 4+ 0.04 1.4
3 S7 C 2.5 + 0.60 2.3 + 0.80 1.1
3 S41t C ND ND
3 S541 C ND ND
3 $57 C 3.8 + 1.0 3.1 + 0.20 1.2
4 1E81 0.03 + 0.00 0.5¢ + 0.05 0.06
4 3E12 D 0.62 + 0.04 0.34 + 0.02 1.8
4 6G6 D 0.60 + 0.04 0.33 + 0.06 1.8
4 68B D 0.72 + 0.05 0.52 + 0.14 1.4
4 3G9 D 0.76 + 0.06 0.42 + 0.06 1.8
4 2E3 D 0.71 + 0.06 0.45 + 0.07 1.6
5 DP7$ E 0.38 + 0.03 058 + 0.18 0.7
5 Dpp11l E 0.3¢ + 0.05 0.15 + 0.02 2.3
5 DP9 F 0.13 + 0.01  0.10 £ 0.01 1.3
5 DP17 F 0.12 + 0.01  0.09 + 0.00 1.5
5 DP13 G 0.07 + 0.02 >2.2 -
H2411 1.0 + 0.20  0.90 + 0.10 1.1
Cl1** 0.016 + 0.02 >6.0 -

*

-

= v

-

L]

Native and denatured DNA specificity was assayed according to the proce-
dure outlined in Materials and Methods. Triplicate determinations were per-
formed for each concentration of antibody. Antibody concentrations at
half-maximal binding are determined by extrapolation from the linear por-
tions of the binding curves. The confidence interval for a value of the indepen-
dent variable (antibody concentration), based on a single value of the dependent
variable, was determined by simple linear regression using the IMSL subrou-
tine RINPF, as discussed by Graybill (86). The IgM antibodies (DP1, DP12,
and D23) did not give detectable binding in this assay for either form of DNA.
Antibodies 1A11, 4H8, and DP13 showed no significant binding to ssDNA.
(>) The highest antibody concentrations assayed for which no binding was
detected.

Values for ssDNA and dsDNA are significantly different from other clone
members.

The antibody concentrations of supernatants of S41 + S54 were too low to
generate binding curves.

Value for dsDNA is significantly different from DP11.

DP11 is unusual because maximal binding to ssDNA was lower than the other
antibodies. The epitope on ssDNA recognized by this antibody may be limit-
ing. As we only wish to demonstrate relative binding to ssDNA without regard
to the precise epitope, we have normalized the maximum A405 reading of
DP11 to that achieved by C11, our standard for maximal ssDNA binding.
H241 is anti-ssDNA and anti-dsDNA (27).

C11 is anti-ssDNA (24).

281
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TasLe III
Anti-DNA Vu CDR3 Amino Acid Sequences
Name Vi CDR3 Ju Cyu
60 Vgam3 sRyyRyR mfdy 4 1gG2a
6N (2) J558 yRRllp fay 2 1gG2a
DP9 (2) J558 nglRRR awfay 3 IgG1
MRL22* J558 RIyR yyamdy 2 IgM
BXWi14* J558 RgttvRd dy 2 IgM
D42* S107 gglRRgRs fdv 1 Ig2a
A52* J558 gRIRRgg yfdy 2 I1gG2b
2E3 (5) 7183 Rdyshwf fdy 1 1gG1
1A11 (4) J558 aRskysyv mdy 4 IgG3
S57 (5) J558 Rgtlgkg yfdy 2 IgG3
DP7 (2) J558 nR wfay 3 IgG3
$106 7183 ggtRvg awfay 3 IgG3
D20 J558 sglRglglp fay 1 I1gG2a
1E81 J558 Rshy awfay 3 I1gG2a
BXW7* J558 Rayygssph wyfdv 1 IgM
H130* J558 sRaysny yamdy 4 IgM
D23 J558 ednyg fay 3 IgM
DP1 $107 Iw ay 3 IgM
DP12 J558 lygai dy 2 IgM
MRL10* J558 lvgg gfay 3 IgM
MRL4* 10 daanwsa wfay 3 1gG2a

The antibodies in this survey and published anti-DNA sequences are includ-
ed. Each clone is represented by only one cell line. Numbers in parentheses
after the name indicate the total number of hybridomas from that clone; sin-
glets are not given numbers. In the CDR3 column are given the single letter
amino acid sequences of V,CDR3s (as defined by Kabat et al. {44]). Argi-
nine residues (R) are capitalized and bolded. The portion of the CDR3 se-
quence encoded by the J, region, as inferred by nucleotide sequence
homology, is listed to the right, separated from the remainder of CDR3 by
spaces. The V, family, J, gene, and Cy gene used are given in separate
columns; assignments are the same as in Table I. Sequences are listed in ord-
er of descending arginine content. The five sequences at the bottom do not
contain arginines. MRL22, BXW14, BXW7, MRL10, and MRL# are taken
from Kofler et al. (36); D42 and A52 are from Eilat et al. (42) and H130 is
from Trepicchio et al. (41).
* Sequences from other sources.

themselves: the nonrandom distribution of somatic mutations found in anti-DNA
clones, the nature of the replacement (R) mutations found in several of the clones
and their effect on the specificity of the antibodies, and unusual sequences of the
Vu«CDR3 regions.

Nonrandom Patterns of Somatic Mutation. 'V regions from antigen-activated B cells
have characteristic, nonrandom patterns of somatic mutations (28, 58). These pat-
terns must result from positive selection of cells with R mutations in CDRs, pre-
sumably because some of these mutations improve affinity for antigen (32, 59, 60).
This process often leads to a population of cells with a higher percentage of R muta-
tions in CDRs than can be explained by chance alone. We find that autoantibodies
have similar skewed patterns of mutations: nonrandom mutation is present among
multiple clones of RFs derived from autoimmune mice, as we previously reported,
and in clone A (19, 20). A nonrandom pattern (p = 0.03, analysis as described in
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Shlomchik et al. [20]) is also found in Clone E. These improbable distributions can
be accounted for by selection, but not by receptor-independent stimulation. The
other clones shown are uninformative in this regard because we cannot identify enough
mutations to permit a meaningful analysis of the distribution.

Specificity for dsDNA. In humans and mice, the preimmune repertoire includes
mainly ssDNA-specific B cells and few dsDNA-specific B cells (7, 54, 55). We selected
the hybridomas on the basis of ssDNA binding alone. In the absence of preferential
in vivo expansion of dsDNA-specific cells (i.e., selection), we would have expected
mainly anti-DNA specific for ssDNA only. Instead, most of the antibodies that we
recovered recognized both ss- and ds-DNA. As others have noted (61~63), this result
(frequent recovery of what is a rare specificity in the preimmune repertoire) can
readily be explained by selection for anti-dsDNA. Nonspecific activation models could
also explain this observation if a subset of B cells enriched for certain self-specificities
(such as dsDNA) were preferentially (but nonspecifically) activated during autoim-
munity. However, such a B cell subset model cannot explain our results, since in
two separate cases (clones A and E), we have found descendents of a single B cell
precursor that differ dramatically in their ability to bind dsDNA. Thus, ds- and
ssDNA-specific autoreactive cells can be derived from the same precursor B cell.

Somatic Mutations Can Cause dsDNA Specificity and Are Selected During Clonal Expan-
sion. 'The differences in specificity among members of clones A and E must be due
to somatic R mutations (Figs. 1 and 2). Certain features of these mutations argue
for positive selection of mutant receptors. First, somatic mutations in 3H9 and DP11
lead to better dsDNA binding. Thus, in at least two cases clones have evolved toward
higher affinity for dsSDNA. Second, the small number of such mutations that nonethe-
less caused improvement in affinity for dsSDNA suggests that selection for these mu-
tants took place in vivo. We infer this because the number of mutations that can
improve affinity is small relative to the number of possible silent mutations, R muta-
tions in conserved sites that destroy antibody function (~35%, [20]) and the fraction
of R mutations in CDRs that adversely affect binding. Thus, in an unselected popu-
lation of cells, each with a few random mutations, as would result from receptor
nonspecific activation, antibodies with enhanced binding would be rare. However,
selection would enrich for such mutants and could explain the observed pattern of
mutations. Third, the nature of individual mutations in these and other clones ap-
pears to reflect a predictable consequence of selection by DNA: there is a high fre-
quency of mutations leading to arginine and asparagine residues, amino acids known
to play a role in binding to DNA (49, 50). In clone E, of seven total R mutations,
there are four independent changes to arginine and one to asparagine. Of the three
unique replacement mutations that occurred in 3H9, one (in CDR2) was a change
to arginine. Strikingly, in two cases, independent mutations occurred in the same
codon of the clone E V,; two different base changes generated serine to arginine
mutations at codon 76 and separate base changes converted serine to arginine in
one case and to asparagine in the second case at codon 31 (Fig. 1).

Selection for Arginines Is a Common Feature of Anti-DNA.  In addition to finding argi-
nines generated by somatic mutations, we identified arginines at sites where this
residue has never or rarely been found in large collections of sequences of other V
genes from the same gene families (44, 64, 65). These unprecedented arginines are
likely to be the result of somatic mutations. These are the contiguous arginines in
V+CDR2 of clone D, position 64 of V.CDR2 of clone B, position 27F of the V
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CDRI1 of D20, DP13, and DP18, and position 29 of the VACDRI1 of DP13 and DP18.
It is of interest that all occur at sites in the combining site.

The V4,CDR3s of these antibodies also contain many arginines: out of 339 CDR3
residues, 46 were arginine (among 37 sequences, including the nine sequences from
the literature [36, 41, 42]). All but five sequences had one arginine and five had two,
four had three, and one had four arginine residues in CDR3 alone. The large pool
of known V,CDR3 sequences (as compiled by Kabat et al. [44]) allows a reason-
able estimate of the random frequency of arginines in this region, thus making it
possible to test whether the arginine content in this region of anti-DNA is significantly
higher than expected. There were 105 arginines in 3,066 CDR3 residues in the Kabat
et al. compilation. A x? analysis of the frequency of arginines in the Kabat et al.
data and in these anti-DNAs gives a x2 of 76 (1 df, p < 5 x 1077).

Unusual mechanisms appear to explain the generation of arginine codons during
somatic V region assembly, including out-of-frame D joining and D-D fusion. In
addition, some of the arginine codons arise from nontemplated bases (N regions,
[31]). Unlike the somatic mutations to arginine that occur during the antigen driven
phase of B cell differentiation, the CDR3 arginines were formed at the earlier pre-B
cell stage of differentiation, when V assembly occurs. Therefore, the process of se-
lection that resulted in enrichment of arginines in V,CDR3 probably began at or
near the beginning of clonal expansion and continued during the phase of accumu-
lation of somatic mutations. Since these V,CDR3 arginines and those formed at
later stages by somatic mutation can both be selected, the loss of regulation against
self-specificity in MRL/lpr autoimmunity is ongoing, and probably encompasses mul-
tiple stages of B cell activation.

The Meaning of Single Isolates

One in four of our hybrids are “singlets,” which cannot be assigned to sets with
multiple members. Since clonal size cannot be estimated from singlets, they could
represent very small clones. If singlets do indeed represent many very small clones,
these in turn could result from either polyclonal activation or recent antigen activa-
tion. Polyclonal activation could account for the fact that three of the singlets in
this study lack the features of selection described above: they are IgM, lack CDR3
arginines, and do not bind dsDNA. On the other hand, the singlets that do have
these features may have come from expanded clones from which we isolated just
one example.

If in vivo polyclonal activation does lead to autoantibody production, as claimed
by Klinman and colleagues (66, 67), our data show that its role is limited in two
regards. First, it would have to exert its effect only early in the process of self-specific
B cell activation, since the current studies clearly establish that oligoclonal expan-
sion is the proximate event to the development of pathogenic-type IgG autoanti-
bodies. Therefore, any changes in B cell differentiation state due to polyclonal acti-
vation would only serve to facilitate this process, perhaps by lowering the threshold
for antigen activation or allowing B cells to bypass the usual control(s) over self-
recognition. Second, even if all of the single isolates did represent polyclonally acti-
vated B cells, their contribution to the pool of DNA-specific activated B cells in older
MR L/Ipr mice is minor, since they comprise only about one-quarter of all our anti-
DNAs and of our RFs (19).
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Genetic Control of Anti-DNA Specificity

We have identified several strategies that contribute to DNA binding. Germline
V genes must in part encode the ability to bind DNA; although many different V
genes are used in anti-DNA, we do not expect that all or even most V genes will
be capable of encoding DNA specificity. This is supported by the fact that the represen-
tation of V genes in our anti-DNA sample is not entirely random, since at least one
V gene is found more frequently among anti-DNA than expected. The frequency
of this Vy suggests it plays a role in DNA binding. However, as some of the anti-
bodies expressing this Vi bind only ssDNA (e.g., 1A11), while others bind dsDNA,
other elements must also contribute. The nature of the V,CDR3 sequences, as dis-
cussed, strongly implies that this region also plays a role in binding in at least some
antibodies. Somatic mutations are another factor, as shown by the two cases of mu-
tations in the V, improving and/or creating dsDNA specificity (clones A and E).
Indeed, these two observations provide the first direct evidence of in vivo, stepwise
improvements of binding via somatic mutation.

Improvements of DNA binding are correlated with arginine substitutions in at
least four sites. Further, although most of the anti-DNAs have an arginine-containing
CDR3, the locations of these CDR3 arginine residues are different in each case.
Evidently, arginine residues at multiple sites can affect DNA binding. In this re-
gard, DNA may be unlike the hapten nitrophenyl; increased affinity for nitrophenyl
is associated with mutation at one recurrent site (60). The variety of sites at which
unusual or mutant arginines appear suggests to us that antibody binding of dsDNA
may be built up additively in a way reminiscent of antibodies to oligosaccharides
(68, 69). For example, it may be that an arginine anywhere in the combining site
can contribute to binding. This seems plausible given the polymeric nature of the
DNA antigen and the fact that arginine can interact with at least three different
groups on DNA (phosphodiester backbone, base-paired guanine, and unpaired and
base-paired cytidine) (49, 50), which in turn could be expressed in a variety of con-
formations (i.e., epitopes).

Implications for Idiotypes

Several groups have produced antiidiotypic antibodies that recognize a majority
of anti-DNA in sera of autoimmune mice and humans (70-76). These studies sug-
gested that since a majority of anti-DNA shared a serologically defined similar struc-
ture, anti-DNA would be encoded by a restricted set of V genes. However, in three
separate cases (42, 77, 78), idiotypes did not correlate with V,, family when idiotype-
positive molecules were sequenced or typed for V,, family. Our study extends these
findings by showing that anti-DNA are not encoded by a restricted set of V genes;
even the most frequently expressed V,; accounts for only 25% of known anti-DNA
sequences. It thus seems unlikely that shared idiotypes can be explained by common
expression of a V gene. Similarly, it is unlikely that antiidiotypes that recognize the
majority of anti-DNA could be “internal images” of DNA (79), because the diverse
binding specificities of anti-DNA (57) indicate that there must be many distinct in-
ternal images. Thus, the structural explanation for idiotypes lies elsewhere.

We suggest that high arginine content could explain some recurrent antiidiotype
systems. For example, arginine-rich CDR3s (or other arginine-rich CDRs) are a
feature shared by many anti-DNAs, and these could be recognized by some antiidi-



286 ANTI-DNA ANTIBODIES FROM MRL/jpr MICE

otypic antibodies. This hypothesis can now be tested by correlating these idiotypes
to sequences. In this regard, Eilat et al. (42) recently showed that the V, sequences
of two anti-DNAs that share an idiotype differ at V,; and V,, but have similar,
arginine-containing CDR3s.

This comprehensive survey allows us to draw several conclusions about the eti-
ology and genetic basis of anti-DNA in MRL//pr mice: most or all of the anti-DNA
in a given animal are the product of one or a few clonally expanded B cells whose
V genes have somatic mutations. The stimulus for this clonal expansion is mediated
via the antigen receptor. Combined with the similar results with MRL//pr-derived
RFs, this study shows that antigen-driven clonal expansion is a common feature of
humoral autoimmunity in MRL/lpr mice.

B cells in MRL/Ipr autoimmunity closely resemble B cells in normal contexts par-
ticipating in T cell-dependent secondary immune responses (28, 58, 80). It seems
likely from this similarity that autoimmune B cell clonal expansion is also depen-
dent on Th cells. This suggests that the primary defect may not be in the B cell
per se, but instead, in regulation of the B cell by T cells or T cell-derived factors
(e.g., excessive T cell help or absence of T cell suppression). In particular, a search
for an activity that facilitates antigen-driven B cell activation should be fruitful.

The antigen stimulus in this case is likely to be DNA, because in two cases affinity
for DNA has improved during clonal expansion and evolution. Indeed, in most of
the sequences, there is preferential utilization of the amino acid residues expected
to play a role in DNA binding. Both these features are unexpected unless DNA itself
is the B cell antigen.

Some V genes are found more frequently than expected among antigen-driven
anti-DNA, but no V genes or V gene pairs are expressed frequently enough to ac-
count for idiotypes expressed on the majority of anti-DNA. This results in a diver-
sity of anti-DNAs sufficient for each individual mouse to have a unique set of anti-
DNA clones at any given time. Since the human immune system contains many
more cells, such diversity will be recapitulated in a single person. Furthermore, even
members of a single clone will differ due to accumulated somatic mutations. These
two sources of diversity should make it unlikely‘that approaches to treatment using
antiidiotypic antibodies as specific reagents against pathogenic anti-DNA will elimi-
nate a significant proportion of these autoantibedies in any single individual. Two
early attempts at this therapy were unsuccessful in achieving long-term suppression
of anti-DNA (81, 82). Indeed, even in a monaclonal B cell proliferative disease (fol-
licular lymphoma), the somatic mutation process alone generated sufficient diver-
sity to prevent elimination by antiidiotypic antibody therapy (83). However, we do
note that anti-DNA Vs are arginine rich, particularly in V, CDR3; we propose that
arginines could in part be the ligands for antiidiotypic sera. This suggests that a
more promising therapy might use smaller aromatic and charged molecules aimed
at the building blocks of DNA specificity (e.g., arginines in certain contexts), as has
been explored by Ben-Chetrit et al. (84) and Sﬁq;ama and Orr (85). Further genetic,
functional, and crystallographic analysis of thiese/afid similar antibodies and in vitro
generated mutants of them will lead to a better understanding of the rules governing
antibodies binding to DNA and ultimately the informed design of compounds that
might specifically inhibit this interaction.
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Summary

The proximate cause of autoantibodies characteristic of systemic autoimmune dis-
eases has been controversial. One hypothesis is that autoantibodies are the result
of polyclonal nonspecific B cell activation. Alternatively, autoantibodies could be the
result of antigen-driven B cell activation, as observed in secondary immune responses.
We have approached this question by studying monoclonal anti-DNA autoantibodies
derived from unmanipulated spleen cells of the autoimmune MRL//pr mouse strain.
This analysis shows that anti-DNAs, like rheumatoid factors (19), are the result of
specific antigen-driven stimulation. In addition, correlation of sequences with fine
specificity shows that: () somatic mutations can cause specificity for dsDNA and
that such mutations are selected for; () arginine residues play an important role
in determining specificity; and (¢) antiidiotypes that recognize the majority of anti- -
DNA are probably not specific for any one family of V regions.

Received for publication 10 August 1989 and in revised form 29 September 1989.
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