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The immune response by mature peripheral T cells requires the recognition of
antigens presented in the context of self-MHC molecules (1, 2) . After antigen pre-
sentation by class I or class II MHC molecules, specific antigen recognition involves
the TCRwith the aid ofeither CD8 or CD4 molecules, respectively (3). These same
components, class I and class II self-MHC, TCR, and CD4, are present and have
been implicated in the process ofintrathymic T cell development and selection, positive
and/or negative (4-25), but the function of the CD8 molecule during any of these
developmental events is largely unknown.

Early reports demonstrated that MHC molecules play a crucial role during T
cell development. In vivo studies in neonatal mice showed that CD4* T cells failed
to develop in anti-class II-suppressed mice (4), whereas CD8+ T cells failed to de-
velop in anti-class I-suppressed mice (5). Thus, differentiation of precursor T cells
into mature T cells involves positive selection on the basis of their MHC specificity.
TCRMHC interactions have been postulated to mediate the recognition events neces-
sary for positive selection (6-9). Findings that support this concept are many and
varied . Studies in F, neonatal mice (Ia-k/Ia-b) established that the appearance of
Th cell populations restricted by either Ia-k or Ia-b is specifically inhibited by treat-
ments with anti-Ia-k or anti-Ia-b antibodies, respectively (10) . Other experimental
support for this notion was provided by studies in transgenic mice (11, 12), and by
studies in anti-class I mAb-treated mice (13, 14) or antiTCRtreated mice (15) .
TCRMHC interactions are not the only ones that are crucial to the process of

positive selection . Recently, we showed that other interactions, such as those between
MHC and accessory molecules, are essential as well (16) . These findings demon-
strated that anti-CD4-suppressed mice failed to generate CD4+ T cells, suggesting
that CD4 molecules are involved in the positive selection of the T cell repertoire .
The concept that MHC, TCR, and CD4 are involved during positive selection

also extends to their participation in negative selection . TCRMHC interactions are
clearly involved in the process ofnegative selection . Avariety of experimental systems
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' Abbreviation used in this paper. HC, hydrocortisone acetate .
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demonstrated that tolerance induction, at least for certain self-class I and class II
or class II-associated antigens expressed in the thymus, occurs through clonal dele-
tion of T cells with self-reactive TCRs (18, 22) . The idea that CD4 participates in
negative selection ofclass II-reactive T cells is supported by the recent observation
that blocking of CD4 allowed self-reactive TCR+ T cells to escape clonal deletion
at the CD4+/CD8+ stage, thus permitting the generation of CD8+ T cells that other-
wise would not have survived (23, 24) . No such correlates have been established for
the involvement of CD8 during negative selection ; however, this problem is com-
pounded by the lack of any defined TCR V# region that is negatively selected on
class I MHC. Thus, the tools for such an analysis are not yet available. Nonetheless,
from studies with TCRtransgenic mice expressing a class I-restricted TCR, it ap-
pears that CD8 plays a similar role in deletion of class I-restricted T cells as CD4
does for class II-restricted T cells : the deletion spares cells with low CD8 expression,
while those with high levels are deleted (25) .

This paper addresses the function of the CD8 molecule during the positive selec-
tion of CD4-/CD8 + T cells . To this end, the effects of blocking CD8 with an anti-
CD8 mAb during T cell development were analyzed in vivo. The in vivo experi-
ments involved the treatment of pregnant mice and their progeny for up to 2 wk
of age with anti-CD8 mAb. The results from these studies indicate that treatments
with intact or divalent, F(ab')2, anti-CD8 mAbs do not deplete, but rather prevent
the generation of CD4-/CD8+ T cells . CD8 molecules are therefore involved in the
positive selection of the T cell repertoire .

Materials and Methods
Mice.

	

Timed pregnant BALB/c and C3H x BALB/c mice were obtained from the Na-
tional Cancer Institute (Frederick, MD). The day of a vaginal plug was designated as day
0 of embryonic development .

Antibodies and Treatments.

	

The anti-CD8 .2 mAb, 2.43 (26), was purified from nude mice
ascites by ammonium sulfate precipitation and sephadex column size separation . Concen-
trated antibodies were dialyzed against PBS, filter sterilized, and the concentration of the
mAb was determined by spectrophotometric absorbance . The F(ab')2 fragments were pre-
pared as previously described (27) . The F(aU)2 fragment preparations ofanti-CD8 mAb were
analyzed by SDS-PAGE and shown to contain no detectable intact anti-CD8 mAb . Anti-
CD8 activity ofthe fragments was demonstrated by their ability to block staining with FITC-
or biotin-conjugated anti-CD8 mAb. Absence of intact anti-CD8 mAb was further demon-
strated by the failure of the F(ab')2 fragments to cause depletion ofCD4-/CD8' T cells when
injected into adult mice, in an acute regimen leading to depletion when intact anti-CD8 mAb
is used (data not shown) .

In Vioo Treatment with Anti-CD8 mAb.

	

Pregnant mice were treated from day 16-17 ofpreg-
nancy with a daily dose of 0.5 mg of 2.43 mAb, i .p ., and treatment was continued on their
neonatal offspring at a daily dose of 0.2 mg of 2.43 mAb, i.p., for up to 2 wk. 1 d after treat-
ment termination, thymocyte suspensions were analyzed by FACS . Controls consisted ofsa-
line injections of equal volume and regimen . For single-positive (CD4' and/or CD8') T cell
enrichment, control and treated mice were injected with hydrocortisone acetate (HC)' (0.2
mg, i.p.) 2 d before analysis (28) . Before FACS, nonviable cells were removed by density gra-
dient separation (Lympholyte-M ; Cedar Lane, Ontario, Canada) . The viability of cell sus-
pensions was determined by trypan blue exclusion.

Fluorescence Staining(FACS).

	

Cell suspensions were prepared in HBSS (without phenol red)
containing 1% BSA and 0.1% sodium azide (FACS buffer) . Cells (10 6/100 JAI buffer) were
incubated on ice for 30 min with 10 ,.l of the appropriate antibody, and washed twice after
each incubation . Control staining of cells, either stained with irrelevant antibody or with



ZUNIGA-PFLLJCKER ET AL .

	

429

second-step antibody alone, were used to obtain background fluorescence values . The samples
were analyzed on a FACS 440 (Becton Dickinson & Co., Mountain View, CA) interfaced
to a PDP 11/24 computer, as previously described (4) . Data were collected on 50,000 cells
and are shown as contour diagrams, with a three-decade log scale of green fluorescence on
the x-axis, and a three-decade log scale of red fluorescence on they-axis . Reagents used for
direct staining were FITC- or biotin-conjugated anti- : TCRa/0 (29), CD3 (30), CD4(31),
CD5 (32), CD8 (32), CD8.2 (26), and CD8-a (Lyt-3) (33) . For indirect staining, FITC-
conjugated goat anti-rat IgG was used as described (34) .

Results and Discussion
In Vivo Anti-CD8 Treatment.

	

To test the possible contribution of C138-ligand (class
I MHC) (3) interactions during T cell development, the effect of anti-CD8 treat-
ment in vivo was analyzed . Thymocytes from BALB/c mice that have been treated
with anti-CD8 mAb pre- and postnatally became saturated with the specific mAb,
and, most importantly, the majority of CD8-expressing cells remained present
(data not shown), suggesting that CD8+ thymocytes had not undergone cytotoxic
depletion.

To address the phenotypic changes induced by the blocking of the CD8 molecule,
awide spectrum of cell surface markers were analyzed . First, staining for CD8 and
CD4 was performed. Fig. 1 a shows that in the anti-CD8 mAb-treated thymi, the
staining with directly labeledGD8 FITC is blocked, demonstrating total saturation
of the CD8 molecule.
The CD8 molecule is composed of two chains, an a chain (Lyt-2) and a (3 chain

(Lyt-3) (33, 35). Ourtreatments were directed to theachain; thus, we can visualize
the presence of CD8+ T cells by staining for the CD8 (3 chain. The antibody used
for anti-CD8 treatment (2.43, anti-CD8 .2, previously known as Lyt-2 .2) (26) does
not crossblock the staining for CD8-(3 (53-5.8, anti-Lyt-3) (33) (data not shown) .
Fig. 1 b shows that staining for CD8-/3 allows for the visualization of CD4+/CD8+
(double-positive) T cells in anti-CD8-treated mice, albeit the CD8 molecules are
downmodulated, and also suggests an absence of CD4-/CD8+ T cells .

FIGURE 1 .

	

Two-parameter flow cytometry
analysis of cell surface expression of (a)
CD4vs . CD8(Lyt-2) or (b) CD4 vs . CD8-
0 (Lyt-3) on thymocytes from control and
anti-CD8-treated groups . Timed pregnant
BALB/c mice and their offspring were
treated with 2.43 mAb. Intraperitoneal in-
jections of 0.5 mg were given daily from
day 16 ofpregnancy and continued at 0.2
mg for 12 d after birth. Thymocytes were
analyzed on day 13 after birth.
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To further analyze the presence of CD4+/CD8 + and absence of CD4-/CD8+ T
cells in the anti-CD8-treated thymi, we analyzed the level of CD3 expression on
CD4+ and CD4- T cells. Fig. 2 a shows that control thymi contain CD4+ T cells,
which are CD3- (corresponding to CD4+/CD8+/CD3-), CD3 dull (CD4+/CD8+/
CD3+), and CD3 bright (CD4+/CD8-). These thymi also contain CD4- T cells that
are CD3- (CD4-/CD8-) and CD3+ (CD4- /CD8+, perhaps also some CD4-/
CD8- ). Clearly, after anti-CD8 treatment the only population that is altered is the
CD4- T cells that are CD3+ (CD4-/CD8+). No significant changes are observed
in the CD4+/CD8- /CD3+ population, nor in the expression of CD3 (dull) on the
CD4+/CD8+ Tcells . The first observation is at odds with earlier work in which anti-
CD8 prevented the generation of CD4+ T cells (36) . However, mixed allogeneic
tetraparental chimeras were used in those studies, such that graft-vs.-graft reactions,
rather than blocking of development, mayhave caused this subset's elimination . The
second observation shows that contrary to the effects of anti-CD4 on CD3 expres-
sion after pre- or postnatal engagement (16, 34), anti-CD8 has no effects on the ex-
pression of CD3 on the dull double-positive population . This observation has now
been confirmed with saturating doses of three different anti-CD8 mAbs (data not
shown).

Next, by using the CD5 marker (Ly-1), we could clearly visualize, in the control
thymus, a population of CD5+/CD4- T cells (corresponding to CD8+) (37) (Fig.
2 b) ; this population was absent after the anti-CD8 treatment, while the other popu-
lations remained unchanged.
Taken together, these findings demonstrate that treatment with anti-CD8 mAb

affects only the presence ofthe CD3+/CD4-/CD5+/CD8 + T cells, and has no effect
on the generation of the other major thymic phenotypes (Figs. 1 and 2) . Most
significantly, double-positive T cells developed normally in the treated groups ; thus,
these results argue that the absence of CD4-/CD8 + T cells is not due to a deple-
tion of CD4+/CD8+ precursor T cells .

FIGURE 2 . Two-parameter flow cytom-
etry analysis of cell surface expression of
(a) CD4 vs . CD3 or (b) CD5 vs . CD4 on
thymocytes from control and anti-CD8-
treated groups . Timed pregnant BALB/c
mice and their offspring were treated with
2 .43 mAb. Intraperitoneal injections of0 .5
mg were given daily from day 16 of preg-
nancy and continued at 0 .2 mg for 12 d
after birth . Thymocytes were analyzed on
day 13 after birth .



ZUNIGA-PFLOCKER ET AL . 431

To better visualize the presence or absence of the CD8+ T cell population, con-
trol and treated groups were subjected to HC treatment 2 d before analysis (28) .
HC enriches for single-positive mature T cells (Fig. 3 a; reference 38). Again, anti-
CD8-treated thymi showed no staining with directly labeled CD8 FITC (Fig. 3 a) .
This lack of positive staining was not due to saturation and/or blocking ofthe CD8
molecule, but rather due to a complete absence of the CD8+ T cell population, as
shown by the lack of CD8-/3+ T cells as well (Fig . 3 b) .

Finally, we examined the mature thymocytes (HC thymus) for the expression of
CD5 and TCR on the CD4+ or CD4- population . This allows for the visualiza-
tion of the two main populations in an indirect fashion (Fig . 4 a), so as to avoid

FIGURE 3. Two-parameter flow cytom-
etry analysis of cell surface expression of
(a) CD4 vs . CD8 or (b) CD4 vs . CD8-0
on thymocytes from HC-treated control
and anti-CD8-treated groups . Timed preg-
nant BALB/c mice and theiroffspring were
treated with 2.43 mAb. Intraperitoneal in-
jections of 0.5 mg were given daily from
day 16 of pregnancy and continued at 0.2
mg for 12 d after birth. Thymocytes were
analyzed on day 13 after birth . Control and
anti-CD8-treated mice were injected with
0.2 mg, i .p ., of HC 2 d before analysis .

FIGURE 4.

	

Two-parameter flow cytom-
etry analysis of cell surface expression of
(a) CD5 vs . CD4 or (b) CD4 vs . TCIia/(3
on thymocytes from HC-treated control
and anti-CD8-treated groups . Timed preg-
nant BALB/c mice and their offspring were
treated with 2.43 mAb. Intraperitoneal in-
jections of 0.5 mg were given daily from
day 16 of pregnancy and continued at 0.2
mg for 12 d after birth . Thymocytes were
analyzed on day 13 after birth . Control and
anti-CD8-treated mice were injected with
0.2 mg, i .p ., of HC 2 d before analysis .
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any problems with antibody blocking. In the control thymi, CD5+/CD4- cor-
respond to CD8+ T cells, while CD5+/CD4+ correspond to CD4+ T cells (37) . Fig.
5 a shows that the CD8+ T cell population (CD5+/CD4 -) is completely absent in
the anti-CD8-treated mice . The failure to generate the CD8+ T cells can also be
demonstrated by examining the expression ofTCR-odf on HC thymi. The control
thymi contain two well-defined populations of TCR+ (bright) cells (Fig. 4 b), one
in the CD4+ subset and one in the CD4- subset (CD8+). The CD4-/TCR+ (CD8+)
Tcells are clearly absent in the treated group, thus, confirming the failure to generate
such T cells when the CD8 molecule is blocked during T cell development .

In Vivo Anti-CD8 F(ab')z Fragment Treatment.

	

The absence of CD4-/CD8 + T cells
after anti-CD8 treatment suggests a role for the CD8 molecule during the positive
selection of CD8+ T cells . Selective removal of CD4-/CD8 + T cells by the anti-CD8
mAb seems an unlikely explanation for the present results, since CD4+/CD8+ cells
bind the mAb equally well, yet their generation was not affected (Figs . 1 and 2) .
Nonetheless, we examined the mechanisms by which the anti-CD8 might exert its
effects . Most importantly, the possible contribution of Fc-mediated processes needed
to be considered . These processes include lysis of cells by direct activation of the
complement pathway, and/or removal by macrophages activated through their Fc
receptors . The use of F(ab')2 fragments would exclude these possibilities (27) . The
possible contribution ofCD8 multivalent crosslinking can also be obviated by using
F(ab')2 fragments, which can only form divalent interactions with the CD8 mole-
cule. Most importantly, the anti-CD8 F(ab')2 fragments used did not cause deple-
tion of CD4-/CD8 + T cells when injected into adult mice in a short term acute
treatment protocol (data not shown; see also references 16 and 27).

In vivo pre- and postnatal treatment with F(ab')2 fragments (>98% purity as de-
termined by SDS-PAGE analysis) saturated and blocked the expression of CD8 on
thymocytes (data not shown) . More significantly, treatment with anti-CD8 F(ab')2
fragments prevented the development of CD4-/CD8 + T cells . Fig. 5 a shows a lack
of CD8-a+ T cells in HC thymi from treated mice . The specificity of this effect is
demonstrated by the observation that the generation ofthe other major Tcell subsets,
i.e ., CD4+/CD8- and CD4+/CD8+ cells (data not shown), are not affected (Fig. 5
a) . The failure to generate CD8+ T cells after blocking the expression of CD8 can
also be demonstrated by using other markers: absence of CD5+ /CD4 - and
TCR+/CD4- T cells (Fig . 5, b and c) confirms the finding that the CD4-/CD8+ T
cells fail to develop when CD8 is blocked, even under circumstances where Fc-mediated
mechanisms can be ruled out .

Finally, in order to distinguish between cytotoxic removal or developmental blockade
of CD4-/CD8+ cells, we took advantage of the existence of two allelic forms of the
CD8 molecule (33). BALB/c mice express the CD8.2 allele, whileC3H mice express
the CD8.1 allele (26), and in heterozygous (C3H x BALB/c)Fi mice, both alleles
are codominantly expressed (32, 33 ; data not shown) . Anti-CD8 .2 treatment ofsuch
(C3H x BALB/c)F1 mice should block only the CD8.2 molecule, but leave the ex-
pression of the CD8.1 molecule intact . Indeed, anti-CD8 .2 F(ab')2 mAb treatment
of perinatal (C3H x BALB/c)F, mice saturated all CD8.2 molecules on CD8+ cells,
while the expression of CD8.1 molecules was not affected (data not shown) . It can
therefore be predicted that, if interactions between CD8 and its ligand are a re-
quirement for development, the remaining CD8.1 molecules should fulfill these re-
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FIGURE 5. Two-parameter flow cytometry
analysis of cell surface expression of (a) CD4
vs. CD8-0, (6) CD5 vs . CD4, or (c) CD4 vs .
TCR-a/,6 on thymocytes from HC-treated
control and anti-CD8-F(ab')2-treated groups.
Timed pregnant BALB/c mice and their
offspring were treated with 2.43 mAb. In-
traperitoneal injections of0.5 mg were given
daily from day 16 ofpregnancy and continued
at 0.2 mgfor 12 d after birth. 'fhymocytes were
analyzed on day 13 after birth . Control and
anti-CD8-treated mice were injected with 0.2
mg, i.p ., of HC 2 d before analysis .

quirements . Indeed, the generation of CD4-/CD8' cells in CD8.1/CD8.2 hetero-
zygous mice wasmostly unaffected by anti-CD8 .2 treatment (Fig. 6, a-c), in striking
contrast with the situation in CD8.2 homozygous mice, in which anti-CD8 .2 treat-
ment resulted in a complete lack of generation of CD4-/CD8' T cells (Figs. 5 and
6). Most likely, the generation of CD4-/CD8+ cells in the heterozygous mice results
from interactions between the unblocked CD8.1 allele and its ligand, which pro-
vides the necessary signals for differentiation. These results firmly eliminate the pos-
sibility that the absence of CD4-/CD8' cells in the anti-CD8-treated homozygous
mice was due to direct cytotoxic depletion, since such elimination would also have
occurred in heterozygous mice . Additionally, these data imply that the failure to
generate CD4-/CD8' T cells was not a consequence of negative signals (39, 40),
nor over induction of positive signals (39-44), resulting from the mAb engagement
of CD8 molecules on differentiating thymocytes .
Taken together, these data clearly indicate that the generation of CD4-/CD8' T

cells is preventedwhen CD8 molcules are blocked during early development. In het-
erozygous Ft mice, where only one of the two CD8 alleles is blocked, the genera-
tion of CD4-/CD8+ T cells proceeds undisturbed, while treatment with non-
depleting F(ab')2-anti-CD8 mAb does block the development of CD4-/CD8+ T cells
in homozygous mice . These results demonstrate that the absence of CD4-/CD8'
T cells is not due to a depletion CD8' T cells, but rather is caused by a lack ofposi-
tive selection. This lack ofpositive selection is most likely attributable to an obstructed
CD8-MHC class I interaction, and is presumably occurring at the double-positive
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FIGURE 6.

	

Two-parameter flow cytometry analysis of cell surface expression of (a) CD4 vs . CD8,
(b) CD4 vs . CD8-(3, or (c) CD4 vs. TCR-a/,3 on thymocytes from HC-treated BALB/c or (C3H x
BALB/c)FI control and anti-CD8-F(ab')z-treated groups . Timed pregnant BALB/c or C3H mice
(mated to BALB/c males) and their offspring, BALB/c or (C3H x BALB/c)FI, respectively, were
treated with 2.43 mAb . Intraperitoneal injections of0 .5 mgwere given daily from day 16 ofpreg-
nancy and continued at 0 .2 mg for 12 d after birth . Thymocytes were analyzed on day 13 after
birth . Control and anti-CD8-treated mice were injected with 0 .2 mg, i .p ., of HC 2 d before anal-
ysis . In both treated groups, BALB/c and (C3H x BALB/c)F I , the same anti-CD8 .2 F(ab)2 mAb
batch, schedule, and dosage was used .

transition stage, since the development of CD4`/CD8' T cells is not affected (Figs .
1 and 2) .

Summary
Interactions between self-MHC molecules andT cells are necessary for the proper

development of mature T cells, in part due to an absolute requirement for self-
MHCTCR interactions . Recently, we showed that C134-mediated interactions also
participate in shaping the T cell repertoire during thymic maturation . We now ex-
amine the possible role of the CD8 molecule during in vivo T cell development .
Our results demonstrate that perinatal thymi treated with intact anti-CD8 mAb

fail to generate CD8 single-positive T cells, while the generation of the other main
phenotypes remains unchanged . Most importantly, the use of F(ab')2 anti-CD8
mAb fragments gave identical results, i.e., lack of generation of CD4-/CD8+ cells,
with no effect on the generation of CD4+/CD8` . Furthermore, selective blocking
of one CD8 allele with F(ab')2 mAbs in F1 mice expressing both CD8 alleles did
not interfere with the development of CD4-/CD8+ cells, demonstrating that the ab-



sence of CD8' T cells in homozygous mice is not due to depletion, but rather is
caused by a lack of positive selection . This is most likely attributable to a deficient
CD8-MHC class I interaction . Our findings strongly advocate that CD8 molecules
are vital to the selection process that leads to the development ofmature single-positive
CD8 T cells .
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