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The dynamics of information exchange is an important but under-
studied aspect of collective communication, coordination, and
problem solving in a wide range of distributed systems, both
physical (e.g., the Internet) and social (e.g., business firms). In this
paper, we introduce a model of organizational networks according
to which links are added incrementally to a hierarchical backbone
and test the resulting networks under variable conditions of
information exchange. Our main result is the identification of a
class of multiscale networks that reduce, over a wide range of
environments, the likelihood that individual nodes will suffer
congestion-related failure and that the network as a whole will
disintegrate when failures do occur. We call this dual robustness
property of multiscale networks ‘‘ultrarobustness.’’ Furthermore,
we find that multiscale networks attain most of their robustness
with surprisingly few link additions, suggesting that ultrarobust
organizational networks can be generated in an efficient and
scalable manner. Our results are directly relevant to the relief of
congestion in communication networks and also more broadly to
activities, like distributed problem solving, that require individuals
to exchange information in an unpredictable manner.

Information exchange is central to the performance of a wide
range of networked systems, including infrastructures such as

the Internet (1), airline, postal, and transportation networks, as
well as peer-to-peer file sharing systems, communication net-
works, and organizations such as public bureaucracies (2, 3) and
business firms (4, 5). Despite considerable recent exploration of
the structure of real-world networks (6–8) and a long established
organizational complexity literature in sociology (9–11), the
dynamics of information exchange in networks has attracted
limited attention (12, 13). In this paper, we introduce a model of
what we call ‘‘organizational networks,’’ networks whose pur-
pose is to organize and coordinate the decentralized exchange of
information. In focusing on information exchange, our general
aim is to construct a framework for exploring organizational
robustness with respect to a range of environmental stresses.

The topic of optimal organizational architecture has long been
of concern to economists (4, 14–17), but their emphasis has been
on efficiency rather than robustness. As a result, the economics
literature on organizations has focused almost exclusively on
multilevel hierarchies: acyclic, undirected branching networks
that originate at a single root node and descend through a series
of levels or ranks to their terminal leaf nodes. By connecting N
nodes together with the minimum required number of N � 1
links and creating a chain of command that is only L � log N links
in depth, hierarchies are almost as efficient as possible. Unlike
hub-and-spoke networks (a special case of a hierarchy with a
single subordinate level), multilevel hierarchies require each
node to interact directly with, on average, only b other nodes,
where b �� N and is generally called the ‘‘span of control.’’
Hierarchies are therefore attractive, scalable architectures when-
ever individual capacity is bounded (e.g., managers in business
firms) or else not easily augmented (e.g., terminals in airline
networks). Numerous variations on this basic argument have
been invoked to justify the optimality of hierarchical organiza-

tional networks for exerting control (2, 14, 18), performing
decentralized computations (4), distributing processing load
(16), making decisions (15), and accumulating knowledge (17).

However, a critical, and often unstated, assumption of this line
of investigation is that the organization’s task is decomposable
into simpler subtasks, such that each subtask can be completed
independently and therefore in parallel with others (19). Radner
(4), for example, analyzes the case of summing a set of integers,
a linearly associative task that is trivially decomposable. In
contrast, most modern business firms and public bureaucracies
face problems that are not only large and multifaceted but also
ambiguous: objectives are specified approximately and typically
change on the same time scale as production itself, often in light
of knowledge gained through the very process of implementing
a solution (9). As a result, problem solving is almost always a
collective activity (20), embodied in strategies such as mutual
monitoring (21, 22) and simultaneous design (23) in which initial
designs or solutions are regularly adjusted on the basis of
information-rich collaboration between individuals, teams, de-
partments, and even different organizations.

Under these circumstances, the chief problem facing an
organization is not efficiency, understood roughly as being
maximized by minimizing the number of costly links needed to
support a defined burden. Rather, the challenge is robustness: on
the one hand, protecting individual nodes from being overtaxed
by the direct and indirect effects of changing and unpredictable
patterns of collaboration; and on the other hand, protecting the
organization as a whole from disintegration in cases where
individual failures occur regardless. More specifically, when task
definitions are ambiguous, individual collaborators will often
exchange information with other problem solvers (10), if only to
ask after and obtain information about potential partners or to
keep abreast of design changes relevant to their immediate task.
In cases where the information is exchanged indirectly (e.g., via
a superior), the relevant intermediaries incur an information
processing burden. The burden imposed by any single coordi-
nating message may be small, but high rates of message passing
in combination with concentration of traffic will tend to overload
key nodes. An analogous problem arises in other kinds of
organizational networks, such as the Internet, airline networks,
or the postal system, which must redistribute information,
personnel, or materials while simultaneously minimizing the
likelihood of overload. Organizational networks that minimize
the probabilities of such failures exhibit what we call ‘‘congestion
robustness.’’

In addition to resisting failure at the level of individual nodes,
contemporary organizational networks must continue to func-
tion even when individual elements do fail. The Internet, for
example, suffers little performance loss in the event that indi-
vidual routers fail. Business firms can display remarkable resil-
ience with respect to (seemingly) catastrophic breakdowns in
their supply chains (20), involving loss of key component pro-
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ducers, equipment, personnel, and office space (24, 25). In
contrast, under conditions of environmental uncertainty and
catastrophe recovery, hierarchies are extremely prone to cas-
cading breakdowns because the failure of nodes near the top of
the hierarchy effectively severs large subnetworks from the main
organization, thereby impairing global coordination. Organiza-
tions that reduce the adverse consequences of externally driven
failures exhibit what we call ‘‘connectivity robustness.’’ Finally,
we call organizational networks that exhibit both congestion and
connectivity robustness ‘‘ultrarobust.’’

Our approach to the design of organizational networks
through the lens of information exchange under conditions of
ambiguity follows naturally from a long line of work in organi-
zational sociology in which issues such as the interaction between
an organization and its environment (9–11), the role of uncer-
tainty in necessitating communication (9, 10), and the impor-
tance of adaptability to innovation and crisis management (9, 24,
26) have frequently been emphasized. By operationalizing the
performance of organizations in ambiguous environments in
terms of robustness, we hope to extend the optimality approach
of the economics literature on firms to the richer domain of
organizational sociology.

Modeling Organizational Networks
Our model requires four components: (i) an algorithm for
constructing organizational networks, (ii) a specification of the
task environment from which the requirement for information
exchange is derived, (iii) a precise description of information
exchange in terms of an algorithm for passing messages, and (iv)
a well defined way of measuring congestion and connectivity
robustness.

Network Construction Algorithm. Our algorithm takes as its point
of departure the simplest version of an organizational network:
a pure hierarchy with branching ratio b and L levels. The number
of nodes is therefore N � (bL � 1)�(b � 1), where the lth level
possesses bl nodes and l � 0, . . . , L � 1. The algorithm proceeds
by sequentially adding links, chosen stochastically, until a pre-

scribed total of m have been added. The probability P(i, j) that
two nodes i and j will be connected depends on the depth Dij of
their lowest common ancestor aij in the backbone and also their
own depths di and dj, respectively, beneath aij (in Fig. 1, for
example, Dij � 2, di � 2, and dj � 3). We choose links without
replacement, and P(i,j) is therefore always normalized over all
remaining pairs of unconnected nodes. We treat links that are
added in this manner differently from links that are part of the
hierarchical backbone: backbone links define a node’s coordi-
nates in the network and also transmit information; added links
only transmit information. Thus, the hierarchical backbone may
be thought of as the formal organization (chain of command),
whereas added links correspond to the informal organization, a
common distinction in the sociological literature of organiza-
tions (9, 10, 26, 27).

We thus map the theoretical problem of how organizational
networks should be structured into the question of what is the
corresponding functional form of P. Furthermore, whatever
form of P that is appropriate for one kind of organization in a
given environment (e.g., an early 20th automobile manufacturing
firm) may well be inappropriate elsewhere (e.g., an early 21st
century software manufacturer). We therefore seek a class of
functions that is sufficiently general to explore a wide range of
alternative topologies, but not so general that the resulting space
of networks cannot be explored systematically.

To restrict the possible form of P, we make the following
assumptions that we claim are plausible for the case of organi-
zational networks. (i) Because it is a probability, we require that
P is nonnegative for all values of Dij, di, and dj. (ii) Because
immediate subordinates and superiors in the underlying hierar-
chy (di � dj � 1) are connected by default, P is effectively
constrained to be non-zero for values of di � dj � 2 (we disallow
self-connections and duplicate links). (iii) We assume that
individuals are identical aside from their relative position in the
hierarchy; hence, P is symmetric with respect to di and dj. (iv) All
else being equal, we assume that individuals of the same rank are
‘‘closer’’ than individuals of different ranks; thus, for fixed di �
dj, distance is minimized when di � dj. Incorporating assump-
tions i–iii, we define organizational distance xij between two nodes
i and j to be xij � (di

2 � dj
2 � 2)1/2 (valid for di � dj � 2). (v) We

assume that P decreases monotonically with increasing xij, a
familiar property of social networks known generically as ho-
mophily (28), or the tendency of ‘‘like to associate with like’’ (we
note that together, assumptions iv and v effectively incorporate
two kinds of homophily that can be roughly attributed to
similarity in class and profession, respectively). (vi) P is also
assumed to decrease monotonically with respect to increasing
lowest common ancestor rank Dij; that is, all other things being
equal, nodes of higher rank are more likely to interact. (vii)
Because both homophily (assumption v) and lowest common
ancestor rank (assumption vi) effects will apply to varying extents
across different organizations, we introduce two tunable param-
eters, � and �, that can be interpreted as characteristic lengths in
xij and Dij, respectively, beyond which connections become
unlikely.

Incorporating assumptions i–vii, we propose the following
stochastic rule governing the formation of new interactions:

P�i , j� � e�Di j��e�xi j��. [1]

We use Eq. 1 to choose (without replacement) the sequence
of m links to be added to an initial hierarchical backbone, where
different choices of � and � will result in different network
topologies for the same choice of b, L, and m (i.e., the same
number of links added to the same backbone).

We immediately observe four stylized classes of organizational
networks that arise for limiting values of (�, �), as depicted in
Fig. 2.

Fig. 1. Schematic of the network construction algorithm. Links to be added
are chosen stochastically according to Eq. 1 (without replacement) to a hier-
archical backbone with L levels and branching ratio b. Eq. 1 takes as its
arguments the organizational distance xij between two nodes i and j, as well
as the depth Dij of their lowest common ancestor aij. Organizational distance
is defined as xij � (di

2 � dj
2 � 2)1/2, where di and dj are measured relative to aij

(see text for details). The two parameters � and � set characteristic lengths in
Dij and xij, respectively, beyond which links are unlikely to form, thus embod-
ying the influence of rank and homophily on link formation within an orga-
nizational network. Because links are chosen without replacement, links that
are initially unlikely to be chosen will eventually be selected. This means that
although � and � control the order in which links are added, they do not have
a simple interpretation in the resulting networks formed by the addition of
many links. The alternative of choosing links with replacement and taking
only the set of unique links so chosen would mean that the number of links
added would no longer be conserved.
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Random: For (�, �)3 (�, �), links are allocated uniformly at
random; that is, neither lowest common ancestor rank nor
homophily has any influence on link selection.

Local team: For (�, �)3 (�, 0), links are allocated exclusively
between pairs of nodes that share the same immediate superior,
regardless of their superior’s rank. Hence, homophily is impor-
tant to link selection, but lowest common ancestor rank is not.
The result is that ‘‘teams’’ form at all levels of the hierarchy.

Random interdivisional: For (�, �)3 (0, �), links are allocated
exclusively between nodes whose lowest common ancestor is the
single node at the top of the hierarchy. Links therefore only form
between nodes in different ‘‘divisions’’ (the largest subunits) of
the organization, but otherwise they are allocated randomly,
meaning that lowest common ancestor rank is important but
homophily is not.

Core-periphery: For (�, �)3 (0, 0), links are added exclusively
between subordinates of the top node alone. The resulting
networks are characterized by a fully connected central core
from which pure branching hierarchies extend. For non-zero, but
small, values of � and � (i.e., in the vicinity of the origin in Fig.
2), the core-periphery dichotomy continues to pertain, but the
core extends beyond the top layer. Hence, both homophily and
lowest common ancestor rank matter.

Multiscale: Finally, we identify a fifth, qualitatively distinct
class of networks that arise in the central region of Fig. 2 [i.e.,
intermediate values of (�, �)]. We call this class multiscale
networks because, unlike the four classes of networks defined
above, whose connectivity is dominated by a single scale [either
local (team) or global (random) ties], these networks display
connectivity at all scales simultaneously. Multiscale networks,
however, do not display uniform density of links at all scales: link
density decreases monotonically with depth, such that the top
rank (the core) exhibits the highest density, thus distinguishing
multiscale networks from earlier ‘‘small-world’’ network models
(29) in which random links are distributed homogeneously. This
difference is critical for the problem at hand because, in a wide
variety of environments, the hierarchical nature of organiza-
tional networks tends to place the burden of information ex-

change disproportionately on higher ranks. Thus multiscale
networks and core-periphery networks have much in common.
But by exhibiting connectivity across all other ranks as well,
multiscale networks also embody the salient features of local
team and random networks, a combination that, as we show
below yields desirable robustness properties.

Task Environment. We specify the organization’s task environ-
ment in terms of the rate and distribution of messages to be
exchanged between individual problem solvers in the course of
completing some global task. Stable environments correspond to
a low rate of information exchange � (defined as the average
number of messages initiated by each individual at each time
step), whereas volatile environments are equivalent to high �. In
addition to volatility, the environment may also allow for varying
task decomposability: tasks that are nearly decomposable cor-
respond to a pattern of message passing that requires only
individuals within the same team (i.e., nodes with the same
immediate superior) to communicate; tasks that cannot be
decomposed even approximately require constant communica-
tion between remote, as well as nearby, individuals. In practice,
for each message initiated at a node s at rate �, a corresponding
target node t is selected by weighting all nodes at distance x from
s with a factor exp{�x��}, normalizing appropriately, and then
choosing t at random according to the resulting distribution.
Thus, for � � 0 (local dependencies only), all messages are to be
delivered to local targets, whereas for � � � (global dependen-
cies), t is chosen uniformly at random.

Information Exchange. Once initiated, a message is passed from
source to target through a chain of intermediaries. Each node in
the chain must process each message that it initiates or receives
in the same time step by forwarding it to an immediate neighbor,
choosing the neighbor who has the lowest common ancestor with
the target node (in case of equally distant neighbors, one such
neighbor is chosen at random). Thus each node i is assumed to
have complete information regarding its own location in the
hierarchy, as well as the locations of its neighbors. Each node also
understands general information about targets beyond its im-
mediate neighborhood, an assumption we call “pseudoglobal
knowledge.” If node i is an indirect superior of t in the hierarchy,
then pseudoglobal knowledge implies that i knows in which of
the subunits t belongs but not specifically where (in which case
i could send the message directly); similarly, if t is not beneath
i but subordinate to one of i’s neighbors along an informal link,
i knows to send the message ‘‘across’’ the hierarchy to that
neighbor; if neither of these cases hold, then i must pass the
message up the hierarchy to its immediate superior. Pseudoglo-
bal knowledge therefore embodies an inherent tradeoff between
quantity and quality of information: high ranking nodes tend to
possess general information about more subordinates than nodes
in lower ranks but have less specific information about any one
subordinate.

Pseudoglobal knowledge can also be interpreted in terms of
distributed problem solving, where the target’s address, rather
than being the location of an individual in an organization, can
be thought of instead as a complete description of the solution
required by a particular problem (by analogy, the call number of
a book in a library characterizes the knowledge contained
therein). Neither the knowledge itself nor its address, however,
is initially available to the problem solver (the sender) who must
therefore poll his or her contacts in the organization for a
relevant recommendation. The closer a contact is to the eventual
target, the more accurately he or she can direct the problem
solver, and the fewer subsequent intermediaries are required to
conclude the search (we do not consider the case where the
relevant knowledge does not exist in the organization). The
progress of a message therefore corresponds to a problem solver

Fig. 2. Classes of networks realized in different regions of (�, �)-space.
Multiscale networks occupy a broad interior region of space, whereas random
(R), random interdivisional (RID), local team (LT), and core-periphery (CP)
networks arise when one or both parameters approach their limiting values.
Technically, the upper limit for both � and � is �, and these limits would
typically be approximated by numbers sufficiently larger than the maximums
of xij and Dij. However, because � and � only set the order in which links are
likely to be chosen, and hence are nontrivially related to the resulting net-
works, these parameters effectively reach � at values less than the maximums
of xij and Dij.
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acquiring increasingly specific knowledge about the problem to
be solved; a process that can only succeed with the cooperation
of increasingly knowledgeable intermediaries.

Measures of Robustness. The property of ultrarobustness requires
an organizational network to exhibit both congestion robustness
(the capacity to protect individual nodes from congestion) and
connectivity robustness (the capacity to remain connected even
when individual failures do occur). To measure congestion
robustness, we initiate an average of � messages per node each
time step over a total of T time steps, where messages are
removed from the system on reaching their designated target.
Assuming that each node i can process a maximum of Ri
messages per time step without failure, then an organizational
network will, on average, remain free of failures only if Ri 	
ri � �N�i for all i, where ri is the rate of messages to be processed
by node i and congestion centrality �i is the probability that any
given message will be processed by i. Although congestion
centrality is similar to other centrality measures in graph theory
(30) and social network analysis (31), it is more appropriate to
the problem of information exchange in that it depends on task
decomposability (�) and the message passing algorithm as well
as a node’s position in the network. [For example, when message
passing is sufficiently global (� is large), high-ranking nodes will
be more central than low-ranking nodes, as would be the case for
betweenness centrality (31). But when message passing is purely
local (�3 0), nodes at all ranks (other than the bottom rank) will
be equally central.] Assuming that environmental volatility (�)
and individual capacities (Ri) are beyond the control of the
organization, a robust architecture is one that reduces the
congestion centrality, hence the likelihood of failure, of its
constituent nodes. We therefore associate congestion robustness
with the reduction of maximum congestion centrality �max over
the entire network (we have also considered 
��, obtaining
qualitatively similar results).

Even a network that is highly robust with respect to congestion
related failures can suffer failures, such as sickness, accidents,
sabotage, attack, and natural disasters, that are imposed on it
from the outside (20, 24, 25). In accordance with previous work
(32–34), we therefore define connectivity robustness in terms of
the fractional size C � S�(N � Nr) of the largest connected
component (size S) remaining after the removal of Nr nodes.
Because different removal strategies have previously been shown
to yield dramatically different conclusions regarding the con-
nectivity robustness of other classes of networks (32), we have
examined a number of such strategies: preferential elimination
of nodes by rank (top-down); elimination of nodes radiating out
from a random start point (cascade); preferential elimination of
highly connected nodes (hubs); and uniformly random elimina-
tion (random).

Results and Discussion
We now investigate the congestion and connectivity robustness
of organizational networks as measured by �max and C respec-
tively, as a function of both environmental conditions (�, �) and
network topology (m, �, �). Before commencing, we note that
when � � 0 (i.e., a static environment) and in the absence of
exogenous failures, all networks perform identically. Efficiency
arguments similar to those outlined above therefore dictate that
pure hierarchies (m � 0) will be superior to all other network
topologies. Thus, in the trivial limit of an unchanging environ-
ment, our model is consistent with the standard economics
literature on organizations (e.g., refs. 4 and 14).

Congestion Robustness. We first consider information congestion
associated with an intermediate level of task interdependency,
� � 1. Fig. 3A shows �max for a fixed network density m � N as
a function of the network topology parameters � and �. Equating

the axes of Figs. 2 and 3A, we can infer that multiscale networks
minimize congestion (hence maximize congestion robustness) at
least as well, and generally much better than, the other four
generic network classes. Furthermore, the congestion robustness
property of multiscale networks persists over a broad region of
the parameter space, ensuring that it is stable with respect to
small changes in parameters. Core-periphery networks (Fig. 2,
bottom left) can also exhibit desirable congestion properties. But
because their performance depends so heavily on the relatively
small population of nodes in the core, they suffer from extreme
sensitivity to parameter selection, with the best and worst
performing networks arising for almost identical choices of
parameters (Fig. 3A, lower left).

Fig. 3B generalizes the above result by comparing �max for the
different network classes over the full range of network density
m (where particular choices of parameters have been used as
proxies for each class). We note that �max eventually decreases
as a function of increasing network density m, regardless of the
procedure used to add links, and that when m is sufficiently large,
all networks perform similarly. However, Fig. 3B also points to

Fig. 3. Congestion centrality �max as a function of the network parameters
(m, �, �). For both plots, the underlying hierarchy of the networks examined
here has N � 3905 nodes with branching ratio b � 5 and depth L � 6. (A)
Contour plot of �max(�, �) for � � 1 averaged over an ensemble of 100 networks.
Lighter regions correspond to lower values of �max(�, �). For each parameter
pair (�, �), m � N links are added and the resulting network is tested by
initiating messages at each node with probability � � 2.561 � 10�3 for T � 103

time steps (i.e., an average of 10 messages are generated per time step). The
broad local minimum centered around (�, �) � (0.5, 0.5) corresponds to
multiscale networks. (B) Change in �max with the addition of links. The net-
works tested here are random (� � �, � � �, ƒ), local team (� � �, � � 0, �),
random interdivisional (� � 0, � � �, ‚), core-periphery (� � 0.1, � � 0.15, E),
and multiscale (� � 0.5, � � 0.5, �). Each data point is the average of 100
realizations. In the case of multiscale networks, most of the reduction of �max

is obtained by the addition of only m � N links (the same holds for 
��).
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some less obvious conclusions: (i) �max does not necessarily
decrease monotonically with m. In particular, the congestion
experienced by the most congested node in a core-periphery
network can increase significantly as more edges are added,
before falling again, giving rise to oscillations periodic in
log(m�N) (a consequence of the sensitivity to parameters noted
above). (ii) The drop in �max occurs an order of magnitude earlier
for multiscale networks than for random, random interdivi-
sional, and local team networks. In fact, almost all of the drop
in �max for multiscale networks occurs for m 
 N, which for large
N is negligible compared with mmax � O(N2).

Fig. 4 continues the comparison between multiscale and other
classes of organizational networks, extending it across the entire
range of environmental complexity �, for fixed m � N and for the
same representative choices of (�, �) as in Fig. 3B. In the limit
of full task decomposability �3 0, at which messages are passed
exclusively between closely separated individuals, all types of
organizational networks perform equally well. As decompos-
ability decreases, however, large differences in congestion ro-
bustness manifest themselves, with multiscale networks always
performing almost as well as any other class, and much better
than most. Furthermore, although core-periphery networks can
also perform well, outperforming multiscale networks for some
parameter choices, they continue to exhibit the same sensitivity
to parameter choices mentioned above (i.e., a slightly different
choice of parameters would generate much worse core-
periphery results, circles in Fig. 4). Multiscale networks display
no such sensitivity; hence, they represent a more reliable solution
to congestion robustness.

Finally, for fixed � (volatility), congestion increases, regardless
of topology, as a function of organizational size; that is, an
organization can break simply under the burden of its own
coordination requirements (35). However, the manner in which
congestion increases with N can vary across different network
topologies, leading to large differences in the maximum size that
an organization can attain in any particular environment. In
particular, for large N the maximum congestion rmax � �N�max
at any one node scales linearly with N for random, random-
interdivisional, local team, and core-periphery networks but
scales sublinearly for multiscale networks. Thus, multiscale
networks display the surprising property that maximum conges-
tion centrality �max actually decreases with the size of the system

(while approaching a constant for the other network classes), a
result we confirm in Fig. 5. Another way to interpret the scaling
of rmax is in terms of the maximum size Nmax attainable by an
organization, given some constraint Rmax above which failures
become inevitable. In Fig. 5, for example, setting Rmax � 570
yields estimates of Nmax 
 1,600 for random networks, Nmax 

1,800 for local team networks, Nmax 
 2,400 for random inter-
divisional networks, Nmax 
 5,500 for core-periphery networks,

Fig. 6. Connectivity robustness of multiscale networks as measured by the
largest cluster size S after targeted removal of Nr nodes. Cluster size is
normalized by the size of the remaining network N–Nr. The networks are the
same as those described in Fig. 3B with 10 samples per data point. Nodes are
removed according to a top-down targeting strategy (see text) where Nr is
increased until the top five levels of a possible six have been eliminated. The
hierarchies depicted and dashed vertical lines correspond to complete re-
moval of nodes down to a depth of 1, 2, . . . , 5. Random and random
interdivisional networks are the most resilient to this form of network deg-
radation, whereas local team networks perform poorly. Multiscale networks,
however, are almost as robust as random networks. In the case of (�, �) �
(0.5,0.5), disintegration of the remnant components begins only after four of
the six levels of the hierarchy are removed.

Fig. 4. Variation of congestion centrality �max as a function of �, where
increasing � corresponds to decreasing task decomposability. Symbols corre-
spond to the same parameter choices of (�, �) as in Fig. 3B, with 100 samples
per data point. Multiscale networks perform almost as well as core-periphery
networks over the entire range of �, and significantly better than all other
classes (random, random interdivisional, and local team) for any but com-
pletely decomposable (�3 0) tasks.

Fig. 5. Scaling of �max with increasing network size N. Symbols represent the
same choices of (�, �) as in Fig. 3B. The task environment is given by � � � and
constant � (i.e., individual nodes send the same number of messages inde-
pendent of network size), and N is increased by fixing the branching ratio b �
6 and increasing the number of levels L � 3, 4, 5, and 6 (i.e., N � 43, 259, 1,555,
and 9,331). Congestion centrality �max rapidly approaches a constant for local
team, random, and random interdivisional networks, and also appears to
approach a constant at large N for core-periphery networks, whereas for the
multiscale example given, �max decreases roughly as N�0.28.
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and Nmax 
 9,300 for multiscale networks. In other words, given
the same individual-level capacities and the same environmental
conditions, multiscale networks can grow to nearly twice the size
of the next best class without incurring failures.

Connectivity Robustness. The second aspect of robustness that is
of interest to organizational networks is their capacity to remain
connected and thereby functional in the event of failures,
whether induced endogenously (as with congestion) or exog-
enously. To quantify connectivity robustness we measure C �
S�(N � Nr) after the targeted removal of Nr nodes, where we
have studied a number of different targeting strategies, specified
above. In Fig. 6, we present the results for the “top-down”
elimination strategy, because it results in the most damaging
choice of targets, and also is the most likely result of congestion-
related failures (even in multiscale networks, congestion is
concentrated in the top ranks). Local team networks are by far
the least robust of the five classes, followed by core-periphery
networks, whereas random and random interdivisional are the
most robust. Multiscale networks, however, are almost as robust
as random networks, performing measurably worse only after all
of the organization but the bottom rank has been eliminated. The
other targeting strategies yield similar results, except that all
classes of networks perform better than in the top-down case,
and that core-periphery networks replace local team networks as
the worst performing class when the “hubs” strategy is used.

Taken together, the above results suggest that multiscale
networks display a remarkable combination of properties. (i)

Over a wide range of environmental conditions, multiscale
networks minimize the likelihood of congestion related failure.
(ii) Even in the event that failures occur anyway, multiscale
networks remain extremely resilient to disconnection. (iii) No
other class of organizational networks studied exhibits both
congestion and connectivity robustness: core-periphery net-
works handle congestion well but are easily disconnected; ran-
dom and random-interdivisional networks are difficult to dis-
connect, but easy to congest; and local team networks are bad in
both senses. Hence, multiscale networks are not only ultrarobust
but appear to be uniquely so. (iv) Multiscale networks achieve
ultrarobustness efficiently in the sense that most of the attendant
benefits are generated by a relatively small number O(N) of
additional links. (v) The superior robustness of multiscale net-
works also conveys better scaling properties than other classes of
networks in that, for a given level of environmental volatility �,
multiscale networks can grow to much larger sizes before
suffering failure. (vi) The properties of multiscale networks are
themselves robust in the sense that they are insensitive to small
(or even quite large) changes in the network parameters �, �, and
m. Networks resembling multiscale networks may therefore be
expected to arise in real-world business firms and bureaucracies,
at least some of which do appear to display properties that
resemble our notion of ultrarobustness (20, 24, 25).
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