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ABSTRACT An approach based exclusively on finding the
global minimum of an appropriate potential energy function
has been used to predict the unknown structures of five
globular proteins with sizes ranging from 89 to 140 amino acid
residues. Comparison of the computed lowest-energy struc-
tures of two of them (HDEA and MarA) with the crystal
structures, released by the Protein Data Bank after the
predictions were made, shows that large fragments (61 resi-
dues) of both proteins were predicted with rms deviations of
4.2 and 6.0 Å for the Ca atoms, for HDEA and MarA,
respectively. This represents 80% and 53% of the observed
structures of HDEA and MarA, respectively. Similar rms
deviations were obtained for ;60-residue fragments of the
other three proteins. These results constitute an important
step toward the prediction of protein structure based solely on
global optimization of a potential energy function for a given
amino acid sequence.

Prediction of protein structure based on sequence informa-
tion alone is one of the challenges of contemporary struc-
tural biology. There are three classes of approach to the
structure-prediction problem: sequence-homology methods,
methods based on energetic criteria, and threading methods.
In the first method, the unknown structure is constructed
based on known structural motifs whose amino acid se-
quences are similar to the sequence studied, taking advan-
tage of the empirical relationship between sequence and the
three-dimensional structure (1–6). The methods of the
second group (7–9) are based on the thermodynamic hypoth-
esis formulated by Anfinsen (10), according to which the
native structure of a protein corresponds to the global
minimum of its free energy under given conditions. Structure
prediction is therefore achieved by a search for the global
minimum of an appropriate potential energy function; this is
often called the ab initio or de novo approach. Throughout
this paper, the ab initio approach to the protein-folding
problem is meant to refer to methods based solely on global
optimization of a potential energy function. The threading
methods can be placed between these two approaches: they
use the energy (or energy-like) functions to distinguish the
native structure from alternative structures, but the un-
known sequence is superposed on structural motifs chosen
from a database of known protein structures (11).

Although sequence homology and threading methods are
thus far the most successful tools for protein-structure pre-
diction, their success depends on the presence of sequence- or
structural-homologous proteins in the databases. On the other
hand, global optimization of a potential energy function is
based on physical grounds, but thus far has had little success.
Protein structure prediction based solely on the thermody-
namic hypothesis has been considered to be unfeasible (12, 13).

The reason for this is both the inaccuracy of the potential
energy functions devised to represent the protein energy
landscape and the lack of powerful methods for global opti-
mization. Thus, some researchers have introduced variants of
ab initio methods that include, as a major part of the procedure,
secondary-structure predictions and multiple-sequence align-
ments that are used as constraints in subsequent conforma-
tional searches. These methods (14–17)¶ have achieved an
important degree of success in predicting the structures of a
number of proteins. Here, we describe a method for protein
structure prediction that is based solely on global optimization
of a potential energy function.

Methodology. Reduced representations of proteins (in
which each amino acid residue is represented by one or a few
interaction sites) have recently been used with great success
in theoretical studies of the physics of protein folding
(18–23), as well as in designing methods for protein-
structure prediction (14–17). Recently, we devised a hier-
archical approach to protein-structure prediction (24, 25),
whose key stage is global optimization of off-lattice simpli-
fied polypeptide chains. In subsequent stages, the low-energy
conformations of a protein obtained at the coarse-grain level
are gradually transformed to all-atom chains. As in related
approaches (3, 14–17, 26–28), the use of a reduced repre-
sentation of polypeptide chains allows one to explore the
conformational space in reasonable time, provided that
adequately good global-search techniques are used. An
off-lattice approach provides the possibility of using efficient
optimization methods that require a continuous represen-
tation of the conformational space.

In the last few years, we have developed a united-residue
(UNRES) force field (24, 25, 29–31) that proved successful in
predicting the native-like structures of small globular proteins
with simple topology (such as a fragment of the B domain of
staphylococcal protein A) as the lowest-energy conformations.
In our model (24, 25, 29), a polypeptide chain is represented
initially by a sequence of a-carbon (Ca) atoms linked by virtual
bonds with attached united side chains (SC) and united
peptide groups (p) located in the middle between the consec-
utive a-carbons. Only the united peptide groups and united
side chains serve as interaction sites, the a-carbons assisting in
the definition of the geometry (see Fig. 1 of ref. 29). All the
virtual bond lengths (i.e., Ca–Ca and Ca–SC) are fixed; the
Ca–Ca distance is taken as 3.8 Å, which corresponds to trans
peptide groups, while the side-chain angles (aSC and bSC), as
well as the virtual-bond angles (u) and the dihedral angles (g)
can vary.
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The energy of the virtual-bond chain is expressed by Eq. 1.
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The term USCi SCj
consists of the mean free energy of the

hydrophobic (hydrophilic) interactions between the side
chains. It therefore implicitly contains the contributions arising
from the interactions with the solvent. The terms USCi

pj denote
the excluded-volume potential of the side-chain–peptide-
group interactions. The peptide-group interaction potential
(Upi pj

) accounts mainly for the electrostatic interactions be-
tween them or, in other words, for their tendency to form
backbone hydrogen bonds. Utor, Ub, and Urot denote the
energies of virtual-dihedral angle torsions, virtual-angle bend-
ing, and side-chain rotamers; these terms reflect the local
propensities of the polypeptide chain. Finally, the multibody
(or cooperative) term Ucorr arises from the fact that details of
the all-atom chain are lost when converting it into the simpli-
fied chain. For the functional forms of the energy terms, the
reader is referred to the original papers (24, 25, 29–31). The
ws denote relative weights of the respective energy terms. The
energy expressions were parameterized based on distribution
and correlation functions determined from a set of 195 high-
resolution nonhomologous structures from the Protein Data
Bank (PDB) (32) or by averaging the all-atom energy func-
tions. The relative weights of the energy terms were calculated
so as to maximize the ratio of the gap between the energy of
the native structure to the average energy of the nonnative
structures of the phosphocarrier protein (1PTF) chosen to
calibrate the force field (30). This was accomplished by
developing a method (30) based on the approach of Wolynes
and coworkers (19), Shakhnovich and coworkers (20), and Hao
and Scheraga (21, 23, 33, 34).

The effectiveness of the approach relies on the global
optimization method. Recently, we developed a very efficient
method called Conformational Space Annealing (CSA) (35–
38) for this purpose. The CSA method searches the whole
conformational space in its early stages and then narrows the
search to smaller regions with low energy as the distance
cutoff, Dcut, which defines the similarity of two conformations,
is reduced. As in genetic algorithms (39), CSA starts with a
preassigned number (usually 50) of randomly generated and
subsequently energy-minimized conformations. This pool of
conformations is called the bank. At the beginning, the bank
is a sparse representation of the entire conformational space.
A number of dissimilar conformations (usually 20) are then
selected from the bank, excluding those that have already been
used; they are called seeds. Each seed conformation is modified
by changing from one to one-third of the total number of
variables pertaining to a contiguous portion of the chain; the
new variables are selected from one of the remaining bank
conformations, rather than being picked at random. Each
conformation is energy-minimized to give a trial conforma-
tion. Thirty trial conformations are generated for each seed (a
total of 600 conformations). This is the most time-consuming
part of the computation, but it is highly suitable for parallel
computing (38). For each trial conformation, a, the closest
conformation A from the bank (in terms of the distance DaA)
is determined. If DaA,Dcut (Dcut being the current cutoff
criterion), a is considered similar to A; in this case a replaces
A in the bank, if it is also lower in energy. If a is not similar
to A, but its energy is lower than that of the highest-energy
conformation in the bank, B, a replaces B. If neither of the
above conditions holds, a is rejected. The narrowing of the
search regions is accomplished by setting Dcut to a large value
initially (usually one-half of the average pair distance in the
bank), and gradually reducing it as the search progresses.

Special attention is paid to selecting seeds that are far from
each other. One round of the procedure is completed when
there is no seed to select (i.e., all conformations from the bank
have already been used). The round is repeated a predeter-
mined number of times. The greatest advantage of the CSA
method is that it always finds distinct families of low-energy
conformations.

The low-energy united-residue structures are subsequently
converted to all-atom chains in the following steps (25): (i)
positioning the peptide groups between consecutive Cas so as
to achieve optimal alignment of the peptide group dipoles (the
dipole-path method) (24); (ii) further optimization of the
backbone conformations by using the Electrostatically Driven
Monte Carlo (EDMC) method (40–42); (iii) adding the side
chains with partial optimization of their degrees of freedom;
(iv) final refinement of the all-atom chains by using the EDMC
method and exploration of the flexible loop regions with the
use of the Gō-Scheraga algorithm (43, 44). In the all-atom
calculations, the empirical conformational energy program for
peptides (ECEPP)y3 (45–47) force field with the solvation
parameters, optimized from thermodynamic data with fixed
radii (SRFOPT) solvation free energy contribution (48), is
used.

RESULTS AND DISCUSSION

With the UNRES force field, the CSA method successfully
located the native-like conformations of two helical proteins
(the 10–55 residue fragment of protein A, and apo calbindin
D9K—a 75-residue protein) among the low-energy ones. Al-
ternative structures (which were mirror images of the native
folds) were also found. Details of the implementation of the
CSA procedure with the UNRES force field are given else-
where (37). It should be noted that the structures of protein A
or apo calbindin D9K or the class of fold that they represent
were not used in the optimization of the force field.

These successful predictions encouraged us to try blind
predictions of some of the target proteins provided for the
Third Community Wide Experiment on the Critical Assess-
ment of Techniques for Protein Structure Prediction
(CASP3)i. The amino acid sequences of these targets had been
volunteered by experimental structural biologists who were in
the process of determining their three-dimensional structures
by nuclear magnetic resonance (NMR) spectroscopy or x-ray
crystallography. Our group submitted predictions for seven of
these targets. For all five globular proteins, large portions of
contiguous fragments (;60) were predicted within the range
of 4.2–6.8 Å rmsd (rms deviation) of Ca atoms from the
experimental structures. For the two remaining targets, cor-

FIG. 1. Superposition of the crystal (red) and predicted (yellow)
structures of HDEA. The Ca atoms of the fragment included between
residues D25 and I85 were superposed. The rmsd is 4.2 Å. Helices 3,
4, and 5 are indicated as H-3, H-4 and H-5, respectively.
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responding to small synthetic constructs, we had a similar
degree of success. The details of these predictions are dis-
cussed elsewhere (49). At the time of writing this report, the
structures of most of the targets have been made available only
to the participants in CASP3. Additionally, experimental
structures of three of them have been publicly released: T0056
(NMR structure of the N-terminal domain of Escherichia coli
Dnab helicase; PDB entry: 1JWE), T0061 [x-ray structure of
HDEA, E. coli (50); 89 amino acid residues; PDB entry: 1BG8]
and T0079 [x-ray structure of MarA (51); 129 amino acid
residues; PDB entry: 1BL0]. For target T0056, some secondary
structure information was provided to the predictors. A single
model was submitted for T0056, and analysis of this prediction
is reported elsewhere (49). Here, we discuss the performance
of our method on the other two proteins in some detail. For
proteins HDEA and MarA, we submitted four models ranked
according to the UNRES energy, each of them representing a
low-energy family of conformations. The discussion refers to
the lowest-energy conformations (submitted as model 1 for
each protein).

The native structure of HDEA is a five-helix bundle with a
long loop between the third (H-3) and the fourth (H-4) helix
(50) (Fig. 1). The rmsd between the crystal and our predicted
structure (see Table 1) is 4.2 Å for the Ca atoms, when the
structures are superposed from residues D25 to I85 (80% of
the experimentally observed structure), which corresponds to
native helices H-3, H-4, and H-5 (the first nine and the last four
residues are missing in the crystal structure). Our model is
different from the native structure in the packing of the
27-residue N-terminal part (residues 1 to 9 are not observed in
the crystal structure). This N-terminal fragment, which con-
tains H-2, is rotated by approximately 180°, resulting in an
overall rmsd (residues 10–85) of 9.0 Å for the Ca atoms.
Superposing helices H-2 and H-3 (residues W16 to K42), we
obtain an rmsd for the Ca atoms of 2.9 Å (Figure 2), which
means that our predicted structure can be transformed into the
native topology by only a single rotation of the N-terminal
helix—turn–helix motif. It should be noted that the native
protein forms a dimer in the crystal state and has a disulfide

bond linking helices H-2 and H-4, which is missing in our
model. Information about the existence of a disulfide bond was
not provided with the target. HDEA was assessed by the
CASP3 refereesi as one of the most difficult targets for either
homology modeling or threading methods because of its rare
fold. Our prediction was evaluatedi (51) as the most successful
one for this particular target.

Our second prediction pertains to the protein MarA. In the
crystal structure of a complex with DNA (PDB code: 1BL0),
MarA appears as a bipartite helix—turn–helix protein (51). It
contains two domains composed of four helices each (our
simulations resulted in low-energy conformations containing
two domains, a feature that was not known a priori). Our
predicted structure has the same topology of the N-terminal
domain as in the crystal (52) (residues 1–8 are not observed in
the x-ray structure). The rmsd between the predicted and
experimental structures for the fragment containing residues
D9–A69 is 6.0 Å for the Ca atoms (Figure 3). The major
difference between our prediction and the crystal structure is
that the C-terminal domain in the predicted structure is folded
as a mirror image of that part of the native structure. Fur-
thermore, the long helix, H-4, connecting the two domains in
the x-ray structure is significantly kinked in the middle in our
predicted structure. The latter features result in tight packing
of the two domains in our model whereas, in the native
structure, the N- and the C-terminal domains each bind
separately to DNA (and hence are not packed against each
other). This leads to an rmsd between the predicted and native
structures of 11.0 Å for all the observed Ca atoms. Our

FIG. 2. Superposition of the crystal (red) and predicted (yellow) structures of the 27-residue fragment (W16 to K42) of HDEA. The Ca atoms
were superposed with an rmsd of 2.9 Å. Helices 2 and 3 are indicated as H-2, and H-3, respectively.

FIG. 3. Superposition of the crystal (red) and predicted (yellow)
structures of the MarA N-terminal domain. The Ca atoms of residues
D9 to A69 were superposed with an rmsd of 6.0 Å. Helices 1, 2, 3, and
4 are indicated as H-1, H-2, H-3, and H-4, respectively.

Table 1. Summary of results

Protein
(no. of aa)

No. of aa
in x-ray

structure

No. of aa
in a

fragment
Ca rmsd,

Å
Percentage

(predictedyobserved)

HDEA (89) 76 76 (10–85) 9.0 100
61 (25–85) 4.2 80
27 (16–42) 2.9 36

MarA (129) 116 116 (9–124) 11.0 100
61 (9–69) 6.0 53
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calculations were carried out on the MarA protein only in the
absence of the DNA.

CONCLUSIONS

Our results demonstrate that it is possible to predict a signif-
icant portion of protein structure by using only a potential
energy function and a powerful method of conformational
search, without the aid of knowledge-based information pro-
vided by multiple-sequence alignment, secondary-structure
prediction, or fold recognition. The probability of obtaining a
structure within an rmsd of 6 Å for 60–80 residue proteins has
been discussed recently, and a prediction with such an rmsd
was considered to be quite successful, i.e., with a very low
probability of having been obtained by chance (17).

In our view, there are two reasons for this success. First,
although our UNRES force field is approximate, it is based on
physical grounds, both in deriving the energy terms and in its
parameterization (25, 29, 30). Second, the CSA method of
conformational search appears to locate all significant low-
energy structures in real time. This is very important because,
given the approximations inherent in the force field, the
lowest-energy structure may not be considered as the only
possible candidate for the prediction, but a few distinct low-
energy structures should be taken into account. Further
improvement of our approach can be accomplished by sys-
tematic interplay between CSA and UNRES. For example, by
introducing cooperativity between local and backbone elec-
trostatic interactions, it may be possible to extend the appli-
cability of our approach from the largely a-helical proteins
treated here to those including segments of b-structure.

It should also be emphasized that, at the present stage of
development, our approach can treat proteins of up to 140
residues with presently available computer resources in less
than a week of computations. For MarA and HDEA, the
calculations consumed a total of 100 and 70 hr of wall clock
time, respectively, by using 64 processors of the IBM SP2
supercomputer at the Cornell Theory Center.
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