Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1987 Sep 1;166(3):711–724. doi: 10.1084/jem.166.3.711

Influence of the macromolecular form of a B cell epitope on the expression of antibody variable and constant region structure

PMCID: PMC2188690  PMID: 2442288

Abstract

We investigated the influence of the macromolecular form of an epitope on the structure of antibody variable and constant regions expressed by the B cell population participating in an immune response to that epitope. Hybridomas were constructed from strain A/J mice undergoing either primary or secondary immune responses to p-azophenylarsonate conjugated to Brucella abortus (Ars-Bruc). We determined the sequences of the V genes expressed by hybridomas selected on the basis of expression of a single VH gene segment known to encode a large family of anti-Ars antibodies. These sequences were compared with the sequences of V genes expressed by a previously characterized panel of hybridomas isolated in the same way during the primary and secondary responses of A/J mice to Ars-KLH. The repertoire of Ars-specific V domains expressed among primary and secondary hybridomas elicited with these two forms of Ars were similar, as were the differences between primary and secondary V region somatic mutational alteration and affinity for Ars. In contrast, predominant expression of IgG2 anti-Ars antibodies was elicited in the secondary Ars-Bruc response, whereas secondary anti-Ars antibodies elicited with Ars-KLH are predominantly IgG1. Thus, differences in the macromolecular form of Ars clearly influence the isotypic profile of the anti-Ars response, but the expression, diversification, and selection of V domains elicited with this hapten are not greatly affected by such differences. Our results suggest that while isotype regulation is highly perceptive of the macromolecular form of a B cell epitope, V region regulation is primarily influenced by the molecular structure of that epitope.

Full Text

The Full Text of this article is available as a PDF (889.5 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Boersch-Supan M. E., Agarwal S., White-Scharf M. E., Imanishi-Kari T. Heavy chain variable region. Multiple gene segments encode anti-4-(hydroxy-3-nitro-phenyl)acetyl idiotypic antibodies. J Exp Med. 1985 Jun 1;161(6):1272–1292. doi: 10.1084/jem.161.6.1272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bothwell A. L., Paskind M., Reth M., Imanishi-Kari T., Rajewsky K., Baltimore D. Heavy chain variable region contribution to the NPb family of antibodies: somatic mutation evident in a gamma 2a variable region. Cell. 1981 Jun;24(3):625–637. doi: 10.1016/0092-8674(81)90089-1. [DOI] [PubMed] [Google Scholar]
  3. Braley-Mullen H. Regulatory role of T cells in IgG antibody formation and immune memory to type III Pneumococcal polysaccharide. J Immunol. 1974 Dec;113(6):1909–1920. [PubMed] [Google Scholar]
  4. Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
  5. Conger J. D., Lamoyi E., Lewis G. K., Nisonoff A., Goodman J. W. Idiotype profile of an immune response. II. Reversal of the relative dominance of major and minor cross-reactive idiotypes in arsonate-specific T-independent responses. J Exp Med. 1983 Aug 1;158(2):438–451. doi: 10.1084/jem.158.2.438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coutelier J. P., van der Logt J. T., Heessen F. W., Warnier G., Van Snick J. IgG2a restriction of murine antibodies elicited by viral infections. J Exp Med. 1987 Jan 1;165(1):64–69. doi: 10.1084/jem.165.1.64. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Crews S., Griffin J., Huang H., Calame K., Hood L. A single VH gene segment encodes the immune response to phosphorylcholine: somatic mutation is correlated with the class of the antibody. Cell. 1981 Jul;25(1):59–66. doi: 10.1016/0092-8674(81)90231-2. [DOI] [PubMed] [Google Scholar]
  8. Dzierzak E. A., Janeway C. A., Jr, Richard N., Bothwell A. Molecular characterization of antibodies bearing Id-460. I. The structure of two highly homologous VH genes used to produce idiotype positive immunoglobulins. J Immunol. 1986 Mar 1;136(5):1864–1870. [PubMed] [Google Scholar]
  9. Glisin V., Crkvenjakov R., Byus C. Ribonucleic acid isolated by cesium chloride centrifugation. Biochemistry. 1974 Jun 4;13(12):2633–2637. doi: 10.1021/bi00709a025. [DOI] [PubMed] [Google Scholar]
  10. Gridley T., Margolies M. N., Gefter M. L. The association of various D elements with a single-immunoglobulin VH gene segment: influence on the expression of a major cross-reactive idiotype. J Immunol. 1985 Feb;134(2):1236–1244. [PubMed] [Google Scholar]
  11. Griffiths G. M., Berek C., Kaartinen M., Milstein C. Somatic mutation and the maturation of immune response to 2-phenyl oxazolone. Nature. 1984 Nov 15;312(5991):271–275. doi: 10.1038/312271a0. [DOI] [PubMed] [Google Scholar]
  12. Hamlyn P. H., Browniee G. G., Cheng C. C., Gait M. J., Milstein C. Complete sequence of constant and 3' noncoding regions of an immunoglobulin mRNA using the dideoxynucleotide method of RNA sequencing. Cell. 1978 Nov;15(3):1067–1075. doi: 10.1016/0092-8674(78)90290-8. [DOI] [PubMed] [Google Scholar]
  13. Hussain R., Hamilton R. G., Kumaraswami V., Adkinson N. F., Jr, Ottesen E. A. IgE responses in human filariasis. I. Quantitation of filaria-specific IgE. J Immunol. 1981 Oct;127(4):1623–1629. [PubMed] [Google Scholar]
  14. Ishizaka T., Urban J. F., Jr, Ishizaka K. IgE formation in the rat following infection with Nippostrongylus brasiliensis. I. Proliferation and differentiation of IgE-bearing cells. Cell Immunol. 1976 Mar 15;22(2):248–261. doi: 10.1016/0008-8749(76)90027-7. [DOI] [PubMed] [Google Scholar]
  15. Kaartinen M., Griffiths G. M., Hamlyn P. H., Markham A. F., Karjalainen K., Pelkonen J. L., Mäkelä O., Milstein C. Anti-oxazolone hybridomas and the structure of the oxazolone idiotype. J Immunol. 1983 Feb;130(2):937–945. [PubMed] [Google Scholar]
  16. Landolfi N. F., Capra J. D., Tucker P. W. Germ-line sequence of the DH segment employed in Ars-A antibodies: implications for the generation of junctional diversity. J Immunol. 1986 Jul 1;137(1):362–365. [PubMed] [Google Scholar]
  17. Lucas A., Henry C. Expression of the major cross-reactive idiotype in a primary anti-azobenzenearsonate response. J Immunol. 1982 Feb;128(2):802–806. [PubMed] [Google Scholar]
  18. Maizels N., Bothwell A. The T-cell-independent immune response to the hapten NP uses a large repertoire of heavy chain genes. Cell. 1985 Dec;43(3 Pt 2):715–720. doi: 10.1016/0092-8674(85)90244-2. [DOI] [PubMed] [Google Scholar]
  19. Manser T., Gefter M. L. Isolation of hybridomas expressing a specific heavy chain variable region gene segment by using a screening technique that detects mRNA sequences in whole cell lysates. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2470–2474. doi: 10.1073/pnas.81.8.2470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Manser T., Huang S. Y., Gefter M. L. Influence of clonal selection on the expression of immunoglobulin variable region genes. Science. 1984 Dec 14;226(4680):1283–1288. doi: 10.1126/science.6334361. [DOI] [PubMed] [Google Scholar]
  21. Mond J. J., Caporale L. H., Thorbecke G. J. Kinetics of B cell memory development during a thymus "independent" immune response. Cell Immunol. 1974 Jan;10(1):105–116. doi: 10.1016/0008-8749(74)90155-5. [DOI] [PubMed] [Google Scholar]
  22. Mongini P. K., Stein K. E., Paul W. E. T cell regulation of IgG subclass antibody production in response to T-independent antigens. J Exp Med. 1981 Jan 1;153(1):1–12. doi: 10.1084/jem.153.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Moreno C., Esdaile J. Immunoglobulin isotype in the murine response to polysaccharide antigens. Eur J Immunol. 1983 Mar;13(3):262–264. doi: 10.1002/eji.1830130317. [DOI] [PubMed] [Google Scholar]
  24. Perlmutter R. M., Hansburg D., Briles D. E., Nicolotti R. A., Davie J. M. Subclass restriction of murine anti-carbohydrate antibodies. J Immunol. 1978 Aug;121(2):566–572. [PubMed] [Google Scholar]
  25. Perlmutter R. M., Klotz J. L., Bond M. W., Nahm M., Davie J. M., Hood L. Multiple VH gene segments encode murine antistreptococcal antibodies. J Exp Med. 1984 Jan 1;159(1):179–192. doi: 10.1084/jem.159.1.179. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Robbins P. F., Rosen E. M., Haba S., Nisonoff A. Relationship of VH and VL genes encoding three idiotypic families of anti-p-azobenzenearsonate antibodies. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1050–1054. doi: 10.1073/pnas.83.4.1050. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Rothstein T. L., Gefter M. L. Affinity analysis of idiotype-positive and idiotype-negative Ars-binding hybridoma proteins and Ars-immune sera. Mol Immunol. 1983 Feb;20(2):161–168. doi: 10.1016/0161-5890(83)90127-x. [DOI] [PubMed] [Google Scholar]
  28. Rudikoff S., Pawlita M., Pumphrey J., Heller M. Somatic diversification of immunoglobulins. Proc Natl Acad Sci U S A. 1984 Apr;81(7):2162–2166. doi: 10.1073/pnas.81.7.2162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sablitzky F., Wildner G., Rajewsky K. Somatic mutation and clonal expansion of B cells in an antigen-driven immune response. EMBO J. 1985 Feb;4(2):345–350. doi: 10.1002/j.1460-2075.1985.tb03635.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Sanz I., Capra J. D. V kappa and J kappa gene segments of A/J Ars-A antibodies: somatic recombination generates the essential arginine at the junction of the variable and joining regions. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1085–1089. doi: 10.1073/pnas.84.4.1085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Seppälä I., Pelkonen J., Mäkelä O. Isotypes of antibodies induced by plain dextran or a dextran-protein conjugate. Eur J Immunol. 1985 Aug;15(8):827–833. doi: 10.1002/eji.1830150816. [DOI] [PubMed] [Google Scholar]
  32. Sharon J., Gefter M. L., Manser T., Ptashne M. Site-directed mutagenesis of an invariant amino acid residue at the variable-diversity segments junction of an antibody. Proc Natl Acad Sci U S A. 1986 Apr;83(8):2628–2631. doi: 10.1073/pnas.83.8.2628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Sharon R., McMaster P. R., Kask A. M., Owens J. D., Paul W. E. DNP-Lys-ficoll: a T-independent antigen which elicits both IgM and IgG anti-DNP antibody-secreting cells. J Immunol. 1975 May;114(5):1585–1589. [PubMed] [Google Scholar]
  34. Sikder S. K., Akolkar P. N., Kaladas P. M., Morrison S. L., Kabat E. A. Sequences of variable regions of hybridoma antibodies to alpha (1----6) dextran in BALB/c and C57BL/6 mice. J Immunol. 1985 Dec;135(6):4215–4221. [PubMed] [Google Scholar]
  35. Slack J., Der-Balian G. P., Nahm M., Davie J. M. Subclass restriction of murine antibodies. II. The IgG plaque-forming cell response to thymus-independent type 1 and type 2 antigens in normal mice and mice expressing an X-linked immunodeficiency. J Exp Med. 1980 Apr 1;151(4):853–862. doi: 10.1084/jem.151.4.853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Smith F. I., Tesch H., Rajewsky K. Heterogeneous and monoclonal helper T cells induce similar anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody populations in the primary adoptive response. II. Lambda light chain dominance and idiotope expression. Eur J Immunol. 1984 Feb;14(2):195–200. doi: 10.1002/eji.1830140216. [DOI] [PubMed] [Google Scholar]
  37. Stohrer R., Kearney J. F. Fine idiotype analysis of B cell precursors in the T-dependent and T-independent responses to alpha 1-3 dextran in BALB/c mice. J Exp Med. 1983 Dec 1;158(6):2081–2094. doi: 10.1084/jem.158.6.2081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. TABACHNICK M., SOBOTKA H. Azoproteins. II. A spectrophotometric study of the coupling of diazotized arsanilic acid with proteins. J Biol Chem. 1960 Apr;235:1051–1054. [PubMed] [Google Scholar]
  39. Tesch H., Smith F. I., Müller-Hermes W. J., Rajewsky K. Heterogeneous and monoclonal helper T cells induce similar anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody populations in the primary adoptive response. I. Isotype distribution. Eur J Immunol. 1984 Feb;14(2):188–194. doi: 10.1002/eji.1830140215. [DOI] [PubMed] [Google Scholar]
  40. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Tittle T. V., Rittenberg M. B. Distinct subpopulations of IgG memory B cells respond to different molecular forms of the same hapten. J Immunol. 1978 Sep;121(3):936–941. [PubMed] [Google Scholar]
  42. Tonnelle C., Rocca-Serra J., Moulin A., Moinier D., Fougereau M. V kappa gene family in (Glu60 Ala30 Tyr10)n (GAT)-specific antibodies that express CGAT (or pGAT) public idiotypic specificities. Protein and mRNA sequencing of eight monoclonal V kappa chains. J Exp Med. 1983 Nov 1;158(5):1415–1427. doi: 10.1084/jem.158.5.1415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Williams K. R., Claflin J. L. Clonotypes of anti-phosphocholine antibodies induced with Proteus morganii (Potter). II. Heterogeneity, class, and idiotypic analyses of the repertoires in BALB/c and A/HeJ mice. J Immunol. 1982 Feb;128(2):600–607. [PubMed] [Google Scholar]
  44. Woodland R., Cantor H. Idiotype-specific T helper cells are required to induce idiotype-positive B memory cells to secrete antibody. Eur J Immunol. 1978 Aug;8(8):600–606. doi: 10.1002/eji.1830080812. [DOI] [PubMed] [Google Scholar]
  45. Wysocki L. J., Manser T., Gridley T., Gefter M. L. Molecular limitations on variable-gene junctional diversity. J Immunol. 1986 Dec 15;137(12):3699–3701. [PubMed] [Google Scholar]
  46. Wysocki L., Manser T., Gefter M. L. Somatic evolution of variable region structures during an immune response. Proc Natl Acad Sci U S A. 1986 Mar;83(6):1847–1851. doi: 10.1073/pnas.83.6.1847. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES