
MOLECULAR CLONING AND CHROMOSOMAL
LOCALIZATION OF HUMAN MEMBRANE

COFACTOR PROTEIN (MCP)
Evidence for Inclusion in the Multigene Family of

Complement-Regulatory Proteins

BY DOUGLAS M. LUBLIN,IS M. KATHRYN LISZEWSKI,*
THEODORE W POST,'S MIGUEL A. ARCE,t MICHELLE M. Lie BEAU,11

MATTHEW B. REBENTISCH,1 RICHARD S. LEMONS,1
TSUKASA SEYA,* ANDJOHN P ATKINSON*S

From the *Howard Hughes Medical Institute Laboratories and Departments of Pathology and
SMedicine, Washington University, St. Louis, Missouri 63110; the ~joint Section of

HematologylOncology, University of Chicago, Chicago, Illinois 60637; and the (Department of
Pediatrics, University of Utah Medical Center, Salt Lake City, Utah 84132

Control of the complement system is essential to prevent damage to autologous
tissue. Multiple proteins have been described that serve this regulatory function.
One group is focused at the C3 convertase stage ofthe complement cascade, providing
critical control ofthe deposition ofC3 that can lead to clearance or lysis ofthe marked
particle or cell . This group includes serum (C4-binding protein [C4bp]t and factor
H [H]) and membrane proteins (C3b receptor [CR1], Cad/Epstein-Bare virus receptor
[CR2], decay-accelerating factor [DAF], and membrane cofactor protein [MCP]).
Each of these proteins binds to fragments o£ C3 or C4, and may block formation
of the C3 convertase or serve as a cofactor for its proteolytic inactivation by serum
factor I (reviewed in references 1, 2) . This large number of proteins highlights the
importance of regulating complement activity. Furthermore, it has been suggested
that this might also be serving as a primitive self/non-self immunologic recogni
system (3) .
cDNAs for all ofthese proteins except MCP have been cloned and sequenced (4-12).

This has revealed a common structural motif-, each of the proteins is composed of
multiple repeats of an x+60-amino acid consensus unit composed of conserved cys,
pro, gly, trp, leu/ile/val, and tyr/phe residues (reviewed in reference 13) . The genes
for these five proteins have been localized to the long arm of human chromosome
1, band lg32 (14-17) . Thus, these genes form a multigene family encoding complement-
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regulatory or receptor proteins, which we have designated the regulator of comple-
ment activation (RCA) gene cluster. Their common structural elements and close
genetic linkage suggest that they might all have arisen from an ancestral C3-binding
protein .
MCP was first identified in this laboratory by iC3/C3b affinity chromatography

on surface-labeled peripheral blood cells (and named gp 45-70 to describe its Mr
heterogeneity on SDS-PAGE) (18) . We subsequently purified the protein from human
mononuclear cell lines and demonstrated that it possesses cofactor activity but no
decay-accelerating function (19) . We have found that MCP is present on human T
and B lymphocytes, granulocytes, monocytes, platelets, endothelial cells, epithelial
cells, and fibroblasts (18, 20-22) . Additionally, MCP occurs as a characteristic dou-
blet with Mr of 63 and 58 x 10 3 on most of these cells, with a polymorphism gov-
erning the expression of these two bands (23) . C3b-binding molecules of similarMr
have been identified on rabbit alveolar macrophages (24) and on murine cells (25),
but their relationship to MCP has not been established .

Because ofits wide tissue distribution and cofactor activity, we have proposed that
MCP is an important membrane protein for protecting host cells from damage by
complement (3, 19, 22) . Its C3b binding and cofactor activity suggest that it should
belong to the complement-regulatory multigene family, but structural homology and
genetic linkage are necessary to place it within that group. In this report, we present
data to establish that position .

Materials and Methods
Protein Purification and NHzTerminal Sequencing.

	

MCP protein was purified from the human
T cell line HSB2 by our previously reported procedure (19) using NP-40 solubilization fol-
lowed by sequential chromatography on chromatofocusing, hydroxylapatite, C3 (methyla-
mine)$epharose, and Mono Q columns. Approximately 20 Rg of protein was then run on
a SDS-10% polyacrylamide gel, electroeluted, and electrodialyzed as described (26) . This
material was divided in half and subjected to automated Edman degradation on polybrene-
coated glass filters in an Applied Biosystems, Inc . (Foster City, CA) model 470A sequencer
with a model 120A PTH analyzer.

Construction and Screening of cDNA Library.

	

RNA was isolated from the U937 cell line by
the quanidinium isothiocyanate/CsCl method (27) . Poly(A)' RNA was purified by
oligo(dT)-cellulose chromatography (28). A cDNA library was prepared from 5 ug poly(A)'
RNA by the method of Gubler and Hoffman (29) . cDNA inserts (size-selected >1.0 kb by
agarose gel electrophoresis) were ligated into Xgt10 arms, packaged, and plated on C600 hf1A
Escherichia coli. The library consisted of 2 .0 x 106 recombinants .

The oligonucleotide probe was synthesized on an Applied Biosystems, Inc . DNA synthesizer
(model 380A) bythe phosphoramidite method (30) . Failure sequences were removed by PAGE
and the probe was end-labeled with y_[32p]ATP. Duplicate plaque lifts on nitrocellulose filters
were hybridized overnight at 37°C in 6 x SSC (1 x SSC = 0.15 M sodium chloride/0.015
M sodium citrate)/5 x Denhardt's solution (1 x Denhardt's solution = 0.02% BSA/0.02 %
Ficoll/0 .02 % polyvinylpyrrolidone)/0 .05 M sodium phosphate, pH 6.8, containing 100 ug
sonicated herring sperm DNA and 5 x 105 cpm labeled probe per milliliter. The filters were
washed two times for 30 min with 2 x SSC/0.1 % SDS at room temperature. Autoradiographs
were prepared at -70°C on Kodak X-Omit XAR film with Cronex intensification screens
(Dupont Co., Wilmington, DE) . Plaques yielding positive signals in duplicate were plaque
purified by standard techniques (31) .
DNA Sequence Determination .

	

Phage DNA was prepared and the cDNA inserts were sub-
cloned into the Eco RI site of pUC-19 by standard techniques (31) . DNA sequencing was
performed by dideoxy-chain termination (32) using alkaline-denatured, double-stranded DNA
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templates (33) and T7 polymerase (34 ; U. S. Biochemical Corp., Cleveland, OH). Sequencing
primers (used at -15:1 molar ratio to DNA templates) included forward and reverse M13
primers (New England Biolabs, Beverly, MA), as well as synthesized oligonucleotides corre-
sponding to already sequenced regions of the cDNA. Both strands were sequenced in their
entirety.

Northern Blots.

	

Total RNA, prepared as described above, was separated on formaldehyde/1%
agarose gels and transferred to nylon filters as described (31) . These were hybridized over-
night at 42°C in 6x SSCAx Denhardt's solution/12 .5% dextran sulfate/0.1% SDSJ10 mM
Tris, pH 7.6/50% formamide containing 100 jig sonicated herring sperm DNA and 106 cpm
labeled probe per milliliter. cDNA probes were labeled with a-[ 32P]dCTP by random hex-
anucleotide priming (35) . Hybridized filters were washed twice for 30 min at 56°C in 0.2 x
SSC/0.1% SDS and autoradiographs were prepared .

Somatic Cell Hybrids.

	

Somatic cell hybrids were generated by polyethylene glycol 1000-
mediated fusion of human VA2 or IMR90 fibroblasts to Chinese E36 or Syrian BHK-B1
hamster cells that were mutant in their hypoxanthine-phosphoribosyltransfemse or thymi-
dine kinase genes, respectively, permitting hybrid cell selection with HAT. A panel for map-
ping studies was selected from a series of hybrids that contain the entire rodent genome but
that have selectively lost different combinations of human chromosomes . The human chro-
mosomal composition ofthe hybrid clones was determined by screening for up to 34 gene-en-
zyme systems (36), and in selected cases by complete cytogenetic analyses using trypsin-Giemsa
banding (37) . High molecular weight DNA for Southern blots and cell homogenates for iso-
zymes were prepared from the same passages ofcells. DNA from the hybrid clones was digested
to completion with Eco RI or Hind III restriction endonucleases (New England Biolabs),
fractionated by electrophoresis through an agarose gel, transferred by Southern blotting to
nylon membranes, and hybridized with a 32P-labeled MCP cDNA probe prepared by the
random hexanucleotide priming method to a specific activity of 1-3 x 109 dpm/pg.

In Situ Chromosomal Hybridization.

	

Human metaphase cells prepared from PHA-stimulated
peripheral blood lymphocytes were hybridized with 3H-labeled MCP cDNA probes. Radio-
labeled probes were prepared by nick translation of the entire plasmid with all four 3H-
labeled deoxynucleoside triphosphates to a specific activity of 108 dpm/pg. In situ hybridi-
zations were performed as described previously (38) . Metaphase cells were hybridized at 4.0
and 8.0 ng of probe per milliliter of hybridization mixture. Autoradiographs were exposed
for 11 d .

Results
cDNA Cloning.

	

MCPprotein was purified from the HSB2 T cell line as described
in Materials and Methods and subjected to automated Edman sequencing, yielding
the N112-terminal sequence through position 24 XEEPPTFEAMELIGKPKPYY
XIXE (standard single-letter codes ; X, undetermined) . A 64-fold degenerate 17-
mer antisense oligonucleotide probe based on amino acid residues 7-12 was used
to screen 1.3 x 105 recombinant plaques from the U937 cDNA library. One clone
giving a positive hybridization signal in duplicate was plaque purified, and the 1.5kb
insert was subcloned into the Eco RI site of pUC-19.
DNA Sequence.

	

TheDNA sequence ofthis cDNA clone was determined by dideoxy-
chain termination sequencing of both strands and contains a long open reading frame
encoding 384 amino acids beginning with an initiation methionine codon (Fig . 1) .
The first 34 amino acids show the typical structure for a signal peptide (39) and
would predict the signal peptide cleavage at the residue indicated in Fig . 1 . The suc-
ceeding 24 amino acids exactly match the NH2-terminal protein sequence as de-
termined above for MCP, confirming the identification of this clone . This cDNA
encodes a polypeptide (without signal peptide) of 39 kD, which agrees with the size
ofthe MCP precursor detected in biosynthetic studies (40) . Furthermore, there are
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Nucleotide and derived amino acid sequences ofMCP cDNA clone. The complete
nucleotide sequence of the MCPcDNA is displayed, numbered from the most 5' nucleotide . The
derived amino acid sequence, numbered from the first amino acid of the mature protein, is shown
below using single-letter codes, with an asterisk denoting the stop codon. Three potential N-
glycosylation sites are marked with arrows, an S/T-rich region is marked with a thin underline,
the hydrophobic transmembrane domain is marked with a heavy underline, and potential poly-
adenylation signals are boxed. These sequence datahave been submittedto the EMBL/GenBank
Data Libraries under accession number Y00651 .

three potential N-linked glycosylation sites, and multiple potential 0-linked glycosy-
lation sites in a ser/thr-rich region (12/25 residues) between amino acids 253-277 ;
this is consistent with the oligosaccharide structure of MCP, which contains 2-3
N-linked oligosaccharide units and multiple 0-linked units (40) . Aminoacids 278-294
represent ashort region ofunknown function . Hydrophobicity analysis (41) demon-
strates a 23-amino acid region typical for a transmembrane hydrophobic domain
at amino acids 295-317, followed by a 33-amino acid region corresponding to a
cytoplasmic tail . The 335-bp 3'-untranslated region ends in a 16-bp poly(A) track,

P K I K N G K H T F S E V E V F E Y L D A V T

GGACCAGATCGT'1RTCACTpA~T1TAT1G1GG1GACAA

Y S C D P A P

AAAGIG

161
718

G P D P F S L I G E S T I Y C G D N S V W S R A A P E C K V 191
GTCAAATGTCGTTPCGGTAGTCGAAAl1TGGAAA7ICAGTATCAGGA'FFiGGAAAMAATTTTACTIIGAAGGAGGTTATGTITGAA 808
V K C R F P V V E N G K Q I S G F G K K F Y Y K A T V N F E 221

1GCGATAA000TTrITACCTCGATGCCAGCGAGCAA Al1GGTACIRGGGA AAA 898
C D K G F Y L D G S D T I V C D S 11 S T W D P P V P K C L K 251

A
G'IGTCGACITCiTCGCrACAAAATC1'C AGGCCTACIT TTATCCAGGA 988
V S T S S T T K S P A S S A S G P R P T Y K P P V S N Y P G 281
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CfGTTGGTAAACCAAAl1000TACPATGAG71TlGGTGAAOGIIGPAG7ITTATAAGTGFAAAAAAGGIITACTIYTATATACCI'CCTCTIGCC 268
L I G K P X P Y Y E I G E R V D Y K C K K G Y F Y I P P L A 41

ACCCATACTATITGTGATCGGAATGTAGTGGCPAtt`iG7rR'CAGTGACCCYT6ITATAGAGAAAGTGTCGTATATACGGGTCCP 358
T H T I C D R N H T W L P V S D D A C Y R E T C P Y I R D P 71

A
TTAAATGGCCAAGCAGTCCCiGCAAAIGGGACITACGAGTTPGCITATCAGATGCACIRTATTPGTINI'1GA000TI'ATTACiTAATrGGT 448
L N G Q A V P A K G T Y E F G Y Q N R F I C N R G Y Y L I G 101

A
CAAGAAATl'CTATATr("1GAACRTAAAGG71TCJ1GTAGCAATCrGGA000GTAIIGC.000CAATA~ACACGCYT 538
E E I L Y C E L K G S V A I W S G K P P I C E K V L C T P P 131

CCAAAAATAA1111AATGGAAAAGGCCTiTAG1GAAGTAGAAGPATTlGAG'FATC1RG11TGGC~FAACRTATAG'iTG1CiATCCTGGCCF 628
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FIGURE 3 .

	

Northern blot analysis ofMCP RNA. RNA was isolated from
cell lines, and 10 wg was separated by electrophoresis, transferred to nylon
filters, and hybridized with 32p-labeled MCP cDNA. The autoradiograph
shows RNA from Raji (lane 1), U937 (lane 2), and HeLa (lane 3) cells .
Migration ofthe 28Sand 18S bands is indicated. In addition tothe major
MCP species at 4 .2 kb, a minor band at 4 .8 kb is also present,

preceded 17 and 29 by upstream by the sequences AATGAA andAATATA, respec-
tively, variants on the consensus polyadenylation signal AATAAA (42) .
The majority of the encoded MCP protein consists of four contiguous domains

of -60 amino acids, starting at the NH2 terminus, which match the consensus se-
quence found in the multigene family of complement-regulatory proteins (Fig . 2) .
These four domains show 18-35% amino acid homology to each other (29-44%
allowing conservative amino acid substitutions), similar to the degree of homology
found between these repeat units in other proteins of this family (13) .

Northern Blot Analysis .

	

Todetermine the size (and number) ofmRNA species en-
coding MCP, Northern blots of RNA from Raji, U937, and HeLa cell lines were
hybridized with the 32P-labeled MCP cDNA probe. The autoradiograph (Fig . 3)
shows the main MCPmRNA at 4.2 kb in the latter two cells, which express MCP
protein. Raji cells, which possess no detectable MCP protein, do not show a band
on the Northern blot . This 1,546-bp cDNA clone contains 5'-untranslated sequence
and ends in a poly(A) track. The main 4.2-kb MCP message either possesses a very
long 5'-untranslated region, or, alternatively and more likely (see Discussion), this

FIGURE 4 .

	

Hybridization of MCP-specific probe
toEco RI-digested DNA from hamster x human
somatic cell hybrid clones . Hamster and human
DNAs are in lanes H and I, respectively. DNA
from hybrid clones containingchromosome 1 are
in lanes B, D, and F. DNA from hybrid clones
lacking chromosome 1 are in lanes A, C, E, and
G . Hybridization and Southern blotting were per-
formed as described in Materials and Methods .
Sizes are shown in kilobases .
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TABLE I
Synteny Test of MCP Gene and Human Chromosomes in

Rodent x Human Hybrid Clones

Somatic cell hybrids were scored forthe presence ( + ) or absence ( - ) of specific
human chromosomes by assaying gene-enzyme systems and for the presence
or absence of MCP coding sequences by Southern blot hybridization.

cDNA and the 4.2-kb mRNA species represent products of differential polyadenyla-
tion or splicing .

Chromosomal Localization .

	

Having found structural homology to the functionally
similar complement-regulatory proteins, we next wished to ascertain if there was
also a genetic linkage to this group. Therefore, we screened hamster-human somatic
cell hybrids for concordance of the MCP gene and specific human chromosomes .

Southern blots of Eco RI and Hind III digests of DNA from hamster-human
somatic cell hybrids were hybridized with the 12P-labeled MCP cDNA (a represen-
tative blot is shown in Fig. 4) . This identified several Eco RI and Hind III fragments
from human DNA. The full panel of somatic cell hybrids was analyzed for discor-
dance of the MCP gene and specific human chromosomes, i.e., percent asynteny
(Table I) . The MCP gene is located on chromosome 1 ; all other possible chromo-
some localizations were associated with a minimum of six discordant clones .

To confirm the association of MCP with chromosome 1 (using an independent
technique) and to sublocalize the MCP gene on chromosome 1, in situ hybridiza-
tions to normal human metaphase chromosomes were performed using two different

Human
chromo-
some +/+

MCP gene/human chromosome
+ / - - / + - / - Asynteny

1 17 0 0 16 0
2 6 8 2 13 34
3 0 6 1 5 58
4 4 5 2 8 37
5 8 6 10 5 58
6 10 5 11 4 53
7 2 7 1 4 57
8 6 8 10 7 58
9 12 3 9 6 40
10 4 3 4 7 39
11 10 1 11 3 48
12 7 4 10 8 48
13 8 3 10 3 54
14 10 4 10 7 45
15 7 7 9 5 57
16 7 1 6 1 47
17 13 1 12 1 48
18 1 6 0 7 43
19 7 7 10 5 59
20 5 4 7 4 58
21 1 6 0 4 55
22 0 6 0 5 55
X 4 2 10 5 57
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FIGURE 5 .

	

Distribution of labeled sites on
chromosome 1 in 100 normal metaphase cells
from PHA-stimulated peripheral blood lym-
phocytes that were hybridized with the full-
length MCP cDNA (A) or MCPBSCR cDNA
(B) probe . The MCPBSCR probe is a 650-
bp fragment of the full-length MCP cDNA
that lacks any ofthe sequence encoding the
60-amino acid short consensus repeat units .
The labeled sites observed in these hybridi-
zations were clustered at lg31-41 ; the largest
cluster of grains was located at lg32.

MCP probes . These hybridizations resulted in specific labeling of a single human
chromosome, namely chromosome 1. All hybridizations were repeated twice and
they all gave similar results. In hybridizations performed with the full-length MCP
cDNA probe, we observed specific labeling of the distal long arm of chromosome
1. Of 100 metaphase cells examined from this hybridization, 37 (37%) were labeled
on region q3 or q4, bands q31-41, of one or both chromosome 1 homologs (1b <
0.0005) . The distribution of labeled sites on chromosome 1 is illustrated in Fig. 5
A. A total of 71 grains were observed on this chromosome; of these, 51 (72%) were
clustered at bands q31-41 and represented 20.6% (51/248) of all labeled sites . The
largest cluster of grains was observed at lg32 .
The MCP clone contains four copies ofthe homologous repeat unit characteristic

of the Cab-binding multigene family. Thus, this probe may crosshybridize to the
genes encoding other C3b-binding proteins, which have also been localized to this
region of chromosome 1. To eliminate the possibility that the specific labeling of
lg31-41 observed in this hybridization was due to crosshybridization to homologous
repeat units of related genes, we hybridized the MCPBSCR probe to normal
metaphase cells . The latter probe is a 650-bp fragment ofthe full-length MCPcDNA
clone starting at the Sat I site at nucleotide 901, and does not contain the repeat
units . In this case, also, we noted specific labeling only of chromosome 1. We exam-
ined 100 metaphase cells, and the distribution of labeled sites on this chromosome
is illustrated in Fig. 5 B. Of these, 25 cells were labeled on region q3 or q4 (bands
q31-41) of one or both chromosome 1 homologs. A total of 41 grains was observed
on this chromosome; of these, 29 (71%) were clustered at bands lg31-41 and repre-
sented 17.1% (29/170) of all labeled sites (fi < 0.0005) . The largest cluster of grains
was observed at lg32 . Thus, the MCP gene is localized to human chromosome 1,
at bands q31-41 .

Discussion
Previous work from this laboratory had shown that purified MCP possesses cofactor

activity for inactivation of C3b or C4b by serum factor I (19) . This would allow
MCP to regulate the complement system at the level of the C3 convertases, a role
shared by other members of the family of complement-regulatory proteins: CRl,
CR2, DAF, C4bp, and factor H. The present report of the complete primary struc-
ture and chromosomal localization of human MCP establishes that it is indeed a
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member of this multigene family, sharing structural homology and genetic linkage
as well as functional similarity to the other proteins .
The oligonucleotide probe used to identify the MCP cDNA clone was based on

amino acid residues 7-12 of purified MCP The identification of the clone was
confirmed with 15 other amino acids surrounding this region . In addition, the poly-
peptide encoded by this cDNA clone matches several other properties for MCP: (a)
typical structure for a membrane protein, with a signal peptide at the NH2 ter-
minus, and aregion ofhydrophobic amino acids near the COOH terminus to serve
as the transmembrane domain ; (b) overall size of 39 kD, in agreement with the
precursors (identified by anti-MCP antibody) seen in biosynthetic labeling experi-
ments (40) ; (c) three sites for N-linked glycosylation and multiple sites for 0-linked
glycosylation, consistent with the oligosaccharide structure of MCP (40) ; and (d)
tandemly arranged NH2-terminal homologous consensus repeat units characteristic
of other C3b/C4b-binding proteins . Taken together, these data indicate that this
cDNA clone encodes the full-length MCP polypeptide.
The most striking structural feature of the derived protein sequence for MCP is

the presence at the NH2 terminus of four contiguous repeats of a 60-amino acid
consensus sequence that has been found in other members of the complement-
regulatory multigene family as well as in other complement and noncomplement
proteins . This is the first structural data that links MCP to the other functionally
related complement-regulatory proteins . However, knowledge of the primary struc-
ture of this whole group of proteins has not shed light on the ligand binding site
or the functional domain for cofactor or decay-accelerating activity. Interestingly,
comparison of the different repeat units of MCP to the other proteins shows that
the highest homology match of repeat units two and three of MCP is to these same
repeat units in CRl, C4bp, and H, as well as in C2 (43) and factor B (44, 45) of
the major histocompatibility complex, but to repeat units three and four of DAR
Overall, this would support speculation that these genes evolved from an ancestral
C3-binding protein that already possessed at least two repeat units . Genomic cloning
and sequence analysis will shed further light on this question in terms of the in-
tron/exon structure of the repeat units and a comparison of the intron sequences.
Northern blot analysis of RNA from U937, HeLa, and Raji cells shows a major

species of4.2 kb in the first two cell lines, but no MCPmRNA apparent in the latter.
This correlates with the expression of MCP protein in these cells. The discrepancy
between the size ofthe mRNA andthecDNA clone must reflect additional untrans-
lated sequence at either the 5' or 3' end, or both . The difference of 2 kb would be
unusually large for a 5'-untranslated sequence, suggesting that this clone uses an
alternative, and earlier, polyadenylation signal than the major mRNA species. 17
and 29 nucleotides upstream of the poly(A) track are sequences (AATGAA and
AATATA, respectively) that support polyadenylation at levels <10% of wild type
(AATAAA) (42) . Furthermore, the construction of the library with an oligo (dT)
primer and screening with a probe corresponding to the NH2 terminus of the pro-
tein would bias selection of clones toward an earlier, minor polyadenylation signal .
This does not exclude the additional possibility of alternative RNA splicing, per-
haps leading to differences both in parts of the coding region as well as in the 3'-
untranslated region . Indeed, two forms ofMCP are found in most cells (18, 23, 40).
Analysis of additional cDNA clones will be needed to elucidate this matter.
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The multigene family of complement-regulatory proteins was first established by
our family studies that, by following protein polymorphisms, showed close genetic
linkage of CR1, C4bp, and H (14) . Subsequently, another group used in situ chro-
mosomal hybridization with aCRI cDNA probe to map CR1 (and hence the linkage
group of CR1/C4bp/H) to human chromosome 1, band lg32 (15) . These investigators
also mapped CR2 to this location (15), and we and others have mapped the DAF
gene to this same location (16, 17). In the present study, we have used somatic cell
hybrid and in situ hybridization techniques to map MCP to human chromosome
1, band lg32. Because of the possibility of crossreaction of the MCPprobe to homol-
ogous sequences in the other genes, the in situ hybridizations were repeated with
aprobe that encodes none of the consensus repeat sequences; the chromosomal lo-
calization wasconfirmed. Thus, the multigene family ofcomplement-regulatory pro-
teins has been enlarged, now consisting of six members: CRI, CR2, DAF, MCP,
C4bp, and H.
Thelarge number of related proteins in this multigene family might reflect speciali-

zation of these regulatory functions: membrane vs . serum proteins, classical vs . al-
ternative pathway control, and immune complex processing vs . protection of host
cells from autologous complement damage. In this regard, MCP and DAF seem
to form apair in serving the latter protective function . MCP and DAF show a very
similar structure (Fig . 6) : membrane proteins with four NH2-terminal consensus
repeat units, followed by aser/thr-rich region (probable site ofheavy 0-linked glycosy-
lation), and then a hydrophobic domain. This latter domain is replaced by a
glycophospholipid membrane anchor in DAF (46, 47), but forms a transmembrane
polypeptide anchor followed by a cytoplasmic domain in MCP DAF functions in-
trinsically to protect host cells from amplification ofthe complement cascade on their
surfaces (48, 49); the similar size, structure, and properties of MCP suggest that
it might also function in this role (3). Indeed, DAF and MCP have complementary
functions for preventing complement amplification, the former possessing decay-
accelerating properties and the latter cofactor activity. Expression of either MCP,
DAF, or both in transfected cells will allow the role ofthese proteins to be addressed.

Summary
Membrane cofactor protein (MCP), a regulatory molecule of the complement

system with cofactor activity for the factor I-mediated inactivation ofC3b andC4b,
is widely distributed, being present on leukocytes, platelets, endothelial cells, epi-



thelial cells, and fibroblasts . MCP was purified from a human T cell line (HSB2)
and the NH2-terminal 24-amino acid sequence obtained by Edman degradation .
An oligonucleotide probe based on this sequence was used to identify a clone from
a human monocytic (U937) cDNA library. Nucleotide sequencing showed a 43-bp
5'-untranslated region, an open reading frame of 1,152 bp, and a 335-bp 3'-untranslated
region followed by a 16-bp poly(A) track. The deduced full-length MCP protein
consists of a 34-amino acid signal peptide and a 350-amino acid mature protein .
The protein has, beginning at the NH2 terminus, four -60-amino acid repeat units
that match the consensus sequence found in a multigene family of complement regula-
tory proteins (C3b-receptor or CRl, C3d-receptor or CR2, decay-accelerating factor,
C4-binding protein, and factor H), as well as several other complement and non-
complement proteins . The remainder ofthe MCP protein consists of25 amino acids
that are rich in serine and threonine (probable site of heavy O-linked glycosylation
of MCP), 17 amino acids ofunknown significance, and a 23-amino acid transmem-
brane hydrophobic region followed by a 33-amino acid cytoplasmic tail . The MCP
gene was localized to human chromosome 1, bands lg31-41, by analysis of human
x rodent somatic cell hybrid clones and by in situ hybridization . This same genetic
region contains the multigene family of complement-regulatory proteins, which is
thereby enlarged to include the functionally and structurally related MCP

We thank Drs . V. Michael Holers and Laura Ballard for useful discussions, Joseph Leykam
for NH2-terminal sequence analysis, and Avtar Khalsa for expert secretarial assistance .

Received for publication 1 March 1988.

LUBLIN ET AL .

	

19 1

References
1 . Holers, V. M., J . L . Cole, D. M. Lublin, T Seya, and J . P Atkinson. 1985 . Human

C3b- and C4b-regulatory proteins : a new multi-gene family. Immunol Today. 6:188 .
2 . Ross, G. D., andM. E. Medof. 1985. Membrane complement receptors specific for bound

fragments of C3 . Adv. Immunol. 37:217 .
3 . Atkinson, J . P, and T Farries . 1987 . Separation of self from non-selfin the complement

system . Immunol. Today. 8:212 .
4 . Chung, L . P, D . R . Bentley, and K. B . M. Reid. 1985 . Molecular cloning and character-

ization of the cDNA for C4 binding protein, a regulatory protein ofthe classical pathway
of human complement . Biochemistry. 256:133 .

5 . Kristensen, T, R. A. Wetsel, and B . F. Tack. 1986. Structural analysis ofhuman comple-
ment protein factor H: homology to C4 binding protein, 02-glycoprotein 1, and the Ba
fragment of B . ,J. Immunol. 136:3407 .

6 . Ripoche, J., A. J . Day, T J . R. Harris, and R. B . Sim . 1988. The complete amino acid
sequence of human complement factor H . Biochem J. 249:in press .

7 . Wong, W'W., L . B. Klickstein, J . A . Smith, J . H . Weis, and D. T Fearon . 1985 . Identifica-
tion of a partial cDNA clone for the human receptor for the complement fragments
C3b/C4b. Proc. Nad. Acad. Sci. USA . 82:7711 .

8 . Klickstein, L . B ., W. W. Wong, J . A . Smith, J . H . Weis, J . G. Wilson, and D. T Fearon.
1987 . Human C3b/C4 receptor (CRI) . Demonstration of long homologous repeating
domains that are composed ofthe short consensus repeats characteristic ofC3/C4 binding
proteins. J. Exp. Med. 165:1095 .

9 . Holers, V. M., D. D. Chaplin, J . F Leykam, B. A . Gruner, V. Kumar, and J . P At-
kinson. 1987 . Human complement C3b/C4b receptor (CR1) mRNA polymorphism that



192

	

CLONING OF COMPLEMENT MEMBRANE COFACTOR PROTEIN

correlates with the CRl allelic molecular weight polymorphism . Proc. Nad. Acad. Sci. USA.
84:2459.

10 . Weis, J . J ., D. T. Fearon, L. B. Klicktein, W W Wong, S. A. Richards, A. D. B . Kops,
J . A. Smith, and J . H . Weis . 1986 . Identification of a partial cDNA clone for the
C3d/Epstein-Barr virus receptor of human B lymphocytes : homology with the receptor
for fragments C3b and C4b of the third and fourth components of complement . Proc.
Nad. Acad. Sci. USA . 83:5639 .

11 . Medof, M. E., D. M. Lublin, V. M. Holers, D. J . Ayers, R . R . Getty, J . F. Leykam,
J . P Atkinson, and M. L . Tykocinski . 1987 . Cloning and characterization of cDNAs
encoding the complete sequence ofdecay-accelerating factor ofhuman complement . Proc.
Natl. Acad. Sci. USA . 84:2007 .

12 . Caras, I . W., M. A . Davitz, L . Rhee, G. Weddell, D . W Martin, Jr., and V. Nussen-
zweig . 1987 . Cloning ofdecay-accelerating factor suggests novel use ofsplicing to generate
two proteins . Nature (Lond). 325:545 .

13 . Reid, K . B. M., D. R . Bentley, R . D. Campbell, L . P Chung, R. B . Sim, T. Kristensen,
and B . F Tack . 1986 . Complement system proteins which interact with C3b or C4b.
Immunol. Today. 7 :230 .

14 . Rodriguez de Cordoba, S., D. M. Lublin, P Rubinstein, andJ . P. Atkinson . 1985 . Human
genes for three complement components that regulate the activation of C3 are tightly
linked . f. Exp. Med. 161:1189 .

15 . Weis, J . H., C . C . Morton, G. A. P Bruns, J . J . Weis, L . B . Klickstein, W. W. Wong,
and D. T Fearon . 1987 . A complement receptor locus : genes encoding C3b/C4b receptor
and C3d/Epstein-Barr virus receptor map to lg32 . J. Immunol. 138:312 .

16 . Lublin, D. M., R . S . Lemons, M. M. LeBeau, V. M. Holers, M. L. Tykocinski, M. E .
Medof, and J . P Atkinson . 1987 . The gene encoding decay-accelerating factor (DAF)
is located in the complement-regulatory locus on the long arm of chromosome 1 .J. Exp.
Med. 165:1731 .

17 . Rey-Campos, J., P. Rubinstein, and S. Rodriguez de Cordoba . 1987 . Decay-accelerating
factor : genetic polymorphism and linkage to the RCA (regulator ofcomplement activa-
tion) gene cluster in humans. J. Exp. Med. 166:246 .

18 . Cole, J . L ., G. A . Housley, Jr., T R . Dykman, R. P. MacDermott, and J . P Atkinson .
1985 . Identification of an additional class of C3-binding membrane proteins of human
peripheral blood leukocytes and cell lines. Proc. Natl. Acad. Sci. USA. 82 :859 .

19 . Seya, T, J . Turner, andJ . P Atkinson . 1986 . Purification and characterization of a mem-
brane protein (gp 45-70) which is a cofactor for cleavage of C3b and C4b . J. Exp. Med.
163:837 .

20 . Yu, G . H., V. M. Holers, T. Seya, L . Ballard, and J . P Atkinson . 1986 . Identification
of a third component of complement-binding glycoprotein of human platelets .J. Clin.
Invest. 78:494 .

21 . Atkinson, J . P., T Seya, L . Ballard, and T. McNearney. 1987 . Identification and charac-
terization of membrane cofactor protein (MCP or gp45-70) on fibroblast and epithelial
cell lines . Fed. Proc . 46:612 .

22 . Seya, T, L . Ballard, N . Bora, T McNearney, andJ . P Atkinson . 1987 . Membrane cofactor
protein (MCP or gp45-70) : a distinct complement regulatory protein with a wide tissue
distribution . Complement. 4:225 .

23 . Ballard, L ., T Seya, J . Teckman, D. M. Lublin, andJ . P. Atkinson. 1987 . A polymor-
phism of the complement regulatory protein MCP (membrane cofactor protein or
gp45-70). J. Immunol. 138:3850 .

24 . Schneider, R . J ., A . Kulczycki, Jr., S. K. Law, and J . P Atkinson . 1981 . Isolation of
a biologically active macrophage receptor for the third component of complement . Na-
ture (Loud.). 290:789 .



LUBLIN ET AL.

	

193

25. Wong, W. W., and D. T Fearon . 1985 . p65 : a Cab-binding protein on murine cells that
shares antigenic determinants with the human C3b receptor (CRI) and is distinct from
C3b receptor. J. ImmunoL 134:4048 .

26 . Hunkapiller, M. W., E. Lujan, F. Ostrander, and L . E . Hood . 1983 . Isolation of micro-
gram quantities of proteins from polyacrylamide gels for amino acid analysis. Methods
EnzymoL 91:227 .

27 . Chirgwin, J . M., A . E . Przybyla, R. J . MacDonald, and W. J. Rutter. 1979 . Isolation
ofbiologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry.
18:5294 .

28 . Aviv, H., and P Leder. 1972 . Purification of biologically active globin messenger RNA
by chomatography on oligothymidylic acid cellulose. Proc. Natl. Acad. Sci. USA . 69:1408 .

29 . Gubler, U., and B. J. Hoffman . 1983 : A simple and very efficient method for generating
cDNA libraries . Gene. (Amst.). 25 :263 .

30 . Beaucage, S. L ., and M. H. Caruthers. 1981 . Deoxynucleosid e phosphorumidites . A new
class of key intermediates for deoxypolynucleotide synthesis . Tetrahedron Lett. 22:1859 .

31 . Maniatis, T, E . F. Fritsch, and J . Sambrook. 1982 . Molecular Cloning : A Laboratory
Manual . Cold Spring Harbor Laboratory, Cold Spring Harbor, New York . 545 pp.

32 . Sanger, F, S . Nicklen, and A. R. Coulson . 1977 . DNA sequencing with chain-terminating
inhibitors. Proc. Nat. Acad. Sci. USA . 74:5463 .

33 . Chen, E. Y., and P H. Seeburg. 1985 . Supercoil sequencing : A fast and simple method
for sequencing plasmid DNA. DNA (NY). 4:165 .

34 . Tabor, S ., and C . C . Richardson . 1987 . DNA sequence analysis with a modified bacte-
riophage T7 DNA polymerase. Proc. Natl. Acad. Sci. USA . 84:4767 .

35 . Feinberg, A. P, and B . Vogelstein . 1983 . A technique for radiolabeling DNA restriction
endonuclease fragments to high specific activity. Anal. Biochem . 132:6 .

36 . O'Brien, S. J ., J . M. Sinonson, and M. Eichelbuger. 1982 . Genetic analysis of hybrid
cells using isozyme markers as monitors of chromosomal segregation. In Techniques in
Somatic Cell Genetics . J . W. Shay, editor. Plenum PublishingCorp., New York . 342-370 .

37 . Lemons, R. S ., W. G . Nash, S . J . O'Brien, R . E . Benveniste, and C . J . Sherr. 1978 .
A gene (Bevi) on human chromosome 6 is an integration site for baboon type C DNA
provirus in human cells . Cell. 14:995 .

38 . LeBeau, M. M., C . A . Westbrook, M. O. Diaz, and J . D. Rowley. 1984 . Evidence for
two distinct c-src loci on human chromosomes 1 and 20 . Nature (Loud.) . 312:70 .

39 . von Heijne, G. 1985 . Signal sequences: the limits of variation . J. Mol. BioL 184:99 .
40 . Ballard, L . L ., N . S. Bora, G . H. Yu, andJ . P Atkinson . 1987 . Biosynthesis and glycoso-

lation of membrane cofactor protein (MCP or gp45-70) . Fed. Proc. 46:773 .
41 . Hopp, T. P., and K. R. Woods . 1981 . Prediction of protein antigenic determinants from

amino acid sequences . Proc. Nat. Acad. Sci. USA. 78:3824 .
42 . Proudfoot, N . J ., and G . G . Brownlee . 1976 . 3' non-codingregion sequences in eukaryotic

mRNA. Nature (Loud.). 263:211 .
43 . Bentley, D. R . 1986 . Primary structure of human complement component C2: homology

to two unrelated protein families . Biochem. J. 237:339 .
44 . Mole, J . E ., J . K. Anderson, E . A . Davison, and D. E . Woods . 1984 . Complete primary

structure for the zymogen of human complement factor B . J. BioL Chem . 259:3407 .
45 . Morley, B . J ., and R. D. Campbell . 1984 . Internal homologies of the Ba fragment from

human complement factor B, a class III MHC antigen. EMBO (Eur. Mol. BioL Organ .)
J. 3:153 .

46 . Davitz, M., M. Low, and V. Nussenzweig. 1986 . Release of decay-accelerating factor
(DAF) from the cell membrane by phosphatidylinositol-specific phospholipase C (PIPLC) .
Selective modification of a complement regulatory protein . J. Exp. Med 163 :1150 .

47 . Medof, M. E ., E . I . Walter, W. L . Roberts, R . Haas, and T L. Rosenberry. 1986. Decay



194

	

CLONING OF COMPLEMENT MEMBRANE COFACTOR PROTEIN

accelerating factor of complement is anchored to cells by a C-terminal glycolipid. Bio-
chemistry. 25:6740 .

48 . Pangburn, M. K., R . D. Schreiber, and H. J . Muller-Eberhard. 1983 . Deficiency of an
erythrocyte membrane protein with complement regulatory activity in paroxysmal noc-
turnal hemoglobinuria . Proc . Nad. Acad. Sci. USA . 80:5430 .

49 . Medof, M. E ., T. Kinoshita, and V. Nussenzweig . 1984 . Inhibition ofcomplement acti-
vation on the surface of cells after incorporation ofdecay-accelerating factor (DAF) into
their membranes . J Exp. Med. 160:1558 .


