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A new family of cell adhesion molecules has recently been identified by isolating
c¢DNAs that encode cell surface proteins that uniquely contain domains homolo-
gous to those found in animal lectins, epidermal growth factor, and C3/C4 binding
proteins (1-4). Members of this family described thus far include the murine lymph
node homing receptor (mLHR)!, expressed by mouse lymphocytes (1), the human
endothelial leukocyte adhesion molecule 1 (ELAM-1), expressed by cytokine-stimulated
endothelial cells (2), and human GMP-140, expressed by activated platelets (3). In
this report, the cloning of a cDNA that encodes a new human lymphocyte-associated
cell surface molecule (LAM-1) is described that represents a new member of this
family of adhesion proteins. The chromosome localization of the LAM-I gene sug-
gests that this family of proteins may be encoded by a clustered locus of “adhesion
protein” genes.

Materials and Methods

Molecular Cloning. The isolation of human tonsil cDNA clones by differential hybridiza-
tion has been described (5). Nucleotide sequences were determined using the method of Maxam
and Gilbert (6). Gap penalties of -1 were assessed during homology analysis for each nucleo-
tide or amino acid in the sequence where a gap or deletion occurred.

RNA Blot Analysis.  For Northern blot analysis, ~2 ug of poly(A)* RNA or 15 ug of total
cellular RNA was denatured, fractionated by electrophoresis through a 1.1% agarose gel,
and transferred to nitrocellulose or nylon membranes as described (5, 7). The pLAM-1 cDNA
insert was isolated, nick translated, and hybridized with the filters as described (5, 7).

In Situ Hybridization. The LAM-1 cDNA clone was labeled by nick translation using H
nucleotides to a specific activity of 5 x 107 cpm/pg. In situ hybridization to metaphase chro-
mosomes from lymphocytes of a normal male individual was carried out using the LAM-1
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probe at a concentration of 0.02 pg/pul of hybridization mixture as described (8). The slides
were exposed for 7 d.

Results

Isolation of the LAM-1 ¢DNA Clone. B cell-specific cDNAs were isolated from a
human tonsil cDNA library using differential hybridization with labeled cDNAs de-
rived from either B cell (RAJI) RNA or T cell (HSB-2) RNA (5). One of the 261
RAJI* HSB2~ ¢cDNA clones isolated, B125, contained a 1.9-kb ¢cDNA insert that
hybridized with a 2.4-kb species found in several B cell lines (5). However, B125 did
not hybridize with any of the other RAJI* HSB2~ clones or with mRNA from sev-
eral T cell lines. The B125 ¢cDNA clone was characterized by restriction mapping
and nucleotide sequence determination. A near full-length 2.3-kb cDNA that hy-
bridized with B125 was isolated, sequenced, and termed pLAM-1 (Fig. 1 A). This
clone contained a 1,181-bp open reading frame that could encode a protein of 372
amino acids (Fig. 1 C).

The amino acid sequence of LAM-1 predicted a structure typical of a membrane
glycoprotein. Two potential translation initiation sites were found at nucleotide po-
sitions 53 and 92. The second initiation site confirmed best to the consensus se-
quence for optimal initiation (A/G)CCAUG (9) and was followed by a hydrophobic
region of 27 amino acids that may represent a signal peptide. The algorithm of von
Heijne (10) predicted that the most probable NHj terminus of the mature protein
would be the Trp at amino acid position 52 (Fig. 1 €). The LAM-1 sequence con-
tained a second hydrophobic region between amino acids 346 and 368 that may
be a transmembrane region. The predicted mature LAM-1 protein would have an
extracellular region of ~294 amino acids containing seven potential N-linked car-
bohydrate attachment sites. LAM-1 would have a cytoplasmic tail of 17 amino acids
containing eight basic and one acidic residues. The two cytoplasmic Ser residues
may serve as substrates for phosphorylation since protein kinase C phosphorylates
Ser residues that are on the COOH-terminal side of several basic residues. These
results suggest that the processed LAM-1 protein would have an M: of at least
50,000.

LAM-1 Contains Multiple Distinct Domains. The proposed extracellular region of
LAM-1 contained a high number of Cys residues (7%) with a general structure,
as depicted in Fig. 1 B. The first 157 amino acids of the protein were homologous
with the low affinity receptor for IgE (11), the asialoglycoprotein receptor (12), and
several other carbohydrate-binding proteins (13-16) (Fig. 2 4). Although the sequence
homologies were <30%, all the invariant residues found in animal lectin carbohydrate-
recognition domains were conserved (17). The next domain of 36 amino acids was
homologous (36-39%) with epidermal growth factor (EGF) (18) and the EGF-like
repeat units found in factor IX (19) and fibroblast proteoglycan core protein (15)
(Fig. 2 B). Immediately after these domains were two tandem domains of 62 amino
acids each that were homologous with the short consensus repeat units (SCR) that
comprise the IL-2-R (20), factor XIII (21), and many C3/C4 binding proteins (22,
23) (Fig. 2 C). In contrast to all of the previously described SCR that contain four
conserved Cys residues, these two SCR possessed six Cys residues. A 15-amino acid

spacer preceded the putative transmembrane domain.
Homology of LAM-1 with mLHR, ELAM-1, and GMP140. LAM-1 shares a 77%
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Structure of the pLAM-1 cDNA clone. (4) The restriction map was constructed by

the standard single, double, or triple digestions of pPLAM-1. The putative coding region is shown
in black. Arrows indicate the direction and extent of nucleotide sequence determin:tion and the
open circles indicate 5’ end labeling. (B8) A schematic model of the structure of the LAM-1 mRNA
is shown. Thin lines indicate 5’ and 3’ untranslated sequences (U/T), while the thick bar indicates
the translated region. The boxes represent the lectin-like and EGF-like domains and the two SCR
units. The open box indicates the putative transmembrane (7M) region. (C) The determined
nucleotide sequence and predicted amino acid sequence of the LAM-1 cDNA clone. The numbers
shown above the amino acid sequence designate amino acid residue positions. The numbers to
the right indicate nucleotide residue positions. Amino acids are designated by the single-letter
code, and an asterisk indicates the termination codon. The boxed sequences identify possible
N-linked glycosylation sites. Hydrophobic regions that may identify signal and transmembrane
peptides are underlined. The vertical arrow marks the most probable position of the NHj ter-
minus of the mature protein. These sequence data have been submitted to the EMBL/GenBank

Data T.ibraries.
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Ficure 2. Homologies of LAM-1 domains with other proteins. Segments of homologous pro-
teins are shown with the amino acid residue numbers at each end. Homologous amino acids
are shown in boxes. Gaps (-) have been inserted in the sequences to maximize homologies. (4)
Lectin-like domain of LAM-1 compared with: FcE-R, the Fc receptor for IgE (11); C-HL, chicken
hepatic lectin (13); H-MBP, human mannose-binding protein (14); F-PGC, fibroblast proteoglycan
core protein (15); HHL-1, human hepatic lectin-1 (12); ISL, insect soluble lectin (16). The amino
acids conserved among all animal lectin carbohydrate recognition domains are indicated (*). (B)
EGF-like domain of LAM-1 compared with: human EGF (18); F-IX, blood clotting factor IX
(19); F-PGCP, fibroblast proteoglycan core protein (15). (C) Short consensus repeats 1 and 2 of
LAM-1 compared with: Ba, proteolytic fragment of factor B (23); CR1, (22); IL-2-R, (20); and
F-XIII, blood clotting factor XIII (21). The four conserved Cys residues found in all SCR are
indicated by (*), the additional conserved Cys found in LAM-1 are indicated by ( +). Of the mul-
tiple SCR present in each of these proteins, the SCR with the highest homology to LAM-1 is
diagrammed.

amino acid sequence homology with the mouse LHR (Fig. 3). Significant homolo-
gies of nucleotide sequences outside of the putative coding regions were not found.
The leader sequence of mLHR shares a 63% amino acid sequence homology with
LAM-1, while the lectin domains share an 83% homology. The lectin domain of
LAM-1 shares a 67 and 61% sequence homology with GMP-140 and ELAM-1, respec-
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terminus of LAM-1 and the de-
WSSPEPTCQVIQCEPLSAPDLGIMNCSHPLASFSFTSACTFICSEGTELIGKKKTICESSGIW 322 termined NHjy terminus of

I---v E-~E--T-D-I--~GN---Q-K-A-N-~--R--L-TAE-Q~GA-~N- mLHR. The underlined region

SNPSPICQKLDKSFSMIKEGDYNPLFIPVAVMVTAFSGLAFIIHLARRLKKGKKSKRSMNDPY 385  indicates the putative transmem-
—§-E--—-ETNR---K. L QER~D--~ brane region.

VGYYGPQCQFVIQCEPLEAPELGTMDCTHPLGNFNFNSQCAFSCSEGTNLTGIEETTCEPFGN 259
Y-V I~~====3-Q-K~wv=Ne===RE-L-TA~~Q~GAS~~

tively. The EGF domain of LAM-1 shares an 80, 66, and 63 % homology with mLHR,
ELAM-1, and GMP-140 domains, respectively. SCR-1 and SCR-2 of LAM-1 are
74 and 61% homologous with the two identical SCR domains of mLHR. Most in-
teresting is that the putative transmembrane domains of LAM-1 and mLHR are
95% homologous, while the cytoplasmic tails are 78 % homologous. The transmem-
brane and cytoplasmic domains of LAM-1 share little sequence homology with the
corresponding domains in ELAM-1 and GMP-140.

Expression of LAM-1 mRNA. Northern analysis revealed that LAM-1 hybridized
strongly to a 2.6-kb RNA species and weakly to a 1.7-kb RNA species in poly(A)*
RNA isolated from the B cell lines Raji, SB (Fig. 4 4), Laz-509, and GK-5 (data
not shown). The 1.7-kb RNA species may result from alternate use of the potential
poly(A) signal sequence, ATATAAA, at position 1493 (Fig. 1 C), which serves as

(2]
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a poly(A) attachment signal in the mouse LHR ¢cDNA (1). RNA isolated from two
pre-B cell lines (Nalm-6, PB-697), three B cell lines (Namalwa, Daudi, BJAB), five
T cell lines (CEM, Hut-78, HSB-2, Molt-15, Molt-3), a myelomonocytic cell line
(U937 and U937 cultured with LPS), and an erythroleukemic cell line (K-562) did
not hybridize with LAM-1, suggesting that expression of this gene was preferentially
associated with B lymphoblastoid cell lines (data not shown). However, analysis of
mRNA isolated from blood lymphocytes and purified blood T cells revealed that
LAM-1 mRNA was readily detected in T cells and increased after mitogen stimula-
tion (Fig. 4 B). Both the 2.6- and 1.7-kb RNA species that hybridized with pLAM-1
were expressed by T cells. Low levels of LAM-1 mRNA were detected in some mono-
cyte preparations, but not in others, suggesting that LAM-1 may also be expressed
by monocytes at amounts far below those observed in T lymphocytes. Alternatively,
low numbers of lymphocytes (<2%) contaminating the monocyte preparations may
account for this variability. Treatment of monocytes with Bryostatin 1 or LPS did
not induce LAM-1 mRNA, and LAM-1 mRNA was not detected in malignant cells
from two patients with chronic myelogenous leukemia (data not shown). In addi-
tion, a human fibroblast cell line (Wi-38 and Wi-38 stimulated with LPS) and pri-
mary cultures of human fibroblasts transfected with the EJ-ras oncogene did not
express detectable LAM-1 mRNA. Human epithelial keratinocytes, untreated or
cultured with LPS or TNF, also failed to express detectable LAM-1 mRNA.

Chromosome Location of the LAM-1 Gene. 'The LAM-I gene was localized on human
metaphase chromosomes by in situ hybridization using the LAM-1 ¢cDNA clone as
a labeled probe. A total of 181 sites of hybridization in 48 metaphase cells were scored
(Fig. 5 a). Of the 181 sites of hybridization, 48 (27%) were located between bands
q22 and q25 of the long arm of chromosome 1. There was no significant hybridiza-
tion to other chromosomes (Fig. 5 a). The largest number of grains on chromosome
1 were located at bands q23 and q24, with significant hybridization to band q25
(Fig. 5 b).

Discussion

The generation of genes by the assembly of functionally independent domains
has occurred frequently as new genes evolved to encode proteins with new func-
tions. However, LAM-1 combines previously unrelated domains found in three dis-
tinct families of molecules: animal lectins, growth factors, and C3/C4 binding pro-
teins. The LAM-1 lectin-like domain has homology with mammalian lectins specific
for glycans with terminal galactosyl, N-acetylglucosaminyl, and mannosyl residues
(17), and homology with the lectin-like domain of the low affinity Fc receptor for
IgE (11). Most animal carbohydrate-binding receptors, however, differ from LAM-1
since their COOH terminus contains the lectin domain and is on the outside of
the membrane, while their NH; terminus is inside the cell (17). An exception, like
LAML-1, is the galactose-binding protein from fly hemolymph that has the lectin
domain at the NHz-terminal end of the protein (16). Although the carbohydrate-
binding domain in fly hemolymph lectin diverged a considerable time ago from human
LAM-1, it is homologous (23 %) with the LAM-1 lectin-like domain (Fig. 2 4). In-
terestingly, it has been proposed that the lectin isolated from fly hemolymph may
be involved in a primitive immune response (24). The homology of another LAM-1
domain with proteins that contain EGF-like sequences, such as blood clotting factors,
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suggests that this domain could also interact with other proteins (19). EGF-like re-
peat units are also found in juxtaposition with the lectin domain of fibroblast proteo-
glycan core protein, suggesting that this protein and LAM-1 may be evolutionarily
related (15). The SCR domains may also have receptor function, since the extracellu-
lar domains of receptors for many complement components and IL-2 are composed
of SCR domains (20-23).

LAM-1 is a new member of a family of recently described cellular adhesion pro-
teins (1-3). This family includes the mouse LHR that has a 77% amino acid se-
quence homology with LAM-1 (Fig. 3). Northern analysis of LAM-1 expression
demonstrated a predominantly lymphoid distribution in humans (Fig. 4) that is also
similar to the cell surface expression of the mLLHR (1). Since pretreatment of mouse
lymphocytes with specific polysaccharides inhibits their adherence to high endothelial
venules in lymph nodes, the lectin-like domain of LAM-1 may also function in the
adherence of lymphocytes to endothelial cells (25). The lectin-like and EGF-like do-
mains of LAM-1 and mLHR shared considerable homology (83-80%), but the area
of highest homology (95%) was found in the putative transmembrane region, sug-
gesting that these domains may be most critical to the function of LAM-1 and mLHR.
Although LAM-1 and mLHR are structurally homologous, it is not known whether
LAM-1 functions as the LHR in man. However, preliminary studies demonstrate
that the cell lines that express high levels of LAM-1 mRNA (Fig. 4) bind to human
high endothelial venules, while most of those that do not express LAM-1 mRNA
do not bind (A. Freedman and T. F. Tedder, unpublished observations). Therefore,
it is possible that LAM-1 serves a function in man similar to that of the LHR in
mouse.

Other members of this new adhesion molecule family that are homologous with
LAM-1 include the inducible ELAM-1, which is expressed on the surface of cytokine-
treated endothelial cells (2). This molecule is thought to be responsible for the ac-
cumulation of blood leukocytes at sites of inflammation by mediating the adhesion
of cells to the vascular lining. LAM-1 and ELAM-1 exhibit homologous structural
features, including the presence of lectin- and EGF-like domains followed by SCR
domains that contain six conserved Cys residues. In addition, a granule membrane
protein found in platelets and endothelial cells, termed GMP-140, is also homolo-
gous with LAM-1 in that it contains lectin, EGF, and SCR domains (3). These pro-
teins and LAM-1 thus appear to define a new family of homologous structures that
are each expressed by different human cell lineages.

The LAM-1 gene is located on human chromosome 1 at band q23-25 (Fig. 5).
The gene for GMP-140 has also been mapped to chromosome 1 q21-24 (3, McEver,
R., G. Johnston, and M. Le Beau, personal communication). These findings sug-
gest that a cluster of “adhesion molecule” loci may exist on the long arm of chromo-
some 1 in the region q21-25, which contains at least two of the three members of
this human gene family. This locus is distinct from the “complement receptor” locus
at band 1g32, which encodes the SCR containing proteins, CR1, CR2, C4-binding
protein, and factor H (26). The finding that two of these new genes map to the same
band of human chromosome 1, in addition to their common structural motif, fur-
ther demonstrates that these proteins are members of a closely related family of
proteins.
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Summary

A cDNA encoding a new human lymphocyte cell surface molecule has been iso-
lated and shown to identify a fourth member of a recently discovered family of adhe-
sion proteins. This lymphocyte-associated molecule (LAM-1) is uniquely composed
of multiple distinct domains, one domain homologous with animal lectins, one ho-
mologous with epidermal growth factor, and two short consensus repeat units similar
to those found in C3/C4 binding proteins. This cDNA clone hybridized with RNAs
found in B cell lines and T lymphocytes, but not with RNA from other cell types.
The amino acid sequence of LAM-1 is 77% homologous with the sequence of the
mouse lymphocyte homing receptor, suggesting that LAM-1 may function in human
lymphocyte adhesion. The LAM-I gene is located on chromosome 1g23-25, as is
another member of this adhesion family, suggesting that this new family of proteins
may be encoded by a cluster of “adhesion protein” loci.
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