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Members of the genus Chlamydia are obligate intracellular bacteria that are differen-
tiated from all other prokaryotes by their unique intracellular growth cycle. Two spe-
cies of Chlamydia exist ; C. trachomatis, strictly a human pathogen, and C. psittaci, a
pathogen of lower mammals. Chlamydiae primarily infect mucosal epithelia, and
in humans C. trachomatis causes a formidable group of infections, some of which can
progress to severe complications including blindness, infertility, and perhaps arthritis .
The most significant of these in the numbers of people afflicted is trachoma, the
leading cause of preventable blindness in the world (1) .
Although the pathogenic events that lead to development of severe and often de-

bilitating, postinfection sequelae are not known, an immunological mechanism has
been suggested (2-5). That hypothesis was based on studies ofhuman trachoma and
nonhuman primate models ofocular chlamydial infection . Early studies in humans
and in nonhuman primates indicate that prior vaccination with killed chlamydiae
frequently results in more severe trachoma upon reinfection (6-10) . Morever, in some
individuals with trachoma, chlamydial antigens and DNA are detected in conjunc-
tival tissue in the absence of cultivatable chlamydiae (11, 12). These data support
the hypothesis of an immunologically mediated pathogenesis .
C. trachomatis infection of nonhuman primates and C. psittaci infection of guinea

pigs are good model systems for studying chlamydial pathogenesis . Previous studies
using those models show that repeated ocular exposure to infectious chlamydiae is
necessary to establish the chronic inflammation characteristic of trachoma (13, 14).
Interestingly, repeated challenge with infectious chlamydiae results in an atypical
infection of shortened duration in which chlamydiae are difficult to reisolate, and
severe ocular disease results; thus suggesting that immune responses are partly pro-
tective, but also deleterious . Repeated infection produces a submucosal cellular
infiltrate of lymphocytes and macrophages (13-15), like that observed in individuals
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with trachoma (16) . Collectively, the human and animal studies argue for a patho-
genic role of delayed hypersensitivity (DH)t in chlamydial disease.
The most direct evidence for DH in pathogenesis of chlamydial disease comes

from the observations that a crude extract of viable chlamydiae elicits severe ocular
inflammation in immune animals (17, 18) . In immune guinea pigs, this extract
produces an ocular inflammatory response whose histopathology is consistent with
human trachoma and chlamydial-induced tubal infertility (16, 17, 19) . Subsequently,
we identified and isolated the DH-evoking component, a 57-kD chlamydial protein
(20) . Those results support the hypothesis that the host's immune response to
chlamydial infection is, in part, deleterious . In this study, the chlamydial gene that
encodes the 57-kD protein was cloned, and the recombinant protein elicited an ocular
DH response in immune guinea pigs . The sequence reveals a close relatedness to
the heat-shock or stress proteins GroEL of Escherichia coli, HtpB of Coxiella burnetii,

65k of Mycobacterium tuberculosis, and Hsp60 of Saccharomyces cerevisiae .

Materials and Methods
Organisms.

	

The C. trachomatis serovars B/TW-5 and L2/LGV434, and C. psittaci strain
guinea pig inclusion conjunctivitis (GPIC) were grown in HeLa 229 cells, and elementary
bodies were purified by discontinuous density centrifugation in Renografin (E . R . Squibb
and Sons, Princeton, NJ) (21) . Inclusion-forming units (IFU) were determined by methods
described previously (22) . E. coli strain JM109, and pUC8 and pTZ18R plasmids have been
described previously (23, 24; Pharmacia LKB Biotechnology, Inc., Piscataway, NJ) .

Construction ofGenomic Library, Selection, Subcloning; and Sequencing.

	

C. psittaci (GPIC) genomic
DNA isolated from 6 x 10'° IFU (25), was partially digested with Sau3A, and sized by elec-
trophoresis on a 0.7o7o agarose gel . 5-10-kb fragments were electroeluted and ligated into
Bam HI-digested, alkaline phosphatase-treated pUC8 (Boehringer Mannheim Biochem-
icals, Indianapolis, IN) (23) . E. coli strain JM109 was transformed with the recombinant
plasmids (26), grown in Luria broth supplemented with 250 pg/ml ofcarbenicillin, and screened
by colony blot (27) using hyperimmune anti-GPIC rabbit serum . An immunoreactive clone,
JM109[pGP57], was isolated and analyzed by SDS-PAGE and immunoblotting . Two highly
expressed recombinant products, a 57-kD immunoreactive polypeptide and a 20-kD nonim-
munoreactive polypeptide, were visualized in Coomassie blue-stained gels of whole cell ly-
sates (see below). The 7 .2-kb GPIC insert of pGP57 was restriction mapped (Fig. 1) and
shown to hybridize with GPIC DNA by Southern blot analysis . An internal 2.0-kb Eco RI
fragment (El) was subcloned into pTZ18R and shown to produce an immunoreactive poly-
peptide of 50 kD, presumably a truncated version of the 57-kD protein found in pGP57 .
A partial sequence of the 2.0-kb chlamydial DNA fragment from the El subclone was ob-
tained by the dideoxy-chain termination method using pUC forward and reverse universal
primers following the manufacturer's suggested procedures (Sequenase ; United States Bio-
chemical Corp., Cleveland, OH). After obtaining a partial DNA sequence from the El sub-
clone, sequencing was continued using synthetic oligonucleotide primers (SAMI ; Milligen-
Biosearch, Inc., San Rafael, CA), and cesium chloride purified pGP57 plasmid DNA.

SDS-PAGE, Electrophoretic Transfer, and Immunoblotting.

	

SDS-PAGE was performed using
12.5% polyacrylamide gels as described by Dreyfuss et al . (28), except samples were prepared
with Laemmli sample buffer (29) . Electrophoretic transfer and processing of immunoblots
were done as described previously (30) .

In Vitro Detection of Recombinant Polypeptides.

	

In vitro transcription-translation of pGP57
was performed according to the manufacturers instructions (Amersham Corp., Arlington
Heights, IL) . [s 5 S]Methionine-labeled products were analyzed by SDS-PAGE and fluorog-

' Abbreviations used in this paper: DH, delayed hypersensitivity ; IFU, inclusion-forming units; GPIC,
guinea pig inclusion conjunctivitis; ORF, open reading frame; TX-100, Triton X-100.
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raphy as described previously (30, 31) . The in vitro transcription-translation mixtures were
also subjected to immunoprecipitation with a monospecific anti-57-kD rabbit serum (20)
or normal rabbit serum, and analyzed by SDS-PAGE and fluorography (30, 31) .

Antigen Preparation, Purification, and Ocular DH.

	

109JM109 orJM109[pGP57] were washed
three times with saline, resuspended in 10 ml ofPBS containing 0.5% Triton X-100 (TX-100)
(17), incubated at 37°C for 30 min, and sonicated for 3-5 min . Insoluble material was re-
moved by centrifugation at 100,000 g and the 57ÁD protein was purified from the soluble
extract by immunoaffinity chromatography (20). Briefly, the soluble extract ofJM109[pGP57]
was passed over an affinity column prepared with monospecific anti-57-kD rabbit serum (20) .
The column was washed with 10 vol of PBS containing 0.5% Triton X-100 and 0.5 M NaCl .
Absorbed antigen was eluted with 3.0 M potassium thiocyanate, dialyzed against PBS, and
analyzed by SDS-PAGE and immunoblotting . A single 57-kD polypeptide was seen by
Coomassie blue staining, and it reacted with monospecific anti-57-kD serum by immunoblot
analysis (data not shown) . The ability of these antigen preparations to elicit an ocular DH
response was assessed by placing 25'i,í ofantigen preparation (ti2-6 t~g of protein) onto the
lower conjunctival sac ofocular immune guinea pigs (20) . The hypersensitivity response was
assessed clinically at 24 h, and scored using a scale of 0-4 (20) : 0, negative; 1, slight hyperemia
and edema of the lower palpebral conjunctivae ; 2, hyperemia and edema of the lower pal-
pebral conjunctiva with slight hyperemia ofthe bulbar conjunctivae ; 3, overt hyperemia and
edema of the lower palpebral and bulbar conjunctivae ; 4, same as 3 with the addition of
mucopurulent exudate .

Results
Identification and Characterization ofRecombinant Clones.

	

Recombinant colonies were
screened by blotting with a polyclonal antiserum to GPIC. One recombinant,
JM109[pGP57], expressed two products with apparent molecular masses of 57 kD
and 20 kD (Fig . 2 A) ; the 57-kD species reacted with a polyclonal monospecific anti-57-
kD serum by immunoblotting (Fig . 2 B) . An E. coli polypeptide of the same size
was also recognized by this antiserum . To verify that the 20- and 57-kD polypeptides
were encoded by the plasmid and were not due to an increased expression of the
E. coli proteins, in vitro transcription-translation was done. The recombinant plasmid,
pGP57, encoded two polypeptides of 57 and 20 kD (Fig . 3), and the in vitro synthe-
sized 57-kD polypeptide immunoprecipitated with anti-57-kD serum . A recombinant
clone expressing polypeptides similar to those of pGP57 has been briefly described
elsewhere (32) .

Ocular DH Elicited by the Recombinant 57-kD Protein.

	

Immune guinea pigs, previ-
ously infected with GPIC and recovered, were challenged with a soluble extract of
JM109, JM109[pGP57] or the immunoaffinity-purified recombinant 57-kD antigen .
Both the soluble extract ofJM109[pGP57] and the purified recombinant 57-kD pro-
tein elicited an ocular DH response when administered topically to the conjunctivae
of immune but not naive guinea pigs (Fig. 4) . Severity of inflammation resembled

FIGURE 1.

	

Restriction endonu-
clease map of the 7.2-kb chla-
mydial DNA insert of pGP57 .
The internal 2 .0-kb Eco RI frag-
ment (El) is indicated . Open
boxes represent the hypA and
hypB ORFs. The direction of
transcription is indicated by an
arrow.
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FIGURE 2. SDS-PAGE and immunoblot analysis of
E. coli strain JM109[pUC12] and recombinant strain
JM109[pGP57] . (A) Coomassie brilliant blue-stained gel of
whole cell lysates. (B) Immunoblot probed withmonospecific
polyclonal anti-57-kD serum. Recombinant polyreptides
are indicated by approximateMr values (57 x 10 and 20
x 103) . Immunological reagents specific for the 20-kD
polypeptide were not available, and it was not reactive with
hyperimmune anti-GPIC serum.

FIGURE 3 .

	

In vitro transcription-translation analysis of
purified plasmid DNAs and immunoprecipitation of in vitro
translated polypeptide . 1 FAg of purified plasmid DNAwas
used as suggested by the manufacturer of the commercial
in vitro translation kit (Amersham Corp.). Reactions
proceeded at 37 °C for 45 min, followed by a 5-min chase
with nonradiolabeled methionine . Reaction mixtures were
subjected to SDS-PAGE and analyzed directly by fluorog-
raphy (lanes 1, 2, and 3), or immunoprecipitated with poly-
clonal monospecific anti-57-kD serum (lanes 4, 5, and 6)
or normal rabbit serum (lanes 7, 8, and 9), then analyzed.
(Lanes 1, 4, and 7) No DNA added to reaction mixture;
(lanes 2, 5, and 8) pUC12DNA; (lanes 3, 6, and 9) pGP57
DNA. Asterisk indicates 57- and 20-kD recombinant poly-
peptides.
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FIGURE 4.

	

Ocular DH response
elicited by chlamydial antigen prep-
arations . Ocular hypersensitivity
was assessed at 24 h after antigen
challenge and scored as described
in Materials and Methods. TX-100
buffer, TX-100 GPIC, and native
57-kD protein were prepared as de-
scribed previously (20) . The native
and recombinant 57-kD proteins
were mixed 1 :1 with 2 x TX-100
buffer before testing for hypersen-
sitivity. Inflammatory index is the
mean response from eight guinea
pigs per group. Naive animalswere
challenged with antigen prepara-
tions, and in all instances, the in-
flammatory index was 41 .

that elicited by a crude extract of C. psittaci elementary bodies and immunoaffinity
purified native 57-kD protein.

Sequence Analysis .

	

A2.4-kbDNA insert ofpGP57carries two open reading frames
(ORF) whosededuced amino acid sequences are presented in Fig. 5. Sequences con-
sistent with Shine-Dalgarno ribosomal binding sites (AGGA) preceded the ATGini-
tiation codons of both ORFs. One ORF spanned 306 nucleotides and encoded a
polypeptide of 102 amino acids (Mr 11,202), and the other spanned 1,632 nucleo-
tides to encode a polypeptide of 544 amino acids (Mr 58,088). Because the 57-kD
protein has a single known function, its ability to elicit an immunopathological re-
sponse in primed animals (a DH response), we have termed the whole operon hyp
(for hypersensitivity); hypA encodes the 11 .2-kD protein and hypB encodes the 58.1-
kD protein. The apparent molecular masses of HypA and HypB proteins on dena-
turing polyacrylamide gels are 20 kD and 57 kD, respectively. The presumptiveTAA
translational terminator sequence of hypA was followed by an intergenic region of
50 bases. The larger ORF, hypB, terminated at a TAA stop codon followed by se-
quences resembling a rho-independent terminator (33) .

At nucleotide position -231, sequence like a heat shock promoter (-35 region,
TC-C-CTTGAA, -10 region, CCCCAT-F) (34) was found. There was consider-
able sequence agreement for the -10 region, with only asingle G forC substitution .
The 3' end of the -35 region was in complete agreement, but the 5' half was not
conserved. No other upstream consensus promoter regions were found. Although
this inferred promoter region has similarities with promoters of genes for other heat-
shock proteins, we have been unable to demonstrate a temperature dependent ex-
pression of the polypeptides encoded by this recombinant operon in E. coli . Expres-
sion of the two proteins in bacteria grown at 22 °C is high, and may result from
the high copy number of pGP57.

Because of the tandem hypA and hypB ORFs and their striking resemblance to
the E. coli groE and the C. burnetii htp operons, Northern hybridizations were done
to determine whether both hypA andhypB sequenceswere contained in a single tran-
script . Oligonucleotide probes complementary to the 5' end of hypA, and the 3' end
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GMTTCTTMCAAAGAAGATAACGCTCTCGMTCGTACATGMCTTCTTAAAMGTGGTGGCTCCGKCTTCCCATTAGAAAT

	

GTCCGGATTGGA -211
-35

TATGGCMCGGCCJIGCQCATAZ&CMGGCCTTTTCCTTCATAGAGAGAlUMTTCMGAGTTATcATCYTTMTTTAAAACAACTAAAGAAAAGTAGCACTT -108

-30
GATATTATTMGTGCTAAAATCATTGCCAAAAAACGAGAGACTTTGOTATCGTTCCTGAGAAACGGCAAAGTCTCTTTTAGAA CAA .CACAA"GCTTAT -4

1
M S D Q A T T L R I K P L G D R I L V K R E E E D

MC ATG TCA GAT CM GCA ACG ACC CTT AGG ATT MG CCC CTG GGC GAT AGA ATT TTA GTG AAA AGA GM GAA GM GAT

	

75
hypA

	

30

	

.... ... . .... . . .... . . . ... . . .. . . . ..... . . .... . ._..

5 T A R G G I I L P D T A K K K Q D R A E V L V L G
TCT ACA GCG CGC GGC GGC ATC ATT TTA CCT GAT ACA GCA AAG AM AAA CAG GAT CGA GCA GAG GTA TTA GTC CTA GGC 153

60
T G K R D K D G N V L P F E V T V G D T V L I D K Y

ACT GGA AM CGA GAT AM GAT GGC AAC OTC CTA CCT TTT GM GTT ACC GTG OCT GAT ACT GTT TTA ATA GAT AM TAC 231

90
A G Q E L T V D G E E Y V I V Q E S E V M A V L K STOP

GCG GGA CM GM CTT ACC GTT GAT GGT GAG GAG TAC OTC ATT GTT CAG GM AGC GAA GTT ATG GCA GTT CTC MG TM 309

1
M A A K N I K Y N E D A R

GAGAMTCATTATTTATAGATTGCMAMGTTAB(~GCACAAAAAAACA ATG GCA GCA MA MT ATT AM TAT MC GAA GAC GCC AGA 398

hype 30
K K I H K G V K T L A E A V K V T L G P K G R H V V
AAA AAA ATC CAT AAA GGA GTT AAA ACC CTT GCA GM OCT GTA AAA GTA ACC MA GOT CCT AAA GGC COT CAT GTG GTT 476

60
I D K S F G 5 P Q V T K D G V T V A K E I E L E D A
ATC GAT AM AGC TTT GGT TCT CCT CM GTT ACC AM GAT GGC GTA ACT GTC OCT AAA GM ATT GAG CTC GM GAC MG 554

90
H E N M G A Q M V K E V A S K T A D K A G D G T T T
CAT GAG MC ATG GGA GCT CM ATG GTA AM GM OTC GCT AGC AM ACT GCA GAT AM GCT GGT GAT GGA ACT ACA ACA 632

A T V L A E A I Y S E G L R N V T A G A N P M D L K
OCT ACT GTT CTT GCA GM OCT ATC TAC AGT GM GGA TTG AGA AAC GTA ACT GCA GGC GCC MT CCT ATG GAC CTC AM

120
R G I D K A V K V V V D E I K K I 5 K P V Q N N K E

AGA GGC ATT GAT MG GCA GTA AAA OTC GTT OTC GAT GM ATC AAA AAA ATT ACT AAA CCC GTA CM CAT CAC AM GAA

	

788
150

I A Q V A T I S A N N D A E I G N L I A E A M E K V
ATA OCT CM GTA GCG ACT ATT TCT GCA MT MT GAT OCT GM ATC GGT MT CTT ATC GCC GAA GCC ATG GM AM GTT 866

ISO
G K N G S I T V E E A K G F E T V L D V V E G M N F

GGC AM MC GGC TCT ATT ACT GTT GAA GM OCT AAA GOT TTC GAA ACT CTC CTC G11C GTT GTC GAA GOT ATG MT TTC 944
210

N R G Y L 5 S Y F S T N P E T Q E C V L E E A L V L
MC CGC GGA TAC CTA TCC AM TAC TTC TCT ACA MT CCT GAA ACA CAA GAA TGT GTT TTA GM GAA OCT CTC GTG CTT 1022

240
1 Y D K K I S G I K D F L P V L Q 0 V A E S G R P L

ATC TAT GAT AM AM ATT TCC GGA ATC AM GAT TTT CTA CCA GTT TTA CM CM GTA GCA GM TCA GGA CGT CCC CTA 1100
270

L I I A E D I E G E A L A T L V V N R L R A G F R V
CTT ATC ATT GCT GAA GAT ATC GM GGA GM GCT TTA OCT ACT TTA GTA GTA AAC AGA CTA COT OCT GGA TTC AGA GTG 1178

710

C A V K A P G F G D R R K A M L E D I A I L T G G 0
TGT GCA GTA AM GCT CCT GGA TTT GOT GAT AGA AGA AM OCT ATG TTA GM GAG ATC OCT ATT TTA ACT GOT GGT CM 1256
300
L I S E E L G M K L E N T T L A M L G K A K K V I V

CTC ATG AGC GM GAG CTT GGC ATG MG CTT GAG MC ACA ACT CTA OCT ATG TTA GGA AM OCT AM MA CTC ATC GTT 1334

330
5 K E D T T I V E G L G 5 K E D I E S R C E S I K K
TCC AM GM GAT ACA ACA ATT GTT GM GOT CTT GGC AGC AM GM GAT ATT GAA TCT CGC TGC GAA AGT ATC AM AM 1412

360
0 I E D S T S D Y D K E K L 0 E R L A K L 5 G G V A
CM ATC GM GAC AGT ACT TCT GAT TAC GAC AAA GM AM CTC CM GRA CGT TTA OCT AAA CTT WC GGA GGC GTA GCT 1490

390
V I R V G A A T E I E M K E K K D R V D D A Q N A T
GTA ATC CGT GTA GGA OCT OCT ACA GAA ATC GM ATG AM GAG AAA AAA GAC AGA GTA GAT GAT OCT CAG CAT GCA ACT 1568

420
L A A V E E G I L P G G G T A L V R C I P T L E A F
CTT GCT GCA GTT GM GM GGT ATT CTA CCT GGC OCT GOT ACA OCT TTA GTT CGC TGC ATC CCT ACT TTA GM GCT TTC 1646

450
I P I L T N E D E Q I G A R I V L K A L S A P L K Q

ATT CCT ATT CTT ACA MT GAA GAT GAG CM ATC GGA GCA CGT ATT GTT CTC AM GCA TTA TCC OCT CCA TTA MG CAA 1724
480

I A A N A G K E G A I I C Q Q V L
$

R S S S E G Y D
ATT GCA GCC MT GCT GOT AM GM GGC GCT ATC ATC TGT CM CAA GTG CTT TCT CCC TCC TCT AGC GM GGC TAT GAT 1802

A L R D A Y T D M I E A G I L 0 P T K V T R C A L E
GCT TTA CGC GAT OCT TAC ACC GAC ATG ATT GAG GCA GGA ATT CTC GAT CCA ACT AAA GTT ACA CGT TGT GCT TTA GM 1880

S A A S V A G L L L T T E A L I A D I P E E K S S S
AGC GCA GCT TCT GTA

OCT

GL
CTT CTA TTA ACA ACA GAA OCT TTA ATT WC GAT ATT CCT GM GAG AAA TCC TCT TCT 1958

540
A P A M P G A G M D Y STOP
GCT CCC WA ATG CCA GGC GCA GGA ATG GAT TAT TM TCCTTMTTTAGAWGCATTTTCTCTMTATTATAAOQQMT73LAWCATCT 2049

TGAk&ArA&&rGQQQ="TTTTATTTTCTMTATTTCTTTCTTCATCTATGTTGGAAACCAAGATAMTCATATTCTCATCATGCATGTTTAMCTTTTAAA 2152

FIGURE 5 .

	

Nucleotide sequence of the C. psittaci strain GPIC hyp operon . The deduced amino
acid sequences of the hypA and hypB ORFs are indicated above the nucleotide sequence. The
inferred promoter region (-35 region and -10 region), ribosomal binding sites (single under-
score), and the dyad symmetry (arrows) ofthe proposed transcription terminator are indicated.
The sequence corresponding to the oligonucleotides used for Northern blot analysis are indi-
cated (= == =) . Numbers to the right ofthe figure refer to nucleotide position, and amino acid
numbering is above the deduced amino acid sequence. The nucleotide sequence data reported
here have been submitted to GenBank and assigned the accession number M25101.
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of hypB (Fig . 5) revealed that hypA and hypB are expressed as a single mRNA tran-
script of -2,300 nucleotides (data not shown) .

PredictedAminoAcid SequenceHomology.

	

Theamino acid sequence encoded by hypA
showed identity with HtpA (42%) and GroES (38%) proteins (Fig. 6 A) (35, 36).
The HypB protein showed more identity to the HtpB protein of C. burnetii (61%)
(36), the GroEL protein of E. coli (60%) (35), the 65-kD protein ofM. tuberculosis
(58%) (37), and the mature Hsp60 protein ofS cereaisitte (53%) (38) (Fig . 6 B) . Regions
of identity were scattered throughout the sequence . However the NH2- and COOH-
terminal sequences, and sequences 318 to 361 and 421 to 481 exhibited more diver-
gence and may be determinants of the polypeptide that specify chlamydial-specific
epitopes .
Because the 57-kD chlamydial protein showed considerable amino acid identity

with the common GroEL antigen ofE. coli, we examined other prokaryotic organisms
by immunoblotting with anti-57-kD serum (Fig . 7) . This antiserum reacted with
polypeptides of similar MT in all bacteria examined. These results along with the

1

	

30

	

60

	

90
HYPA MSDQATTLRIKPWDRILVNREEHDSTARWIILPDTMKKODRAEVLVLG7,KRDKDGXVLPFEVTVGDTV-LIDKYAGQELTVDGHEYVIVQESEYMVL-K

Ntpk -------MK .R. .B . .W .R.L . .ER.SA. . .VI . .S .AE .PS .G . .ISV .P . .PLDR.E .RSLD .X . . .01- .FG . . . .T.VKU .D . . IVMR .DDI .G .IE .

GCOES -------KX .R. .H. .VI . . .K .VHTKSA. . .V .TGS .M .ST .G . . .AV .X .RILEX .E .K .LD .K . . . I .IFN .G .GVKSEKI . X . .VL .MS . .DIL.IVER

1

	

30

	

60

	

90

	

120
Hype MAAKXIKYMEDAAKKIMGVKTLIEAVXVTLQPXGRNWIOKSFGSPQVTKDGVTVAIDFIELEDKNENWAOINREVASKTADXA000TTTATVLIGIYSEGLRXVTAWNPMDLKRGI

HtPH . . . .VL.FSHEVLHAMSR . .EV . .N . . . . . . . . . . .N . .L . . . . .A .TI . . . . .S . . . . . . . . . .F . . . . . . . . . . . . .R .S .D . . . . . . . . . . . .Q . .LV . .IM .I . .M . . . . . . . . .

OroEL

	

. . . .W .PGN . . .V .MLR. . . . .0 . . . . . . . . . . .N . .L . . . . .A .TL . . . .5 . .0. . . . . . . .F . . . . . . . . . . . . . .M .A . . . . . . . . . . . .Q" .IT . . .KA .A. .M. . . . . . . . .

TS 65K

	

- . .T .A .D .R . .RGL®t .LNA . .D . . . . . . . . . . .N . .LH.KN.A .TLN . . .SI . . . . . . . .PY .KI . .EL . . . . .K . .D .V . . . . . . . . . . . .Q.LVR ., . . . .A. . . . .LG . . . . .

HXP6O. SSH .EL .FGVEG .ASLL . . .E . . . . . .M . . . . . . .N .L.HQP . .P .KI . . . . . . . . .S .V .K . .F . . . . .KLIA . . . . . .NEA . . . . . .S . . . .GR . .FT .SW . .A . .C . . . . .R . .S

121

	

150

	

180

	

210

	

210
HypB DKAVKVVVDHIMISKPVOHHXEIAQVATISUXDMIGNLIAEMRKVGKKGSITVEEMGFETVLDWEGNNrNRGYLSSYPSTNPETOECVLEEALVLIYDKKISGIKDPLPVLOQV

HtPH . . . .TAA .A .L . . . . . .CKDQ .A . . . .G . . . . .S .KS . .DI . . . . . . . . . .E .V . . . .DGS .L .M .E . . . . .Q .D . . . . .P . .IK .QQNMSM . .NPFI .LV. . . . . NAELI .L .EN .

GtoRL . .TM.E .L .AL .V .CSDS .A . . . .G . . . . .S .ETV.K . . . . . .D . . . .E .V . . . .DGT .LQDE . . . . . . .O .D . . . . .P . .INK . . .GAVE . .SPFI .U. . . .A .REN . . . .EA .

TB 659 E . . . BK .TBTLL .G .E .ETKEQ . .AT.A . . .-G .OS . .D . . . . . .D . . .XE .V . . . . .SXT .GLQ .ELT. . .A .DX . .LG . .V .D . .R . .A . . .OPYL LVSS .V .N . .L . .L .EK .

H6p6O OV . .SR .IHFLSMIK .SITTSB . . . . . . . . . . .G .SHV.K .L.S . . . . . . .R .V . .IR .GRTL .DE .E .T . . .R .D . .PI .P . . I .D .KSSXVEF .KP .L.LS E . . . .S .O .I . .A .EIS

211

	

270

	

300

	

330

	

360
Hype

	

AESGRPLLIIAEDIEGEAI .ATLVVNRLRAQRVCAVKAPGPCDRRKAMMOIAILTGGOLISEELGHK 8XTTWQ.GMMVIVSKEDTTIVEGLGSnDIESRCESIRKQIE-DSTSD

XtPB .K . . . . . .V . . . . . . . . . . . . . . . .NI .GVVN .A . . . . . . . . . . . . . . .Q. . .V . . . . . . . . .V.LS . .MS .DD. .S . .R.V .T .D . . . .ID .S .DAG. .NN .V .Q .R .E-N .S . .
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FIGURE 6.

	

Comparison ofthe deduced amino acid sequences of(A) the C. psittaci HypA protein
and the C. burttetii HtpA and E. coli GroES proteins, and (B) the C psittaci HypB protein and
the C. bumetii HtpB, E. coli GroEL, M. tuberculosis 65k and S. cerevisiae Hsp60 proteins. Identity
is represented by a period, conserved amino acid changes by a colon above the amino acid, and
gaps introduced for alignment purposes by a hyphen . The Hsp 60 sequence is aligned beginning
at amino acid number 22 . Amino acid position number does not directly correspond with the
amino acid numbers in Fig. 5 because of the inserted gaps needed for alignment .
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FIGURE 7. Immunoblot analysis of
whole-cell lysates probed with mono-
specific anti-57-kD serum. Each sam-
ple consisted of20 Fag of total protein .
(Lane 1) C. psittaci strain GPIC; (lane
2) C. trachomatis serovar B; (lane 3)
C. trachomatis serovar L2 ; (lane 4)E. coli
strain JM109; (lane 5) E. coli strain
JM109[pGP57] ; (lane 6) S. typhimurium
strain SL3261 ; (lane 7) N. gonorrhoeae
strain MS11 ; (lane 8) R. rickettsii R
strain ; (lane 9) C. burnetii strain Nine
Mile; (lane 10) B. burgdorferi strain B31;
and (lane 11) M. tuberculosis strain
H37RA.

amino acid homologies demonstrate that the 57-kD chlamydial protein is a member
of the family of widely conserved stress-response proteins referred to as common
antigen (39) .

Discussion
The 57-kD chlamydial protein, previously implicated in the pathogenesis of

chlamydial disease, belongs to the familly of stress-response proteins common to
both prokaryotic and eukaryotic organisms. The arrangement of hypA and hypB in
a groE-like operon, the identity between the inferred promoter region and known
heat-shock promoter sites, and the striking amino acid identity (>50%) between
HypB and other known stress response proteins imply that we have identified an
analogous operon in Chlamydia .
Whether hypA andhypB expression in Chlamydia is responsive to heat-shock or other

stresses is not known. Thequestion is not easily tested because of the obligate intra-
cellular growth of Chlamydia . The 57-kD protein is the second most abundant pro-
tein in chlamydial whole-cell lysates (20), and is expressed throughout the chlamydial
growth cycle (our unpublished observations); clearly the conditions of intracellular
growth promote its expression at high levels . The intracellular growth environment
of Chlamydia is regarded as "hostile" (40), and presents both physiological and im-
munological conditions which may induce a stress response . For example, as ob-
ligate intracellular parasites chlamydiae grow in an environment in which they must
compete continually with the host cell for nutrients and energy (40) . Immunological
conditions may exist duirng chlamydial infection that could also signal a stress-
response . For example, IFN-y affects chlamydial growth (41, 42) and might provide
apersistent stimulus for a stress response . Thus, conditions exist in the intracellular
environment that could provide a persistent stimulus for a stress response and pro-
mote elevated expression of the 57-kD protein.
We suggested previously that the host's immune response to the 57-kD chlamydial

antigen might be deleterious (20) . Inflammation elicited by the 57-kD antigen may
damage tissue, with progression to scarring ofconjunctival and fallopian tube mucosae,
which result in blindness and infertility, respectively. It has been proposed that T cells
with specificity for the immunodominant 65-kD stress protein of mycobacteria con-
tribute to protection (43), and that this antigenmayhave immunoprophylactic poten-
tial for abroad spectrum of human pathogens (44) . The different effects of immuno-
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logical responses (deleterious vs . protective) to highly related proteins from these
intracellular prokaryotes mayrelate to their differences in host cell tropsm. Mycobac-
teria multiply within macrophages, andprotection against mycobacterial disease in-
volves cell-mediated immunity (45) that canbe passively transferred with immuno-
logically primed CD4+ T cells (46) . The 65-kD mycobacterial antigen elicits strong
DH responses, and 20% of the CD4+ T cells from mice immunized with M. tuber-
culosis proliferate when cultured with this antigen (43, 47). Proliferating CD4+ T
cells release a number ofimmunologically active cytokines, including IFN-1', which
increases the bactericidal activity ofmacrophages, and thus might contribute to the
control of mycobacterial disease (48, 49).

In contrast, chlamydiae are typically pathogens of mucosal epithelium anddo not
grow within macrophages. The role of cell-mediated immunity in chlamydial dis-
ease is poorly understood . Chlamydial-specific cytotoxic Tcells have not been demon-
strated, though helper T cells are clearly needed for production of protective anti-
bodies, andcytokines appear to inhibit chlamydial replication (50, 51). Components
of the immune response to mycobacterial and chlamydial infection may function
differently because of the differing cellular tropism of these intracellular pathogens.
For example, IFN-,y increases the bactericidal activity of macrophages which in-
hibits mycobacterial growth. In contrast, IFN- ,y inhibits chlamydial replication by
depleting the essential amino acid tryptophan (52), not by increasing the bacteri-
cidal activity ofepithelial cells . This inhibits differentiation of chlamydial reticulate
bodies into infectious elementary bodies and can result in growth stasis (41, 42).
Thus, astressful intracellular environmentmayresult to influence expression of the
57-kD protein by intracellular chlamydiae . The synthesis and release of the 57-kD
antigen from such chronically infected cells might provide a prolonged antigenic
stimulation that causes chronic inflammation andimmune-mediated disease rather
than protection . In this regard, intracellular growth of chlamydiae in the presence
ofpenicillin induces a state ofpersistent infection, characterized by the development
of large aberrant reticulate body inclusions and inhibition of the reticulate body
to elementary body differentiation process. These cells release the 57-kD chlamydial
antigen, which upon purification elicits an ocular DH response in immune guinea
pigs (our unpublished observations). Since IFN- .y can induce a similar infectious
state (i .e., persistence), it may produce an analogous situation in vivo with persistent
infection and release of the 57-kD hypersensitivity antigen.

In humandisease, inflammatory damage to the conjunctival epithelium occasion-
ally leads to conjunctival and corneal scarring, and blindness. Inflammatory damage
and scarring of the fallopian tube mucosa results in tubal blockage and infertility.
We believe that the inflammation observed in these disease conditions is a conse-
quence of a chronic hypersensitivity response to the 57-kD protein. In support of
this hypothesis, we have found that the cellular infiltrate of the local inflammatory
response elicited by the 57-kD protein is consistent with that observed in the con-
junctivae of individuals with trachoma and in the fallopian tubes of women ren-
dered infertile as the result of chlamydial-induced salpingitis (16, 19, 20).
The conserved nature of the 57-kD protein among prokaryotic and eukaryotic

organisms presents a situation in which serious consequences may develop as a re-
sult ofthe stimulation of an inappropriate immune response . Repeated stimulation
ofthe immune response through re-exposure to highly conserved epitopes maypro-
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voke an autoimmune response . It has been proposed that the 65-kD mycobacterial
antigen is involved in the development ofan autoimmune arthritis (53), and a similar
mechanism may function in certain chlamydial disease conditions, such as Reiter's
disease.
An intriguing relationship exists between the chlamydial homologue of the -60-

kD stress-response proteins and the pathogenesis ofchlamydial disease. Indeed, more
detailed studies of the host's immune response to antigenic determinants of the 57-
kD protein are essential to further our understanding of the relationship of this pro-
tein to chlamydial disease pathogenesis and immunity.

Summary
Chlamydia trachomatis infection of humans is commonly a localized inflammation

that can result in infertility, blindness, and perhaps arthritis . The pathogenic pro-
cess(es) that cause these sequelae are thought to be immunological . A 57-kD protein
that is common among Chlamydia elicits ocular inflammation when introduced onto
the conjunctivae of guinea pigs or nonhuman primates previously sensitized by
chlamydial infection . This protein is thought to mediate the immunopathology that
follows chlamydial infection. To more thoroughly characterize this chlamydial com-
ponent, we cloned its gene from a C. psittaci strain and identified a particular recom-
binant that produced the 57-kD polypeptide. The recombinant gene product was
immunoreactive with a monospecific anti-57-kD serum, and elicited an ocular inflam-
mation similar to that produced by the 57-kD antigen isolated from chlamydiae .
Sequencing identified two ORFs that encode polypeptides of 11 .2 and 58.1 kD and
are co-transcribed . These two polypeptides show homology with Escherichia coli groE
and Coxiella burnetii htp heat-shock proteins . Striking homology (>50%) was found
between the 57-kD protein and the HtpB, GroEL, 65-k Mycobacterium tuberculosis and
Hsp60 proteins. Thus, the 57-kDchlamydial protein, previously implicated as medi-
ating a deleterious immunologic response to chlamydial infections, is a stress-induced
protein similar to those that occur universally in both prokaryotic and eukaryotic
organisms .
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