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The synthetic TRH analogue taltirelin exerts
modality-specific antinociceptive effects
via distinct descending monoaminergic systems

M Tanabe, Y Tokuda, K Takasu, K Ono, M Honda and H Ono

Laboratory of CNS Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Mizuho-ku, Nagoya, Japan

Background and purpose: Exogenously administered thyrotropin-releasing hormone (TRH) is known to exert potent but
short-acting centrally-mediated antinociceptive effects. We sought to investigate the mechanisms underlying these effects
using the synthetic TRH analogue taltirelin, focusing on the descending monoaminergic systems in mice.
Experimental approach: The mice received systemic or local injections of taltirelin combined with either central noradrenaline
(NA) or 5-hydroxytryptamine (5-HT) depletion by 6-hydroxydopamine (6-OHDA) or DL-p-chlorophenylalanine (PCPA),
respectively, or blockade of their receptors. The degree of antinociception was determined using the tail flick and tail pressure
tests.
Key results: Subcutaneously (s.c.) administered taltirelin exhibited dose-dependent antinociceptive effects in the tail flick and
tail pressure tests. These effects appeared to be primarily supraspinally mediated, since intracerebroventricularly (i.c.v.) but not
intrathecally (i.t.) injected taltirelin generated similar effects. Depletion of central NA abolished only the analgesic effect of
taltirelin (s.c. and i.c.v.) on mechanical nociception. By contrast, depletion of central 5-HT abolished only its analgesic effect on
thermal nociception. Intraperitoneal (i.p.) and i.t. injection of the a2-adrenoceptor antagonist yohimbine respectively reduced
the analgesic effect of taltirelin (s.c. and i.c.v.) on mechanical nociception. By contrast, the 5-HT1A receptor antagonist WAY-
100635 (i.p. and i.t.) reduced the effect of taltirelin (s.c. and i.c.v.) on thermal nociception. Neither the 5-HT2 receptor
antagonist ketanserin nor the opioid receptor antagonist naloxone altered the antinociceptive effect of taltirelin.
Conclusions and Implications: These findings suggest that taltirelin activates the descending noradrenergic and serotonergic
pain inhibitory systems, respectively, to exert its analgesic effects on mechanical and thermal nociception.
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Introduction

Thyrotropin-releasing hormone (TRH), a neuropeptide dis-

covered originally as a pituitary hormone, has been shown to

be distributed widely in the central nervous system (CNS),

where it acts as a neurotransmitter or a neuromodulator

(Winokur and Utiger, 1974; Hökfelt et al., 1975; Wu et al.,

1992) and exerts a variety of CNS effects that are not related

to its endocrine activity in releasing thyroid-stimulating

hormone. When administered exogenously, TRH produces

various behavioral changes including an increase in loco-

motor activity (Andrews and Sahgal, 1983; Yamamura et al.,

1991), appearance of serotonin syndrome-like activities

(Fone et al., 1989; Funk et al., 1997) and antinociceptive

effects against noxious stimuli (Boschi et al., 1983; Webster

et al., 1983; Kawamura et al., 1985; Reny-Palasse et al., 1989).

In addition, clinical and preclinical studies have demon-

strated a protective role of TRH against epilepsy (Matsumoto

et al., 1987; Ujihara et al., 1991; Broberger and McCormick,

2005) and neurodegeneration (Pizzi et al., 1999; Jaworska-

Feil et al., 2001, Urayama et al., 2002). Thus, TRH is

profoundly involved in the regulation of motor activity

(see also Ono and Fukuda, 1982), pain perception and

neuronal excitability, and TRH and its analogues have been

used clinically for the treatment of patients with motor
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disturbance owing to neurological disorders such as spino-

cerebellar degeneration (spinocerebellar ataxia) (Sobue et al.,

1980; Takeuchi et al., 1989).

The antinociceptive activity of TRH may be beneficial for

patients suffering from spinocerebellar ataxia, as pain –

including generalized muscle and joint pain – is reported to

be a common feature of Machado–Joseph disease, the most

common spinocerebellar ataxia that is inherited in an

autosomal dominant manner (Løkkegaard et al., 1998; Takei

et al., 2004). However, the mechanisms underlying the

analgesic effects of TRH are poorly understood. In the study

presented here, we characterized the antinociceptive effects

of TRH by using its stable analogue taltirelin, which has

more potent CNS activity with lower endocrine activity than

TRH itself (Suzuki et al., 1990), focusing on the relationship

with the monoaminergic system descending the spinal

cord. We found that TRH exhibits modality-specific anti-

nociception mediated via distinct descending monoaminergic

systems; taltirelin activates the descending noradrenergic and

5-hydroxytryptaminergic pain inhibitory systems to generate

analgesic effects on mechanical and thermal nociception,

respectively. Some preliminary data have been published

elsewhere in abstract format (Tokuda et al., 2005).

Methods

All of the experimental protocols used here were approved

by the Animal Care and Use Committee of Nagoya City

University and were carried out according to the guidelines

of the National Institutes of Health and the Japanese

Pharmacological Society.

Effects on acute nociception

The degree of antinociception was determined using the

tail flick test and the tail pressure test in 5-week-old male

ICR mice.

In the tail flick test, a radiant heat tail flick analgesia meter

(MK-330; Muromachi Kikai, Tokyo, Japan) was used to

measure response latencies, following a modification of the

method of D’Amour and Smith (1941). Focused heat was

applied to the ventral surface of the tail at 2.5 cm from its

distal end, and the latency to reflexive removal of the tail

from the heat (tail flick latency) was recorded. The tail flick

latency was measured in duplicate, and the mean of the

two values was used for analysis. A cutoff latency of 15 s

was imposed to avoid tissue damage.

Following the tail flick test, mice were subjected to the tail

pressure test (Pressure Analgesy-Meter, Muromachi Kikai) to

assess their threshold for acute mechanical nociception.

Pressure was applied about 1.5 cm from the base of the tail

via a blunt probe. The pressure level was increased at a rate of

10 mm Hg/s, and the pressure (mm Hg) required to elicit a

response was determined for each mouse; this pressure was

defined as the nociceptive threshold. Tail pressure measure-

ments were made in duplicate, and the mean of the two

values was used for calculations. The cutoff pressure was

200 mm Hg.

The 198 mice used in the present study (except mono-

amine-depleted mice) exhibited a mean tail flick latency of

5.170.1 s (range, 3.0–8.9 s) and a mean nociceptive thresh-

old of 68.970.8 mm Hg (range, 46.5–108.5 mm Hg in the tail

pressure test).

Assessment of locomotor activities

Locomotor activities during exploratory behavior in an open

arena (18�28 cm floor with 13-cm-high walls) were mea-

sured in an automated behavioral experimental apparatus

(Animex IIIA, Shimazu, Kyoto, Japan). In this equipment,

the movement detector operates by counting the number

of times an animal elicits a capacitance change. Mice were

injected intracerebroventricularly (i.c.v.) with either saline

(as a control) or taltirelin. Assessment of locomotor activities

was carried out for 1 h post injection, locomotion was

measured in 5-min windows during that time.

Depletion of noradrenaline and 5-hydroxytryptamine

Under anesthesia with intraperitoneal (i.p.) administration

of pentobarbital sodium (60 mg kg�1), some groups of mice

were injected intracisternally with 50 mg of the catecholami-

nergic neurotoxin 6-hydroxydopamine hydrobromide (6-

OHDA) to cause damage to central noradrenergic neurons.

6-OHDA was dissolved in 5 ml of 0.9% saline containing

ascorbic acid (100 mg ml�1). Control animals were injected

with the vehicle alone. The assessment of acute nociception

was made 7 days after treatment with either 6-OHDA or

vehicle.

To deplete central 5-hydroxytryptamine (5-HT), p-chloro-

phenylalanine (PCPA) 300 mg kg�1 day�1, suspended in 0.5%

carboxymethylcellulose (CMC) sodium solution, was admi-

nistered i.p. for 5 consecutive days. Control animals were

injected with CMC alone. The assessment of acute nocicep-

tion was made 1 day after the last treatment with either

PCPA or vehicle.

After the assessment of acute nociception, the mice

were killed by inhalation of ether. The brainstem and spinal

cord were dissected out, weighed and then frozen on dry ice.

Each brainstem or spinal cord was homogenized in 450 ml of

0.1 M perchloric acid containing the synthetic monoamine

dihydroxybenzylamine (0.01 mg ml�1) as an internal stan-

dard. The contents of noradrenaline (NA), 5-HT and

dopamine (DA) were measured using reverse-phase high-

performance liquid chromatography with electrochemical

detection.

Drugs

In the present study, the experimenters were aware of the

drugs injected. All drugs except 6-OHDA and PCPA were

dissolved in 0.9% w/v physiological saline. When given

either subcutaneously (s.c.) or i.p., the drugs were adminis-

tered in a volume of 0.1 ml (10 g body weight)�1. For

intrathecal (i.t.) injection, the drugs were administered in

a volume of 5ml via a disposable 27-gauge needle, which was

inserted into the subarachnoid space through the interver-

tebral foramen between L5 and L6 according to the method

described by Hylden and Wilcox (1980). For i.c.v. injection,
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taltirelin was also administered in a volume of 5ml via a

disposable 27-gauge needle that was inserted into the lateral

ventricle (Haley and McCormick, 1957). The a2-adrenergic

receptor antagonist or 5-HT receptor antagonists were

administered 15 min before taltirelin injection.

Statistical analysis

All data are expressed as the mean7s.e.m. The effects of

taltirelin on the tail flick latency in the tail flick test and the

nociceptive threshold in the tail pressure test were evaluated

in a time course study, where taltirelin was administered at

time zero. The nociceptive threshold at each time point was

normalized to the predrug value. Two-tailed non-parametric

multiple comparisons with Bonferroni correction following

the Kruskal–Wallis test (Glantz, 1992) were used for compar-

isons between the control and treated groups. The Mann–

Whitney U-test was used for comparisons between two

groups. Differences at Po0.05 (two-tailed) were considered

significant.

Materials

Taltirelin hydrate was donated by Tanabe Seiyaku (Osaka,

Japan). Yohimbine HCl, ketanserin tartarate, WAY-100635

maleate, naloxone HCl and 6-OHDA were purchased from

Sigma Chemical (St Louis, MO, USA). DL-PCPA was obtained

from Nakarai (Kyoto, Japan).

Results

Systemically and supraspinally administered taltirelin produces

antinociceptive effects against a thermal or mechanical stimulus

We first examined whether systemically administered taltir-

elin produced antinociceptive effects against a thermal or

mechanical stimulus. As the time course graphs in Figure 1a

illustrate, taltirelin hydrate (0.1, 0.3 and 1 mg kg�1, s.c.)

generated dose-dependent antinociceptive effects against a

thermal and a mechanical stimulus (in the tail flick and tail

pressure tests, respectively). In particular, the analgesic

effects elicited at 1 mg kg�1 were nearly equivalent to those

of morphine HCl (10 mg kg�1, s.c. Figure 1b).

We then assessed the possible sites at which taltirelin

exerted its antinociceptive effects by locally injecting

taltirelin hydrate either i.c.v. or i.t. (0.1 and 0.3 mg). Figure 2

demonstrates that i.c.v.-injected taltirelin exerted potent

antinociceptive effects in the tail flick and tail pressure tests,

but lacked an analgesic effect after i.t. injection. Thus,

supraspinal sites primarily contribute to the antinociceptive

effects of systemically administered taltirelin.
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Figure 1 TRH analogue taltirelin generates analgesic effects against acute thermal and mechanical nociception. Thermal and mechanical
nociception was assessed in the tail flick (left) and tail pressure (right) tests, respectively. Taltirelin hydrate ((a); tal, 0.1, 0.3 and 1 mg kg�1) was
administered s.c. at time zero. The analgesic effects elicited at 1 mg kg�1 were nearly equivalent to those of morphine HCl ((b); mor,
10 mg kg�1, s.c., administered at time zero). Each point represents the mean (7s.e.m.) result from six mice. Ordinates: mean normalized tail
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Depletion of central NA and 5-HT decreases the antinociceptive

effect of taltirelin on mechanical and thermal nociception,

respectively

As the monoaminergic pathways descending to the lumbar

spinal cord have a crucial influence on spinal nociceptive

transmission (Millan, 2002), we next evaluated the role of

these pathways in the supraspinally mediated antinocicep-

tive effects of taltirelin. We first assessed the effects of i.c.v.-

injected taltirelin 1 week after intracisternal injection of

6-OHDA to deplete central NA. Consistent with our previous

study (Tanabe et al., 2005), treatment with 6-OHDA reduced

the NA contents of the brainstem and spinal cord to 72.4 and

1.7%, respectively, of those in control mice treated with

vehicle (ascorbic acid) alone, whereas the simultaneously

measured 5-HT and DA contents of both areas were un-

changed (Figure 3a, data obtained from six vehicle-treated

and 18 6-OHDA-treated animals). In mice treated with

6-OHDA, the mean tail flick latency (3.570.1 s, n¼18) was

shorter than that in mice treated with vehicle alone (4.17
0.2 s, n¼6, Po0.05), whereas depletion of NA did not affect

the mean withdrawal threshold in the tail pressure test

(70.172.3 mm Hg in 6-OHDA-treated vs 73.974.0 mm Hg

in vehicle-treated, n¼18 and 6, respectively). After depletion

of NA, taltirelin hydrate (0.1 and 0.3mg, i.c.v.) exhibited an

analgesic effect on thermal nociception that was almost

equivalent to the effect in vehicle-treated mice. By contrast,

the analgesic effect of taltirelin on mechanical nocicep-

tion was completely abolished in 6-OHDA-treated mice

(Figure 4a).

We next evaluated the effects of i.c.v.-injected taltirelin

using mice in which central 5-HT levels had been depleted

by i.p. injection of PCPA for 5 consecutive days. This

treatment with PCPA reduced the 5-HT contents of the

brainstem and spinal cord to 34.3 and 17.3%, respectively,

of those in control mice treated with vehicle (CMC) alone,

whereas the simultaneously measured NA and DA contents

of both areas were unchanged (Figure 3b, data obtained from

six vehicle-treated and 18 PCPA-treated animals). PCPA did

not affect either the mean tail flick latency (4.270.1 s in

PCPA-treated vs 4.170.1 s in vehicle-treated, n¼18 and 6,

respectively) or nociceptive threshold in the tail pressure test

(75.872.0 mm Hg in PCPA-treated vs 73.573.8 mm Hg in

vehicle-treated, n¼18 and 6, respectively). In mice treated

with PCPA, taltirelin hydrate (0.1 and 0.3 mg, i.c.v.) exhibited

an analgesic effect on mechanical nociception that was

almost equivalent to the effect in vehicle-treated mice. By

contrast, the analgesic effect of taltirelin on thermal

nociception was completely abolished in PCPA-treated mice

(Figure 4b).

Together, these results indicate that taltirelin supraspinally

activates the descending noradrenergic and serotonergic

pain inhibitory systems to generate analgesic effects on
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mechanical and thermal nociception respectively. We then

performed pharmacological experiments to investigate the

spinal adrenoceptor and 5-HT receptor subtypes mediating

the supraspinal analgesic actions of taltirelin.

Spinal a2-adrenergic and 5-HT1A-receptors mediate the

supraspinal actions of taltirelin on mechanical and thermal

nociception, respectively

The noradrenergic endogenous pain-inhibitory system

and a2-adrenoceptors in the lumbar spinal cord have been

demonstrated to be sequentially activated to generate

analgesic effects (Sagen and Proudfit, 1984; Jones, 1991;

Tanabe et al., 2005; Takasu et al., 2006). In support of this,

the a2-adrenergic receptor antagonist yohimbine HCl (0.1,

0.3 and 1 mg kg�1, i.p.) dose-dependently suppressed the

analgesic effect of systemically administered taltirelin

hydrate (1 mg kg�1, s.c.) on mechanical nociception, whereas

its effect on thermal nociception was unaffected (Figure 5a).

These results were reproduced when both yohimbine HCl

(1 and 3mg, i.t.) and taltirelin hydrate (0.3 mg, i.c.v.) were

locally injected (Figure 5b).

By contrast, the analgesic effect of systemic taltirelin

hydrate (1 mg kg�1, s.c.) on thermal nociception was reduced

by the 5-HT1A receptor antagonist WAY-100635 (0.3 and

1 mg kg�1, i.p.), whereas its effect on mechanical nociception

was hardly affected (Figure 6a). Again, i.t. injection of WAY-

100635 (1, 3 and 10 mg) selectively reduced the analgesic

effect of i.c.v.-injected taltirelin hydrate (0.3 mg) on thermal

nociception in a dose-dependent manner (Figure 6b).

Although several 5-HT receptor subtypes in the spinal dorsal

horn have been shown to participate in the spinal modula-

tion of nociception (Hamon and Bourgoin, 1999; Millan,

2002), it appears that spinal 5-HT1A receptors mediate the

supraspinally produced analgesic effect of taltirelin on

thermal nociception. In line with this conclusion, the

5-HT2A receptor antagonist ketanserin (0.3 and 1 mg kg�1,

i.p.) did not affect the analgesic effect of taltirelin hydrate

(1 mg kg�1, i.p.) on thermal and mechanical nociception

(Figure 7a).

Consistent with the previous studies (Andrews and

Sahgal, 1983; Yamamura et al., 1991), taltirelin hydrate

(0.3 mg, i.c.v.) significantly increased locomotor activity

(Figure 8, n¼ 9). Blockade of spinal a2-adrenergic receptors

with yohimbine HCl (3 mg, i.t.) or 5-HT1A receptors with

WAY-100635 (10 mg, i.t.), which respectively resulted in

selective inhibition of the supraspinally mediated analgesic

effects of taltirelin on mechanical and thermal nocicep-

tion, did not change the effects of taltirelin on locomotor

activity (Figure 8). Hence, it appears that the analgesic

effects of taltirelin can be separated from its effects on the

motor system.
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Taltirelin acts on targets other than opioid receptors in supraspinal

structures

The descending monoaminergic pathways mediating the

supraspinal action of taltirelin that we have demonstrated so

far could be shared by opioids acting on the supraspinal

structures (Kuraishi et al., 1983; Sawynok and Reid, 1987).

Therefore, we finally assessed whether opioid receptors were

involved in the antinociceptive effects of taltirelin. However,

the opioid receptor antagonist naloxone HCl (10 mg kg�1,

i.p.) did not alter the analgesic effects of systemically

administered taltirelin hydrate (1 mg kg�1, s.c.) on thermal

and mechanical nociception (Figure 7b). Thus, we conclude

that the supraspinally mediated analgesic action of taltirelin

is independent of opioid receptor activation.

Discussion

TRH and its analogues, used clinically in the treatment of

motor disturbance owing to neurological disorders, such as

spinocerebellar degeneration (Sobue et al., 1980; Takeuchi

et al., 1989), have various CNS effects that are not related to

their endocrine activity. In the present study, we focused on

their antinociceptive activity whose mechanisms have not

been fully determined. Our results indicated that the stable

TRH analogue taltirelin, which has been shown to pass the

blood–brain barrier and be more resistant to enzymatic

degradation than TRH (Chishima, 1994), produces supra-

spinally mediated antinociceptive effects, which are charac-

terized by their modality specificity recruiting distinct

descending monoaminergic pathways to exert analgesic

effects on thermal and mechanical nociception (5-hydroxy-

tryptaminergic and noradrenergic pathways, respectively)

and independent of its effects on the motor system.

The present finding that the antinociception produced

by taltirelin is mediated by its action on the supraspinal

structures is consistent with previous studies using TRH

and its analogues (Boschi et al., 1983; Webster et al., 1983;

Zhukov et al., 1988; Reny-Palasse et al., 1989). When

administered systemically in rodents, taltirelin has about

30–100 times more potent CNS activity and 50 times weaker

endocrine activity than TRH (Suzuki et al., 1990; Yamamura

et al., 1990). Its high resistance to enzymatic degradation

also may contribute to the longer lasting analgesic effect of
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systemically and supraspinally administered taltirelin.

Various lines of evidence suggest that TRH and its analogues

exhibit excitatory effects on spinal nociceptive processing

and motor output, including a facilitatory influence on

N-methyl-D-aspartate receptor-mediated nociceptive respon-

ses in spinal dorsal horn neurons (Chizh and Headley, 1994,

1996) and the spinal reflex (Ono and Fukuda, 1982;

Ono et al., 1990; Kinoshita et al., 1994). However, we

demonstrated that i.t.-injected taltirelin did not change the

nociceptive threshold to a thermal or mechanical stimulus.

Although it remains unclear whether TRH and its analogues

modulate the excitability of inhibitory interneurons in the

spinal superficial layers, we suppose that these interneurons

could be excited to generate no net changes in the

nociceptive thresholds by counteracting the facilitatory

influence of TRH and its analogues on spinal sensory

transmission (Chizh and Headley, 1994, 1996). Together,

TRH and its analogues appear to act primarily at supraspinal

sites to generate analgesic effects.

Several studies have indicated that TRH and its analogues

enhance the release of monoamines in the brain (Heal and

Green, 1979; Heal et al., 1987; Itoh et al., 1994; Fukuchi et al.,

1998). Moreover, Funk et al. (1997) have demonstrated

that spinal 5-HT plays an essential role in the behavioral

responses induced by TRH. As the descending noradrenergic

and 5-hydroxytryptaminergic pathways constitute a

major component of the endogenous pain-inhibitory system

(Jones, 1991; Millan, 2002), it is likely that taltirelin

supraspinally activates these descending pathways to release

NA and 5-HT in the spinal cord. This was evident in the

present study, as the antinociceptive effects of i.c.v.-injected

taltirelin were markedly inhibited after depletion of spinal

monoamines. More importantly, our results indicated that

taltirelin recruits different monoaminergic pathways to exert

its antinociceptive effects on thermal and mechanical

nociception. Depletion of spinal NA abolished only the

analgesic effect of taltirelin on mechanical nociception,

whereas depletion of spinal 5-HT eliminated the effect on

thermal nociception. Such modality specificity has been

demonstrated in the antinociceptive effect of morphine

(Kuraishi et al., 1983; Sawynok and Reid, 1987) and spinally

applied NA and 5-HT (Kuraishi et al., 1985), suggesting that

spinal NA and 5-HT may play a predominant role in the

regulation of mechanical and thermal nociception, respec-

tively. In our pharmacological experiments, the analgesic

effects of supraspinally administered taltirelin on mechan-

ical and thermal nociception were reduced selectively by i.t.

injection of the a2-adreno-ceptor antagonist yohimbine and

the 5-HT1A receptor antagonist WAY-100635, respectively.

These results are consistent with our results obtained in mice
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in which the descending noradrenergic or 5-hydroxytrypt-

aminergic pain inhibitory system was expected to be non-

functional after depletion of NA or 5-HT. Hence, taltirelin,

acting on the supraspinal structures, elicits increased release

of NA and 5-HT in the lumbar spinal cord, which results

in consequential activation of a2-adrenergic and 5-HT1A

receptors, respectively, and produces modality-specific

antinociception.

Intrathecally applied a2-adrenergic receptor agonists exert

an analgesic effect on acute thermal (Reddy et al., 1980;

Hunter et al., 1997; Stone et al., 1997) as well as mechanical

nociception (Ochi and Goto, 2000). Moreover, electrical

stimulation of noradrenergic nuclei in the brainstem can

generate spinal a2-adrenoceptor-mediated analgesic effects

on acute thermal nociception (Jones and Gebhart, 1986;

Yeomans et al., 1992). Hence, the descending noradrenergic

system coupled with spinal a2-adrenergic receptors can

potentially influence both thermal and mechanical nocicep-

tion. Although we suppose that taltirelin activates only a

limited population of the descending noradrenergic path-

ways, which regulate mechanical nociception in the spinal

dorsal horn, we have now no evidence to support this

hypothesis. By contrast, the descending 5-hydroxytryptami-

nergic pathways have been demonstrated to exert both pro-

and antinociceptive actions, which may be partly attribu-

table to multiple classes of 5-HT receptors activated by

released 5-HT in the spinal cord (Millan, 2002). Although

spinal 5-HT1A receptors are likely to mediate the pro-

nociceptive effects of exogenous or endogenous 5-HT on

acute mechanical nociception (Bardin and Colpaert, 2004;

Bonnefont et al., 2005), their analgesic role in thermal

nociceptive processing demonstrated by others (Eide and

Hole, 1991; Xu et al., 1994) argues for our current results. As

supraspinally administered taltirelin, during blockade of

spinal 5-HT1A receptors with WAY-100635, did not promote

the antinociceptive effect in the tail pressure test, taltirelin

seems to activate the descending 5-hydroxytryptaminergic

pathways that affect only the neuronal circuitry invoked by

the thermal stimulus.

The periaqueductal gray matter (PAG) has excitatory

projections to the 5-hydroxytryptaminergic nucleus raphe

magnus and the noradrenergic locus coeruleus, A5 and A7

cell groups (Basbaum and Fields, 1979; Willis et al., 1984;

Cameron et al., 1995), which send descending 5-hydroxy-

tryptaminergic and noradrenergic projections to the spinal

cord, respectively. Injection of TRH and its analogues to the

PAG generates antinociception (Webster et al., 1983). Con-

sistently, stimulation of the PAG inhibits nociceptive dorsal

horn neurons concomitantly with the release of NA and

5-HT (Cui et al., 1999). TRH receptor subtype 2 (termed
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TRHR2) has been shown to be highly expressed in the

pontine nucleus, thalamus and cerebellar cortex. Moreover,

the PAG and several brainstem nuclei also express TRHR2

(Cao et al., 1998; Heuer et al., 2000; O’Dowd et al., 2000). By

contrast, the receptor type expressed in the pituitary gland is

TRHR1 (Cao et al., 1998). Taltirelin has been demonstrated to

exhibit a lower affinity for TRH receptors in the anterior

pituitary than TRH (Asai et al., 1999). These lines of evidence,
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together with our present findings, suggest that TRHR2

receptors, presumably in the PAG, are possible sites of action

through which TRH and its analogues can initiate their

antinociceptive effects.

The descending monoaminergic pathways mediating

the supraspinal action of taltirelin could be shared by

opioids acting on the supraspinal structures (Kuraishi

et al., 1983; Sawynok and Reid, 1987). However, the finding

that the opioid receptor antagonist naloxone, at a sufficient

dose, did not alter the antinociceptive effects of taltirelin

indicates that the antinociceptive effect of TRH and its

analogues is independent of the opioidergic system. This

argues for the finding by Kawamura et al. (1985) that the

TRH-induced antinociception was not antagonized by

naloxone (but see Webster et al., 1983; Reny-Palasse et al.,

1989).

It has been reported that there is a highly negative

correlation between the tail skin temperature and tail flick

latency; when the tail skin temperature is increased, the tail

flick latency is reduced (Tjolsen et al., 1988; Lund et al.,

1989). Moreover, depletion of spinal 5-HT increases the tail

skin temperature, that results in a reduced tail flick latency

(Tjolsen et al., 1988). Hence, spinal 5-HT released after

supraspinal injection of taltirelin may have influence on the

tail skin temperature. However, TRH and its analogues have

been shown to produce hyperthermia (Metcalf et al., 1981).

Consistently in our preliminary experiments in anesthetized

mice, taltirelin produced thermogenic effects and slightly

increased tail skin temperature (data not shown), indicating

that taltirelin increases tail flick latency without lowering of

tail skin temperature.

In summary, using the TRH analogue taltirelin, we have

demonstrated that the antinociceptive effect of TRH (and

its analogues) was initiated by its action on the supraspinal

structures and mediated by the descending monoaminergic

pain-inhibitory system coupled with spinal a2-adrenergic

and 5-HT1A receptors. The antinociception was charac-

terized by modality specificity observed in the noradrenergic

effects on mechanical nociceptive processing and 5-hydro-

xytryptaminergic effects on thermal nociceptive process-

ing. Although the precise mechanisms underlying the

modality-specific antinociceptive effect remain to be deter-

mined, our study provides new insights into the analgesic

action of TRH.
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