Isolation and Characterization of Mutant Strains of Escherichia coli Altered in H₂ Metabolism[†]

JONG HO LEE, PRAMATHESH PATEL, PUSHPAM SANKAR, AND K. T. SHANMUGAM*

Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611

Received 23 July 1984/Accepted 4 January 1985

A positive selection procedure is described for the isolation of hydrogenase-defective mutant strains of *Escherichia coli*. Mutant strains isolated by this procedure can be divided into two major classes. Class I mutants produced hydrogenase activity (determined by using a tritium-exchange assay) and formate hydrogenlyase activity but lacked the ability to reduce benzyl viologen or fumarate with H_2 as the electron donor. Class II mutants failed to produce active hydrogenase and hydrogenase-dependent activities. All the mutant strains produced detectable levels of formate dehydrogenase-1 and -2 and fumarate reductase. The mutation in class I mutants mapped near 65 min of the *E. coli* chromosome, whereas the mutation in class II mutants mapped between *srl* and *cys* operons (58 and 59 min, respectively) in the genome. The class II Hyd mutants can be further subdivided into two groups (*hydA* and *hydB*) based on the cotransduction characteristics with *cys* and *srl*. These results indicate that there are two *hyd* operons and one *hup* operon in the *E. coli* chromosome. The two *hyd* operons are needed for the production of active hydrogenase, and all three are essential for hydrogen-dependent growth of the cell.

In 1931, Stephenson and Stickland (36) proposed the name hydrogenase for the enzyme that catalyzes the reversible oxidation of H_2 to protons and electrons. Since that time, hydrogenase activity has been demonstrated in a diverse group of microorganisms (39), including both aerobic and anaerobic bacteria, as well as algae and protozoa.

Hydrogen gas plays a major role in the metabolism of anaerobic bacteria which evolve H_2 as an end product during fermentation. Hydrogen also serves as a source of reductant in the production of CH_4 by archebacteria (5). Reutilization of H_2 in nitrogen-fixing organisms is also known to enhance the energy efficiency of the nitrogen fixation process (13). In spite of the importance of hydrogenase in bacterial metabolism and its potential use in biotechnology for fuel production (23) and nitrogen fixation (13), very little is known about the molecular biology of H_2 metabolism, even in a well-studied organism like *Escherichia coli*.

Pascal and co-workers described the isolation and characterization of a hydrogenase-defective mutant strain of both *E. coli* and *Salmonella typhimurium* (31). These investigators utilized a dye-overlay procedure to identify mutant strains with defects in hydrogenase activity. Using similar procedures, other investigators also isolated mutant strains of *E. coli* with defects in hydrogenase activity (15, 16, 21, 25, 32). The major problem in the analysis of the H₂ metabolism with biochemical genetic tools is the inability to generate a large number of mutants by the dye-overlay procedure initially described by Pascal et al. (31).

To study the molecular biology of H_2 metabolism, we developed a positive selection procedure for the isolation of hydrogenase-defective mutants. Preliminary characteristics on physiological properties and reversion frequencies of these mutants have been presented previously (37). In this and in the accompanying report by Sankar et al. (34), the selection procedure and complete biochemical and genetic characteristics of the mutant strains altered in their H_2 metabolism are presented.

MATERIALS AND METHODS

Abbreviations. H₂-fumarate (HF) medium, a defined medium used to test the ability of E. coli to grow under anaerobic conditions utilizing H₂ as electron donor and fumarate as electron acceptor. HUP, ability to grow in the HF medium. HUP activity, rate of H₂ utilization with fumarate as electron acceptor. Hup, H_2 uptake phenotype (Hup⁺ and Hup⁻ represent the wild-type and mutant phenotypes, respectively); hup⁺, gene(s) essential for hydrogen uptake activity; this includes hydrogenase as well as other electron carriers required for H₂ uptake. Because the gene symbol hyd is used for hydrogenase, hup is used in this study to designate the electron transport proteins only. fdv, a gene coding for formate dehydrogenase (FDH) activity that couples formate oxidation to reduction of artificial electron acceptor, benzyl viologen (BV). This formate dehydrogenase (FDH-2) is a component of the formate hydrogenlyase (FHL) enzyme complex. *fhl* is used to designate genes, the products of which are essential for FHL activity besides the hyd and fdv gene products.

Bacterial strains and plasmids. All strains are derivatives of *E. coli* K-12 and are listed in Table 1.

Media and growth conditions. Luria broth was prepared as described previously (30). Glucose minimal medium had the following composition: Na_2HPO_4 , 6.25 g; KH_2PO_4 , 0.75 g; NaCl, 2.00 g; $(NH_4)_2SO_4$, 1.0 g; $MgSO_4 - 7H_2O$, 0.2 g; FeSO₄ - 7H₂O, 0.01 g; NaMoO₄ - 2H₂O, 0.01 g; Na₂SeO₃, 0.263 mg in 1 liter of deionized water. The final pH of the medium was 7.5. Glucose was present at a final concentration of 0.3% for aerobic cultures and 1.5% for anaerobic cultures. The HF medium was the same as described by Bernhard and Gottschalk (7). Solid medium contained 15 g of agar per liter of medium.

For growth under H_2 , bacterial cultures were spread on the surface of HF medium in petri dishes, and the plates were placed in a vacuum desiccator. The gas phase was removed and replaced with H_2 , and the plates were incubated at room temperature. Anaerobic conditions were established in the desiccator within 18 to 24 h, as determined

^{*} Corresponding author.

[†] Florida Agricultural Experiment Station publication no. 5754.

TABLE 1. Bacterial strains used in this study

Strain	Genotype or phehotype	Source or selection		
K-10	Hfr PO2A relA1 pit-10 tonA22 T2 ^r λ ⁺ spoT	L. Csonka		
Puig 382	thi-1 thr-1 leu-6 argH1 his-1 pro- 33 purE43 lacY1 mtl-2 xyl-7 malA1 ara-13 gal-6 rpşL9 chlA1 tonA2 እ [°] λ [−] supE44 (?)	B. Bachmann CGSC" 4442		
Puig 426	thi-1 leu-6 suc-10 bioA2 (?) galT27 rpsL129 chlC3 λ ⁻	B. Bachmann CGSC 4444		
JC10240	Hfr PO45 srl-300::Tn10 recA56 thr-300 ilv-318 thi-1 rpsE-300	L. Csonka		
JC10244	cysC43 alaS3 srl-300::Tn10 thr-1 leu-6 thi-1 lacY1 galK2 ara-14 xyl-5 mtl-1 proA2 his-4 argE3 rpsL31 tsx-33 supE44	L. Csonka		
BE-117	leu-6 thi-1 lacŸ1 galK2 ara-14 xyl-5 mtl-1 proA2 his-4 argE-3 str-31 tsx-33 sup-37 recB-21 recC22 sbcB15 hsdS	R. N. Rao		
JM81A	cysC92 tfr-8 (?)	B. Bachmann		
FEJ-1	Hfr PO13 thi-1 leuB6 lacZ4 srl-1 mtlA9 rpsL8 supE44	B. Bachmann		
LCB850	thr-1 leu-6 lacY1 tonA21 hyd str supE44	M. Pascal		
H61	leu thi pro Str ^r lacY hsdR hsdM hyd	W. G. Martin		
SE-1 to SE-7	Puig 426::Tn10 hyd-101 to hyd107, respectively	This study		
SE-8	Puig 426::Tn10 hup101	This study		
SE-9	JC10244 - hyd-108 FDH-2 ⁻	This study		
SE-10	SE-9 - Tc ^s	Spontaneous		
SE-15	JC10244 - Tc ^s	Spontaneous		
SE-16	SE-1 - Tc ^s	Spontaneous		
SE-19	SE-16 - <i>srl-300</i> ::Tn10 recA56	P1(JC10240)		
SE-20	SE-10 - <i>srl-300</i> ::Tn <i>l0 recA56</i>	P1(JC10240)		
SE-24	Puig 382 - hyd-111::Tn10 (Ap lac)	This study		
SE-31	SE-15 - hup-102	This study		
SE-32	SE-31 - <i>srl-300</i> ::Tn10 recA56	P1(JC10240)		
SE-37	SE-2 - Tc ^s	Spontaneous		
SE-40	SE-15 - hup-103	This study		
SE-44	SE-10 - srl^+	P1(K-10)		
SE-46	SE-40 - $alaS^+$	Spontaneous		
SE-49	SE-46 - <i>srl-300</i> ::Tn <i>10 recA56</i>	P1(JC-10240)		
SE-61	SE-20 - $alaS^+$	Spontaneous		
SE-62	SE-24 - chlA ⁺	Spontaneous		
SE-1000	JC10244 - alàS ⁺	Spontaneous		
F'116	argG metC	B. Bachmann		
r 143-1	lysA serA	B. Bachmann		

^a CGSC, Coli Genetic Stock Center.

by anaerobic indicator strip (Gas Pak; BBL Microbiology Systems). Colonies were observed in about 5 days.

Genetic experiments. Complementation analysis with E. coli F' elements was carried out as described previously (30). Bacteriophage P1 cm clr100 was used in transduction experiments as described previously (30). **Preparation of cells and extracts for enzyme assays.** Cells used for enzyme assays were grown in LB medium under anaerobic conditions. Aerobically grown cultures were used as inoculum (5% [vol/vol]) in these experiments, and the cultures were maintained under anaerobic conditions by completely filling the culture vessel. The cells were harvested after 4 h of incubation at 37° C (strains carrying *alaS* mutation were incubated at 30°C for 5 h) by centrifugation. For whole cell assays, the cells from 20 ml of culture were collected after centrifugation at $3,500 \times g$ for 10 min at room temperature and washed once with 10 ml of wash buffer (NaK-PO₄ buffer [pH 7.0] 0.1 M containing 1 mM reduced glutathione and 100 µg of chloramphenicol per ml to prevent continued protein synthesis during the assay). The washed cells were maintained in ice before assay.

For preparation of extracts, cells from 1-liter cultures were centrifuged at $8,000 \times g$ for 10 min at 4°C. The cells were washed once with 10 ml of wash buffer and centrifuged again at 12,000 $\times g$ (4°C) for 10 min. The cells were suspended in 1 ml of wash buffer and passed through a French pressure cell at 20,000 lb/in². The broken cell suspension was centrifuged at 20,000 $\times g$ for 20 min at 4°C, and the supernatant was collected. This crude extract was maintained in ice under an N₂ atmosphere before assay.

Protein was determined by previously described procedures (8, 12). Bovine serum albumin was used as the standard.

Hydrogenase. Hydrogenase activity was determined by two different methods, using whole cells. These include H₂-dependent reduction of BV, a method used by other investigators (31), and tritium exchange (3, 26). The tritium exchange reaction $({}^{3}\text{H}_{2} + \text{H}^{+} + \text{OH}^{-} \rightleftharpoons {}^{3}\text{H}^{+} + \text{OH}^{-} +$ ${}^{3}\text{H}\text{-}\text{H})$ is independent of electron transport proteins (3) and provides an actual measure of the hydrogenase activity present in the cell.

For tritium exchange assay, 0.2 ml of cell suspension (50 to 100 μ g of cell protein) was placed in a tube (12 by 75 mm), and the tube was sealed with a serum stopper. The gas phase was replaced with helium. Tritium gas (11.2 mCi/mmol; New England Nuclear Corp.) was added (25 μ l) to a final concentration of 0.55 μ Ci per assay. After 1 h of incubation at room temperature, the serum stopper was removed, and the tritium gas was vented out in the hood for 10 min, after vigorous mixing of the tube contents. Tritiated water present in a 50- μ l fraction was determined with a scintillation counter in Aquasol-2 scintillation fluid. Hydrogenase activity was expressed as nanomoles of tritiated water produced per hour per milligram of cell protein. Production of tritiated water from ${}^{3}\text{H}_{2}$ was linear with time over the entire assay period.

Hydrogenase and hydrogen uptake activities were also determined by monitoring the disappearance of H₂ from the gas phase by using a gas chromatograph in the presence of either BV or fumarate as electron acceptors. The assay mixture for these reactions contained NaK-PO₄ buffer (0.1 M; pH 7.0), BV or fumarate (50 mM), and cell suspension at a final concentration of 150 to 200 μ g of cell protein (in a final volume of 1 ml) in a 5-ml wheaton vial (19). The gas phase was replaced with N₂, and H₂ was added to a final concentration of 10%. The amount of H₂ in the gas phase was determined at different time intervals with a Varian gas chromatograph (model 920). The activity was expressed as nanomoles of H₂ consumed per minute per milligram of cell protein.

FDH-1. The assay mixture for FDH-1 contained, in a final volume of 3 ml, phosphate buffer (pH 6.5, 0.33 M); sodium

Parent strain	Relevant genotype	Total no. plated (×10 ⁸)	No. of survivors	No. of survivors tested	No. Hup⁻	No. of Hyd⁻	Frequency of Hyd ⁻
K-10	Prototroph	2.8	8,000	100	100	16	5.0×10^{-6}
JC10244	srl cysC	1.4	5,500	108	108	25	9.0×10^{-6}
Puig 426	chlČ	1.6	4,800	200	200	84	1.3×10^{-5}
BE-117	recB recC	3.6	150	36	36	5	5.8×10^{-8}
JC10240	recA	3.4	110	98	98	32	1.1×10^{-7}

TABLE 2. Isolation of mutants with defects in hydrogen metabolism

formate (40 mM); phenazine methosulfate (98 μ M); 3-(4,5dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (thiazolyl blue, MTT; 60 mM) and cell extract (19). The reaction was carried out at room temperature in an anaerobic cuvette under an N₂ atmosphere. The rate of formation of reduced MTT was monitored in a Spectronic 710 spectrophotometer at 560 nm. The amount of reduced formazan produced was calculated by using a molar extinction coefficient of 1.44 \times 10⁴ cm⁻¹.

FDH-2. The assay mixture for FDH-2 contained phosphate buffer (pH 7.0, 0.33 M); BV (6.5 mM); sodium formate (40 mM); and cell extract. The final volume was adjusted to 3.0 ml with deionized water (19). The reaction was carried out in an anaerobic cuvette at room temperature in an N₂ atmosphere. The rate of reduction of BV was monitored at 550 nm, and the amount of BV reduced was calculated by using a molar extinction coefficient of 7.78×10^3 cm⁻¹.

Fumarate reductase. The assay mixture for fumarate reductase contained phosphate buffer (pH 7.8, 92.5 mM); BV (350 μ M); sodium fumarate (30 mM); and cell extract. The reaction volume was 20 ml (35). The reaction was carried out under an argon atmosphere in an anaerobic cuvette. The reaction was initiated by the reduction of BV by the addition of S₂O₄²⁻ (to a reduced BV absorbance of 2.0 at 550 nm). The rate of oxidation of reduced BV was continuously monitored and converted to the amount of fumarate reduced by the enzyme (35).

FHL. The reaction mixture for FHL contained phosphate buffer (pH 6.5, 0.33 M); sodium formate (40 mM); and cell extract (19). The final volume was 1.0 ml. The reaction was carried out at room temperature with N_2 in the gas phase. The rate of production of H_2 was monitored with a gas chromatograph.

The enzyme activities were expressed as nanomoles of product produced or substrate oxidized per minute per milligram of protein.

Materials. Biochemicals were purchased from Sigma Chemical Co. Inorganic and organic chemicals were obtained from Fisher Scientific Co. and were analytical grade.

RESULTS

Isolation of mutants. The biochemical genetic analysis of metabolic pathways requires the availability of a large number of mutants. The dye-overlay method used previously (31) for the identification of mutant strains with alterations in H_2 metabolism is not specific and requires the analysis of a large number of survivors. We developed a positive selection procedure for the isolation of hydrogenase-defective mutant strains based on the observation by Hassan and Fridovich (18) that *E. coli*, as well as several other organisms, are sensitive to the presence of methyl viologen (paraquat) in the medium. The lethal effect of methyl viologen is presumably mediated through the generation of superoxide radical. These

authors also observed that methyl viologen had no effect in an anaerobic culture of *E. coli*.

Whole cells of *E. coli* grown under anaerobic conditions are capable of reducing BV (an analog of methyl viologen) with H_2 as the reductant. Although the actual rates vary, the presence of this reaction in the cells is independent of growth medium composition.

Reduced BV can be oxidized by O_2 to yield semiguinone and the superoxide radical. The ability of reduced BV to generate the superoxide radical readily was the basis for the isolation of mutant strains with defects in H₂ metabolism. By appropriate manipulation of the medium and culture conditions, wild-type cells can be effectively killed, leaving only the mutant strains with defects in hydrogenase or BV reduction. For isolating mutant strains, portions of an actively growing LB culture of E. coli appropriately diluted to yield 100 to 200 survivors per plate were plated on LB medium supplemented with 0.5 mM BV. The plates were placed in a vacuum desiccator. An anaerobic indicator strip (Gas Pak) was also placed in the desiccator. The gas phase was replaced with H₂, and the plates were incubated at room temperature. The residual O₂ present in the desiccator after several gas exchanges with H₂ disappeared within 24 h, as indicated by the white color of the anaerobic indicator strip, which was probably a result of O_2 consumption by the inoculum. The plates were removed after 3 to 5 days, and the survivors were transferred to LB plates by replica plating techniques and incubated at 30 or 37°C, depending on the strain requirements. These clones were picked and tested further. Greater than 99% of these clones were found to be defective in H_2 metabolism (Table 2). The frequency at which the Hup⁻ mutants appeared was about 3×10^{-5} for rec^+ strains and about 3×10^{-7} for strains carrying recA, recB, and recC mutations. The fraction of mutant strains with defects in the hydrogenase activity varied from about 0.14 to 0.42, and the ratio of Hyd⁻ to Hup⁻ was independent of the rec genotype of the parent strain.

Based on these phenotypic characteristics, the Hupmutants can be divided into two major classes. Class I mutants produced both hydrogenase and FHL activities but lacked the ability to reduce BV with H_2 as the electron donor. Class II mutants failed to produce hydrogenase and all hydrogenase-dependent activities.

Biochemical characteristics of the mutants. The amount of hydrogenase activity present in the mutant strains was determined by using two different methods (see above). All the mutant strains assayed lacked H₂-dependent reduction of BV, as well as fumarate-dependent H₂ uptake activity (Table 3). However, the class I mutants (strains SE-8, SE-31, and SE-49) produced ³H₂ exchange activity. Tritium exchange activity of the hydrogenase is independent of any accessory electron carriers that may be essential for BV reduction from H₂ (3). Strain SE-8 produced about 50% of the parent hydrogenase activity (506 units versus 1,120 units for strain

	<i>hyd/hup</i> genotype	Hyd ⁺ / Hup ⁺ parent	Hydrogenase activity ^a					
Strain			³ H ₂ exchange	H ₂ to BV	H ₂ uptake (+fumarate)	FHL		
Parent								
Puig 426			1,120	712	178	11.9		
JC10244			1,376	559	106	26.3		
Puig 382			142	193	95	0.1		
Puig 382 ^b			1,660	470	141	ND ^c		
Mutant								
Class I						1		
SE-8	hup-101	Puig 426	506	UD^{d}	UD	8		
SE-31	hup-102	JC10244	1,254	UD	UD	36		
SE-49	hup-103	JC10244	1,276	UD	UD	42		
Class II								
SE-4	hyd-104	Puig 426	33	UD	UD	0.9		
SE-5	hyd-105	Puig 426	19	UD	UD	0.6		
SE-6	hyd-106	Puig 426	41	UD	UD	0.3		
SE-7	hyd-107	Puig 426	7	UD	UD	0.1		
SE-19	hyd-101	Puig 426	78	UD	UD	0.1		
SE-24	hyd-111	Puig 382	26	UD	UD	0.1		
SE-37	hyd-102	Puig 426	15	UD		0.1		
SE-61	hyd-108	JC10244	UD			0.1		
LCB850 ^e			16			0.1		
$H61^{e}$			1,127	458	131	0.1		

TABLE 3. Hydrogenase activities of the BV-resistant mutant strains of *E. coli*

^{*a*} Units are as follows: ${}^{3}H_{2}$ exchange, nanomoles of ${}^{3}H_{2}O$ produced per hour per milligram of cell protein; H_{2} to BV and H_{2} uptake, nanomoles of H_{2} consumed per minute per milligram of cell protein; FHL, nanomoles of H_{2} produced per minute per milligram of protein.

^b Induced for H_2 uptake in HF medium.

^c ND, Not done.

^d UD, Below the detection limits of the assay (less than 1 unit).

^e Strain LCB850 was obtained from M. C. Pascal (31), and strain H61 was obtained from W. G. Martin (15).

Puig 426), whereas the other two strains produced hydrogenase at levels comparable to those of the respective parents. The hydrogenase activity in strain SE-8 did not increase, even after preincubation in HF medium. We have no explanation for this low activity. All three strains also produced FHL activity. Fumarate-dependent, but not BV-dependent, activity could be detected at low levels in these three strains after preincubation in the HF medium. Strain SE-8 also lacked the ability to couple hydrogenase to other electron acceptors (methyl viologen and methylene blue). In this strain, reduced methyl viologen-dependent H_2 evolution was found to be about 14% (22 units) of the parent value (158 units – nanomoles of H_2 produced per minute per milligram protein).

The class II mutants contained negligible amounts of hydrogenase activity (Table 3). The tritium exchange activity in these mutant strains varied from 0 to 7% of the parent value. Strain SE-24, which was isolated independently after Mud (Ap lac) insertion, falls in this category. Strain LCB 850 described by Pascal et al. (31) also lacked the hydrogenase activity, whereas strain H61 isolated by Glick et al. (15) produced hydrogenase activity but was found to be defective in H₂ uptake. This strain was described by Glick et al. (15) as being defective in anaerobic growth. This defect precluded the determination of FHL activity in this strain, but qualitative experiments indicated a defect in FHL activity also. All other hydrogenase-defective mutants described in Table 3 grew normally under both aerobic and anaerobic growth conditions in minimal and complex media. These results indicate that the Hup⁻ mutant strains can be divided into two major classes, one producing an active hydrogenase and FHL activity and the other lacking hydrogenase.

Enzymes associated with H₂ metabolism. Formate dehydrogenase and hydrogenase are components of the FHL enzyme complex (33). The mutant strains described by Pascal et al. (31) and Graham et al. (16) have been reported to lack the formate dehydrogenase activity. Strain LCB 850, obtained from M. C. Pascal, produced FDH activities, although at lower levels, under our experimental conditions (Table 4). This raised the possibility that the mutant strains described above may also have defects in formate dehydrogenases (FDH-1 and FDH-2) and fumarate reductase (the terminal enzyme in the H₂-dependent fumarate reduction) activities of the mutant strains are presented in Table 4.

All strains produced active FDH-1, FDH-2, and fumarate reductase. The levels of these enzyme activities varied among the different mutant strains, and for FDH-2 this was between 16 and 100% of the parent values. The FDH-1 activity in these mutant strains was comparable to that of the parent strain or higher than the parent (as high as three times for strain SE-7). Similar results were also observed with fumarate reductase. Strain SE-62, a $chlA^+$ derivative of strain SE-24, produced 1,441 units of fumarate reductase activity compared with 166 units for the parent strain Puig 382 (*chlA*).

TABLE 4. Levels of FDH and fumarate reductase activities in the mutant strains altered in H_2 metabolism

			FDH a	ctivity ^a	
Strain	hyd/hup genotype	Hyd⁺/ Hup⁺ parent	FDH-1 (+PMS and MTT)	FDH-2 (+BV)	Fuma- rate re- ductase
Parent					
Puig 382			0.1	0.1	166
Puig 426			31	56	237
JC10244			31	86	326
Mutant					
Class I					
SE-8	hup-101	Puig 426	42	30	300
SE-32 ^b	hup-102	JC10244	51	34	547
SE-49	hup-103	JC10244	25	20	749
Class II					
SE-4	hyd-104	Puig 426	40	16	810
SE-5	hyd-105	Puig 426	49	36	220
SE-6	hyd-106	Puig 426	47	47	350
SE-7	hyd-107	Puig 426	118	20	178
SE-19	hyd-101	Puig 426	31	56	862
SE-24	hyd-111	Puig 382	0.1	0.1	374
SE-37	hyd-102	Puig 426	93	66	ND^c
SE-61	hyd-108	JC10244	56	14	316
SE-62	hyd-111 (chlA ⁺)	Puig 382	27	17	1,441
LCB850 ⁺			11	24	844
H61 ⁺			8	12	142

^a Units are as follows: FDH-1, nanomoles of MTT reduced per minute per milligram of protein; FDH-2, nanomoles of BV reduced per minute per milligram of protein; fumarate reductase, nanomoles of fumarate reduced per minute per milligram of protein. PMS, Phenazine methosulfate.

^b Strains LCB850 and H61 were obtained from M.C. Pascal (31) and W. G. Martin (15), respectively. Strain SE-32, a *srl*::Tn10 recA derivative of strain SE-31 produced 1100 units of hydrogenase activity (tritium exchange), which is similar to that strain SE-31, the recA⁺ parent (Table 3).

^c ND, Not done.

Recipient	Donor	No. of exconjugants/1,000 donor cells in the following mutants:				
strain (class)	strain	cys ⁺	srl+	Hup ⁺		
SE-19 (II)	F'143-1			1.1		
SE-20 (II) ^a	F'143-1	157	118	240		
SE-32 (I)	F'143-1	400	196	0.0		
SE-19 (II)	F'116	0.0	0.0	0.0		
SE-20 (II)	F'116	0.0	0.0	0.0		
SE-32 (I)	F'116	0.0	0.0	467		

 TABLE 5. F' analysis of E. coli mutants defective in hydrogen metabolism

^{*a*} Strain SE-20, which carries the same hyd genotype (hyd-108) as strain SE-61, produced enzyme activities that are similar to those of strain SE-61 (Tables 3 and 4).

All the mutant strains were analyzed at the early to mid-exponential phase of growth. The differences in the activities are probably due to the nature of the *hyd* mutation in the mutant strains. Additional information on the *hyd* mutation and the metabolic interactions among hydrogenase, formate dehydrogenases, and fumarate reductase is needed before attempting to explain these differences. However, these results demonstrate that all the mutant strains with defect(s) in the hydrogenase produced the other enzymes associated with the H₂ metabolism.

Based on the FDH-2 (a component of FHL) levels, the class II mutants can be subdivided into two phenotypes. Strains SE-19 and SE-37 produced FDH-2 at the same levels as the parents or higher (class IIA), whereas strains SE-4, SE-5, SE-6, SE-7, SE-61, and SE-62 produced FDH-2 at levels lower than the parent (class IIB).

Genetic analysis. Pascal et al. (31) have mapped the hyd mutation in strain LCB 850 near the srl gene at 58.5 min on the E. coli chromosome (4). To determine whether all the hyd mutations described in this study mapped in this area, the Hup mutants described above were tested for complementation with an E. coli F' element, F'143-1. This plasmid carries the E. coli genes between 57 and 62 min of the chromosome (28). The results obtained with three representative recA derivatives are presented in Table 5, and these results indicate that the class II (hyd) mutants (strains SE-19 and SE-20, class IIA and IIB, respectively) were complemented by F'143-1 to the Hup⁺ phenotype, whereas the mutation in class I mutants was not. The frequency at which strain SE-19 was complemented by F'143-1 was lower; this could be a result of some unknown properties of the recipient. However, all the exconjugants tested produced all hydrogenase-dependent activities. The srl and cysC mutations in class I mutants were complemented by F'143-1, thus ruling out the possibility of plasmid instability in this genetic background. However, the mutation in class I mutants was complemented by the F' element, F'116. Although the

FIG. 1. Genetic map location of the genes essential for H_2 metabolism in *E. coli*.

results obtained with only three strains are presented, all the other strains that were tested behaved in the same manner. The exconjugants regained the hydrogenase as well as hydrogen uptake activities. These results indicate that the mutation in the class I mutant maps in a different location from the hyd operon(s) near the *srl* gene. In all the strains tested, the wild-type allele is dominant over the mutant allele.

Bacteriophage P1-mediated transduction analysis. The mutation in class I mutants was cotransduced by phage P1 with metC (near 65 min) at a frequency of 76%. The exact location of this mutation in the *E. coli* genome was not determined.

To further distinguish between the two subgroups of class II, the cotransduction frequencies of the hyd mutations were determined with respect to cys and srl with representative strains from each group (Tables 6 and 7).

The hyd mutation in strain SE-1 and its derivatives (hyd 101; class IIA) was cotransduced with cys at a contransduction frequency of about 12% (Table 6). The srl-hyd/Hup cotransduction frequency was about 41%. Further transductional analysis was undertaken to determine the position of the hyd mutation with respect to srl and recA. Strain JC10240, which carries the transposon Tn10 in the srl gene, was used as a donor in experiments involving strains SE-16 and SE-37. The hyd gene was cotransduced with srl::Tn10 at a frequency of about 75%. The cotransduction frequency between srl::Tn10 and recA varied between 65 and 82% in these two strains. A cotransduction frequency of about 85% was reported by Csonka and Clark (10) for these two genes. The hyd^+/Hup^+ recA⁻ cotransduction with srl::Tn10 was lower than the cotransduction frequency observed between srl::Tn10 and hyd/Hup or srl::Tn10 and recA alone.

The cotransduction frequency between srl::Tn10 and recAin the cross involving strain SE-37 is lower than expected (62% versus about 85%). Although this value reduced the percentage of Tc^r transductants that are Hup⁺ RecA⁻ to 52%, the ratio of Hup⁺ clones among the RecA⁻ population stayed constant in both crosses (83% for strain SE-16 and 79% for strain SE-37). Because the cotransduction frequency between *srl* and *recA* is about 85%, the altered *hyd* gene cannot reside between *recA* and *srl*. These results suggest that the *hyd* mutation in these strains is closer to *srl* and distal to *recA* and lies between *srl* and *cys* (Fig. 1).

TABLE 6. Transductional analysis of hydrogenase-defective mutants (class IIA)

Recipient strain	Relevant genotype of recipient	Relevant R enotype of Donor R recipient strain gen strain dor	Relevant genotype of	Selected phenotype	No. tested	Hup	Percent the phe	t unselected of e following nenotypes:	
	strain		donor strain				RecA	Hup RecA	
FEJ-1	srl hyd ⁺	SE-1	srl ⁺ hyd-101	Srl	119	41			
JM81A	cysC hyd+	SE-1	•	Cys	50	12			
SE-16	hyd-101 Tc ^s	JC10240	srl::Tn10 recA	Tcr	195	72	82	69	
SE-37	hyd-102 Tc ^s	JC10240		Tc ^r	180	77	65	52	

Recipient strain	Relevant genotype of recipient strain	Donor strain	Relevant genotype of donor strain	Selected phenotype	No.	Percent unselected of the following phenotypes:		
					tested	Cys	Hup	Srl
SE-9	cysC srl::Tn10 hyd-108	K-10	Prototroph	Cys	366		18	7
SE-44	cysC srl ⁺ hyd- 108	FEJ-1	cys ⁺ srl hyd ⁺	Cys	492		54	17
				Hup	913	47		66
FEJ-1	cys ⁺ srl hyd ⁺	SE-44	cysC srl ⁺ hyd-108	Srl	136	1	4	

TABLE 7. Transductional analysis of hydrogenase-defective mutants (class IIB)

The location of the gene affected in the class IIA mutants was further confirmed by transformation with recombinant plasmids. Clarke and Carbon (9) have described the construction of an *E. coli* gene bank using ColE1 plasmid as the vector. Plasmids pLC21-33 and pLC22-40 from this collection contain both *srl* and *recA* genes (38). The class IIA mutants were transformed with these plasmids (obtained from the Coli Genetic Stock Center), and the transformants were analyzed for hydrogenase activity. The transformants were found to be hyd^- , although they carried the *recA*⁺ gene. These results also demonstrate that the *hyd* mutation in the class IIA mutants is not between *srl* and *recA* operons and thus should be between *cys* and *srl*.

The hyd mutation in strain SE-9 (hyd-108) and its derivatives was used as a representative of the class IIB mutants, and the results indicate that this mutation is cotransducible with cysC at a frequency of about 18% (Table 7). The cotransduction frequency of cysC and srl was about 7%. Strain SE-44 is a srl^+ derivative of strain SE-9, and the removal of Tn10 from the srl gene decreased the overall length of the srl gene to that of the parent. In this srl^+ background, the cysC-hyd and cysC-srl cotransduction frequencies increased to 54 and 17%, respectively. When Hup was the selected phenotype, the hyd-cysC and the hyd-srl cotransduction frequencies were 47 and 66%, respectively.

FIG. 2. Diagram of the probable crossover events occurring in the crosses. (A) Strain SE-10 or SE-44 as recipient and strain SE-16 as donor. (B) Strain SE-16 as recipient and strain SE-44 as donor. Data were obtained from Table 8.

srl as the selected phenotype in a reciprocal cross provided very low cotransduction frequencies for the hyd/Hup character.

These results demonstrate that the *hyd* gene altered in strain SE-9 also maps between cysC and srl genes and the mutation lies closer to srl than to cysC (66 versus 47% cotransduction, respectively). Similar results were obtained with other mutants as well (data not shown). A number of hyd^+ transductants from each experiment were assayed for tritium exchange activity, and all hyd^+ strains also regained the hydrogenase and FHL activities. None of the *hyd* mutants of this class was complemented by plasmids pLC21-33 and pLC22-40 carrying srl^+ and $recA^+$ genes.

If the two genes essential for hydrogenase (altered in strains SE-16 and SE-44) are very near each other, in crosses between the two strains a recombination event needs to occur between the two altered genes to restore the Hup⁺ phenotype (Fig. 2). The cotransduction frequency for such a Hup⁺ phenotype with cysC will be lower because of this constraint and will depend on the distance between the two hyd mutations (donor and recipient). The cotransduction frequency between cvs and hvd/Hup^+ is reduced from 50% (Table 7: transduction involving strain SE-44) to about 12% (Table 8). Similar results were obtained with strain SE-10 as recipient and strain SE-16 as donor, and none of the cys^+ or Hup^+ transductants was srl^+ because this would require a quadruple crossover (Fig. 2A). The cotransduction frequency in the reverse direction is about 2% because of the need for a double recombination event to generate Hup⁺ and cys transductants (Fig. 2B).

These results indicate that the two class II phenotypes (IIA and IIB) represent two hyd genes (operons). These genes are close to each other, between the *srl* and *cys*

TABLE 8. Transductional analysis of the two subgroups of hydrogenase-defective mutants (classes IIA and B)

-	0	,					
Recipient (class; relevant genotype)	Donor (class; relevant	Selected phenotype	No. tested	Percent unselect- ed of the follow- ing phenotypes:			
	genotype)			Cys	Hup	Srl	
SE-10 (IIB;	SE-16 (IIA;	Cys	521		13	0	
cysC srl hyd-108)	cys ⁺ srl ⁺ hyd-101)	Hup	179	9		0	
SE-44 (IIB;		Cvs	1,911		12		
cysC srl ⁺ hyd-108)		Hup	793	8			
SE-16 (IIA; cys ⁺ srl ⁺ hyd-101)	SE-44 (IIB; cysC srl ⁺ hyd-108)	Hup	142	2			

operons, but separate enough not to provide negative interference in the transduction experiments (Fig. 1).

DISCUSSION

E. coli is capable of utilizing several different terminal electron acceptors during growth (17). These include O_2 , NO_3^- , H⁺, organic compounds, etc. The end products of glucose catabolism depend on the availability of these compounds. In the presence of O_2 , the major end products are carbon dioxide and water. Under conditions of O₂ limitation, the glucose catabolism is altered at the level of pyruvate metabolism. The pyruvate dehydrogenase activity decreases with a concomitant increase in the pyruvate formatelyase activity. The major end products of glucose catabolism under anaerobic conditions are acetate, lactate, ethanol, H_2 , and CO_2 . The two gaseous products H_2 and CO_2 are produced from formate by the FHL, enzyme complex which contains FDH-2, hydrogenase, and electron carriers between the two enzymes (17, 33, 39). It is generally believed that the excess reducing power generated under O₂ limitation is released as H_2 (39). The physiological, biochemical, and genetic mechanism by which the cell switches the pyruvate metabolism in response to changing internal redox state (redox control?) is poorly understood. The major difficulties generally encountered in these studies include the lack of good selection procedures for the isolation of mutants, the inherent difficulty of working with proteins that are O₂ sensitive, and the elucidation of electron transport proteins with no enzymatic activity (capable of interacting with small molecules)

To understand the mechanism of redox control, the enzyme hydrogenase was chosen in the present study, because it plays a critical role in the overall reductant metabolism in the cell-hydrogen evolution and hydrogen uptake (14, 29). Hydrogenase is produced in anaerobic cells (17, 32), but the activity (synthesis) is enhanced under conditions of H_2 uptake (24). Hydrogenase is also regulated by formate and H₂. Strain Puig 382, a chlA mutant, is defective in both FDH-1 and FDH-2 (Table 4) and produced low levels of hydrogenase (142 units) in LB medium (Table 3). Addition of formate, the substrate for FHL, or H₂ (substrate for HUP system) to the LB medium increased the hydrogenase levels of cells cultured in this medium to 1,245 and 1,660 units, respectively. This indicates that formate and H₂ act as inducers of hydrogenase in E. coli, although the mutant strain cannot utilize formate because of the chlA mutation.

In spite of the control of hydrogenase by formate, the enzyme is not essential for growth in glucose minimal or LB medium under anaerobic conditions. The positive selection procedure described above also allows the selection of a large number of mutants that are affected by H_2 metabolism in *E. coli* for detailed studies by biochemical genetic methods. Because of these characteristics, study of this enzyme will provide the necessary information on the mechanism of biosynthesis of anaerobic proteins in *E. coli* with potential applications to other organisms.

Analysis of the Hup mutants demonstrates the presence of at least three operons that are involved in H₂ metabolism. The gene(s) defective in the class I mutants produces an electron transport protein that couples the hydrogenase to the electron transport chain, probably to quinone (20). The phenotype of these mutant strains (Table 3) suggests that the same protein is also capable of interacting and reducing BV. This BV-reducing protein is different from the electron transport protein employed by FDH-2 (to BV) in the cell because these mutant strains were FDH-2 positive. This Hup-dependent, BV-reducing protein plays no role in the FHL complex. However, interestingly, the stability of hydrogenase during purification declines rapidly in the absence of this protein in a functional form (unpublished data). Additional experiments are needed to determine the biochemical defect of this mutation.

The other two operons code for hydrogenase protein or activity. The results, although presented for only a few strains, are corroborated by complementation experiments described in the accompanying paper (34). Hydrogenase is regulated by several metabolic processes, including (i) redox environment; (ii) formate-FHL, and (iii) energy-Hup. Hydrogenase is also a nonheme iron protein (1), and the presence of cofactors in the protein would indicate a requirement for activation of the hydrogenase apoprotein. The two clusters of *hyd* genes and the genes between the two may play a major role in the synthesis, regulation, and activation of the hydrogenase protein in the cell. Additional experimental results are necessary before the gene-product-function relationships for these various *hyd* genes can be established.

The basic principle used in the isolation of hyd and hup mutants of *E. coli* can be applied for the selection of Hup⁻ mutant strains of other organisms, as well as mutants with defects in other low-potential electron transport proteins, by the use of appropriate electron donors and culture conditions. The experimental conditions used in this study yielded 100% of the Hup⁻ mutants in the surviving population (Table 2). The very high frequency of Hup⁻ mutants are present in a normal *E. coli* population at this frequency and generally have no selective advantage under normal growth conditions or that the BV superoxide actually acts as a mutagen. The frequency of this mutation is about 10^{-7} .

The requirement for rec genes for survival (Table 2) shows that the superoxide generated from reoxidation of reduced BV leads to DNA damage. Loewen (27) has noted that catalase-defective mutants also exhibit an enhancement of lethal effect of H_2O_2 in the rec genotype. Both superoxide and H₂O₂ generated from superoxide are known to cause single-strand breaks in the DNA that are repaired by rec gene products (2, 11). Among the several hundred survivors tested, auxotrophic mutants comprised about 2% of the population, indicating that the superoxide radical did act as a mutagen. When strain Puig 426 was used as starting strain, 25% of the auxotrophs were found to be pyrA. We have no explanation for the preponderance of pyrA mutants. Barrett et al. (6) have also isolated pyrA mutants as FHL conditional mutants of S. typhimurium and proposed that a gene for carbonic anhydrase is probably a part of the pyrA operon and pyrA mutants are defective in CO₂ metabolism. However, the presence of greater than 99% of Hup⁻ strains in the surviving population (Table 2) suggests that the primary lethal effect of BV is induced by membrane damage initiated by the superoxide radical (22) rather than by DNA damage.

In summary, the positive selection procedure developed for the isolation of Hup⁻ mutants yielded several hyd mutants. Analysis of these mutants demonstrates the presence of at least two hyd operons (hydA and hydB) in E. coli. Both of these operons map between srl and cysC in the E. coli genetic linkage map (Fig. 1).

The *E. coli* genetic linkage map (4) shows that the *hyd* gene resides between *srl* and *nalB*, counterclockwise from *srl*. This map location was based on the results reported by Pascal et al. (31). Recent genetic analysis of *hyd* mutants of *E. coli* indicated that the *hyd* gene resides between *srl* and

cys (16, 32). The mutation in strain H61 was not mapped by Glick et al. (15). The gene altered in strain H61 is not in the same genetic location where the hydA and hydB genes reside (34). Glick et al. (15) have reported that hydrogenase activity can be detected in strain H61 when isolated membranes are assayed for hydrogenase. Strain H61 produced hydrogenase activity under the conditions used in this study as well (Table 3). However, strain H61 failed to produce FHL activity (Table 3), although FDH-2 activity could be detected (Table 4). Strain H61 grew very poorly under anaerobic conditions (15), a property that is not shared by the *hyd* mutants isolated during this study. It is possible that strain H61 carries a defect in membrane protein(s), as suggested by Glick et al. (15).

We used the term hydA to denote the mutation in the class IIA mutants, because the first hyd mutant, strain LCB 850, described by Pascal et al. (31) falls in this class (34). The second gene is hydB. The hydA mutant strains isolated and described in this study produced normal or higher levels of FDH-2, whereas the hydB mutant strains produced lower levels of FDH-2 activity. The presence of at least three genes for hydrogenase activity in the cell (hydA, hydB, and hup; Fig. 1) and the differences in FDH-1, FDH-2, and fumarate reductase activities of the hyd mutants (Table 4) indicate that the H₂ metabolism in *E. coli* is complex and a large body of information is needed for a thorough understanding of this process.

ACKNOWLEDGMENTS

We thank M. C. Pascal, W. G. Martin, L. Csonka, R. N. Rao, and B. Bachmann for providing the bacterial strains used in this study.

This work was supported by subcontract XK-2-02100-01 from the Solar Energy Research Institute, Golden, Colo., and in part by grant PCM-8118350 from the National Science Foundation, contract AID/ ta-C-1376 from USA ID and MCS 2221 from the GRI/IFAS regional biomass program.

LITERATURE CITED

- Adams, M. W. W., and D. O. Hall. 1979. Purification of the membrane-bound hydrogenase of *Escherichia coli*. Biochem. J. 183:11-22.
- 2. Ananathaswamy, H. N., and A. Eisenstark. 1977. Repair of hydrogen peroxide-induced single-strand breaks in *Escherichia coli* deoxyribonucleic acid. J. Bacteriol. 130:187–191.
- Anand, S. R., and A. I. Krasna. 1965. Catalysis of the H₂-HTO exchange by hydrogenase. A new assay for hydrogenase. Biochemistry 4:2747-2753.
- 4. Bachmann, B. J. 1983. Linkage map of *Escherichia coli* K-12, edition 7. Microbiol. Rev. 47:180–230.
- Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43:260–296.
- 6. Barrett, E. L., H. S. Kwan, and J. Macy. 1984. Anaerobiosis, formate, nitrate and *pyrA* are involved in the regulation of formate hydrogenlyase in *Salmonella typhimurium*. J. Bacteriol. 158:972-977.
- 7. Bernhard, T., and G. Gottschalk. 1978. Cell yields of *Escherichia coli* during anaerobic growth on fumarate and molecular hydrogen. Arch. Microbiol. 116:235–238.
- 8. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
- 9. Clarke, L., and J. Carbon. 1976. A colony bank containing synthetic ColE1 hybrid plasmids representative of the entire *E. coli* genome. Cell 9:91-99.
- Csonka, L., and A. J. Clark. 1979. Deletions generated by the transposon Tn10 in the srl recA region of the Escherichia coli K-12 chromosome. Genetics 93:321-343.

- HYDROGENASE MUTANTS OF E. COLI 351
- Demple, B., and J. Halbrook. 1983. Inducible repair of oxidative DNA damage in *Escherichia coli*. Nature (London) 304:466–468.
- 12. Drews, G. 1965. Untersuchungen zur Regulation der Bacteriochlorophyll-Synthase bei *Rhodospirillum rubrum*. Arch. Mikrobiol. 51:186–198.
- Evans, H. J., D. W. Emerich, T. Ruiz-Arqueso, R. J. Maier, and S. L. Albrecht. 1980. Hydrogen metabolism in the legumerhizobium symbiosis, p. 69–86. *In* W. H. Orme-Johnson and W. E. Newton (ed.), Nitrogen fixation, vol. II: Symbiotic associations and cyanobacteria. University Park Press, Baltimore.
- Gest, H., and M. Gibbs. 1952. Preparation and properties of cell-free "formic hydrogenlyase" from *Escherichia coli*. J. Bacteriol. 63:661-664.
- Glick, B. R., P. Y. Wang, H. Schneider, and W. G. Martin. 1980. Identification and partial characterization of an *Escherichia coli* mutant with altered hydrogenase activity. Can. J. Biochem. 58:361-367.
- Graham, A., D. H. Boxer, B. A. Haddock, M. A. Mandrand-Berthelot, and R. W. Jones. 1980. Immunological analysis of the membrane-bound hydrogenase of *Escherichia coli*. FEBS Lett. 113:167-172.
- 17. Haddock, B. A., and C. W. Jones. 1977. Bacterial respiration. Bacteriol Rev. 41:47-99.
- Hassan, H. M., and I. Fridovich. 1978. Superoxide radical and the oxygen enhancement of the toxicity of paraquat in *Escherichia coli*. J. Biol. Chem. 253:8143–8148.
- Hom, S. S. M., H. Hennecke, and K. T. Shanmugam. 1980. Regulation of nitrogenase biosynthesis in *Klebsiella pneumoniae*: effect of nitrate. J. Gen. Microbiol. 117:169–179.
- Jones, R. W. 1980. The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by *Escherichia coli*. Biochem. J. 188:345–350.
- 21. Karube, I., N. Urano, T. Yamada, H. Hirochika, and K. Sakaguchi. 1983. Cloning and expression of the hydrogenase gene from *Clostridium butyricum* in *Escherichia coli*. FEBS Lett. 158:119-122.
- 22. Kong, S., and A. J. Davison. 1980. The role of interactions between O₂, H₂O₂, OH, e⁻ and O₂⁻ in free radical damage to biological systems. Arch. Biochem. Biophys. 204:18-29.
- 23. Krasna, A. I. 1979. Hydrogenase: properties and applications. Enzyme Microb. Technol. 1:165-172.
- Krasna, A. I. 1980. Regulation of hydrogenase activity in enterobacteria. J. Bacteriol. 144:1094–1097.
- Krasna, A. I. 1984. Mutants of *Escherichia coli* with altered hydrogenase activity. J. Gen. Microbiol. 130:779–787.
- Lim, S. T. 1978. Determination of hydrogenase in free-living cultures of *Rhizobium japonicum* and energy efficiency of soybean nodules. Plant Physiol. 62;609–611.
- Loewen, P. C. 1984. Isolation of catalase-deficient *Escherichia* coli mutants and genetic mapping of *katE*, a locus that affects catalase activity. J. Bacteriol. 157:622-626.
- Low, K. B. 1972. Escherichia coli K-12 F-prime factors, old and new. Bacteriol. Rev. 36:587–607.
- Macy, J., H. Kulla, and G. Gottschalk. 1976. H₂-dependent anaerobic growth of *Escherichia coli* on L-malate: succinate formation. J. Bacteriol. 125:423–428.
- Miller, J. H. 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
- Pascal, M. C., F. Casse, M. Chippaux, and M. Lepelleiter. 1975. Genetic analysis of mutants of *Escherichia coli* K12 and *Salmonella typhimurium* LT2 deficient in hydrogenase activity. Mol. Gen. Genet. 141:173–179.
- Pecher, A., F. Zinoni, C. Jatisatienr, R. Wirth, H. Hennecke, and A. Böck. 1983. On the redox control of synthesis of anaerobically induced enzymes in enterobacteriaceae. Arch. Microbiol. 136:131-136.
- Peck, H. D., Jr., and H. Gest. 1957. Formic dehydrogenase and the hydrogenlyase enzyme complex in coli-aerogenes bacteria. J. Bacteriol. 73:706-721.
- 34. Sankar, P., J. H. Lee, and K. T. Shanmugam. 1985. Cloning of hydrogenase genes and fine structure analysis of an operon essential for H₂ metabolism in *Escherichia coli*. J. Bacteriol.

162:353-360.

- Spencer, M. E., and J. R. Guest. 1973. Isolation and properties of fumarate reductase mutants of *Escherichia coli*. J. Bacteriol. 114:563-570.
- 36. Stephénson; M., and L. Stickland. 1931. Hydrogenase: a bacterial enzyme activating molecular hydrogen. I. The properties of the enzyme. Biochem. J. 25:205-214.
- 37. Tait, R. C., K. Andersen, G. Congelosi, and K. T. Shanmugam.

1981. Hydrogenase genes, p. 279–303. In A. Hollaender et al. (ed.), Trends in the biology of fermentations for fuels and chemicals. Plenum Press, New York.

- Uhlin, B. E., and A. J. Clark. 1981. Overproduction of the Escherichia coli recA protein without stimulation of its proteolytic activity. J. Bacteriol. 148:386-390.
- 39. Zajic, J. E., N. Kosaric, and J. D. Brosseau. 1978. Microbial production of hydrogen. Adv. Biochem. Eng. 9:57-109.