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Supraspinal modulation of pain by cannabinoids:
the role of GABA and glutamate
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Recent physiological, pharmacological and anatomical studies provide evidence that one of the main roles of the
endocannabinoid system in the brain is the regulation of g-aminobutyric acid (GABA) and glutamate release. This article aims
to review this evidence in the context of its implications for pain. We first provide a brief overview of supraspinal regulation of
nociception, followed by a review of the evidence that the brain’s endocannabinoid system modulates nociception. We look in
detail at regulation of supraspinal GABAergic and glutamatergic neurons by the endocannabinoid system and by exogenously
administered cannabinoids. Finally, we review the evidence that cannabinoid-mediated modulation of pain involves
modulation of GABAergic and glutamatergic neurotransmission in key brain regions.
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Introduction

Pain is a complex sensory and psychological experience, and

although many of the critical loci involved in pain have been

identified, the precise mechanisms underlying the percep-

tion and modulation of pain are poorly understood. Acute

pain is a protective facility, warning the organism of possible

or actual damage. Peripheral noxious stimuli trigger a

cascade of physiological events, which propagate to the

brain and are integrated and processed by limbic and cortical

structures to coordinate the appropriate behavioural re-

sponse.

Chronic pain is more complicated and is a major health

problem. Forty-eight million Americans experience chronic

pain-related health problems with the cost of treatment

estimated at $100 billion a year (Holden and Pizzi, 2003).

Approximately four billion workdays are lost annually at a

cost of $65 billion in lost productivity due to chronic pain

(Gentry, 1999). In Europe, one in five people suffer from

chronic pain of moderate-to-severe intensity (Holden and

Pizzi, 2003; Breivik et al., 2006).

Cannabis has been used for pain relief for centuries. With

the discovery and isolation of its main psychoactive

constituent, D9-tetrahydrocannabinol (Mechoulam and

Gaoni, 1967), and receptor targets, a better understanding

of the antinociceptive properties of this drug and related

cannabinoid compounds has been possible. However, the

precise mechanisms underlying the modulation of pain by

cannabinoids are as yet unclear. Extensive experimental and

clinical evidence suggests a presynaptic location of cannabi-

noid receptors on GABAergic (GABA: g-aminobutyric acid)

and glutamatergic neurons in brain areas associated with

pain modulation. Moreover, a large body of evidence

implicates supraspinal GABA and glutamate in the regula-

tion of pain, and functional studies have demonstrated

that the release of these amino-acid neurotransmitters is

controlled by the brain’s endogenous (endo) cannabinoid

system. This review examines the role of the brain’s

endocannabinoid system in modulation of pain with an

emphasis on the regulation of GABA and glutamate in

animal models of acute, inflammatory and neuropathic

pain.

The pain pathways

The manifestation of pain, and its modulation, is mediated

by ascending and descending pathways. Neurons in the
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ascending pain pathways receive input from peripheral

primary afferent fibres and project from the dorsal horn

of the spinal cord to a number of supraspinal sites. The two

major ascending pain pathways in mammals are the

spinothalamic and the spinoparabrachial tracts, which

encode the sensory-discriminatory and affective aspects of

pain respectively (for extensive reviews see Millan, 1999,

2002). The thalamus and parabrachial nucleus receive

information from projection neurons in various laminae of

the dorsal horn, and then relay this sensory information to

cortical and amygdalar regions where the information is

decoded as a ‘painful stimulus’. The descending pathways, in

turn, modulate neuronal activity in ascending pathways,

and can exert an inhibitory or facilitatory effect on the

sensation of pain. Interestingly, the anatomical regions

involved in facilitation and inhibition of nociception often

overlap. Differences in the mechanisms underlying facilita-

tion and inhibition of nociception lie primarily in the

receptor subtypes coupled to differing intracellular mecha-

nisms (Millan, 1999, 2002). Neurons of the descending

inhibitory pain pathway originate in the amygdala and

hypothalamus and project to the lower brainstem (including

the A5, A6/A7 noradrenergic neurons) and spinal cord, via

the periaqueductal gray (PAG) and rostral ventromedial

medulla (RVM) (see below). There is an accumulating body

of neurochemical, pharmacological, electrophysiological

and behavioural evidence for the role of GABA receptors

(GABAA and GABAB), and ionotropic (a-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid, N-methyl-D-aspartate and

kainate) and metabotropic glutamate (mGlu1–8) receptors in

modulating supraspinal pain pathways (for recent reviews

see Bleakman et al., 2006; Enna and McCarson, 2006; Neto

et al., 2006). Indeed, GABAergic and glutamatergic neurons

at most, if not all, supraspinal components of the descending

pain pathways mediate facilitatory and/or inhibitory effects

on pain perception.

The endocannabinoid system

The endocannabinoid system is comprised of the cannabi-

noid1 (CB1) receptor, cannabinoid2 (CB2) receptor, endo-

genous cannabinoid ligands, their metabolizing enzymes

and a putative anandamide uptake site (Figure 1). CB1

receptors are expressed presynaptically on neurons in both

the peripheral and central nervous systems as well as on a

wide range of peripheral tissues. CB2 receptors are expressed

largely in non-neural tissues including immune cells, but

now there is accumulating evidence that CB2 receptor

protein and mRNA is also expressed in the brain (Van Sickle

et al., 2005; Gong et al., 2006; Onaivi et al., 2006) and spinal

cord (Zhang et al., 2003; Wotherspoon et al., 2005; Beltramo

et al., 2006). Splice variants of the CB1 receptor have also

been identified (Shire et al., 1995; Ryberg et al., 2005) and

evidence suggests there may be additional, as yet undiscov-

ered, cannabinoid receptor subtypes (Breivogel et al., 2001;

Fride, 2002; Wenger et al., 2003; see review by Brown this

issue). Within the central nervous system, the CB1 receptor is

found in high density and its distribution is heterogenous.

Both CB1 (Matsuda et al., 1990) and CB2 receptors (Munro

et al., 1993) are Gi/o protein-coupled receptors that are

negatively coupled to adenylyl cyclase (Howlett et al., 1999)

and positively coupled to mitogen-activated protein kinase

(Bouaboula et al., 1995). In addition, CB1 receptors are

coupled to ion channels through Gi/o proteins, positively for

A-type and inwardly rectifying potassium channels and

negatively for N-type and P/Q-type calcium channels and

D-type potassium channels (Pertwee, 1997, 1999; Mu et al.,

1999). In this respect, CB1 receptor activation can affect the

release of neurotransmitters by modulating calcium and

potassium conductance.

The endogenous cannabinoid ligands, or endocannabi-

noids, are polyunsaturated fatty acids and include the

compounds, arachidonyl ethanolamine (anandamide),

2-arachidonylglycerol (2-AG), noladin ether, palmitoyletha-

nolamine, homo-g-linolenylethanolamide, 7,10,13,16-doco-

satetranylethanolamine, virodhamine and N-arachidonoyl-

dopamine. Most endocannabinoids are derived from

arachidonic acid, which is a known precursor for an array

of other biochemical mediators. It is believed that endocan-

nabinoids are biosynthesized as required and immediately

released from cells to exert their physiological effects. In the

case of anandamide and 2-AG, this biosynthesis is catalysed

by calcium-sensitive enzymes and seems to occur with

calcium influx following cell depolarization, or mobilization

of intracellular calcium stores. The metabolism of the

endocannabinoids occurs intracellularly; however, the pre-

cise mechanism by which these compounds are taken up

into the cell is, as yet, unclear. It has been postulated that re-

uptake may occur via more than one mechanism, including

endocytosis and the interaction of endocannabinoids with

transporter proteins to carry them across the membranes

(Beltramo et al., 1997; Beltramo and Piomelli, 2000; Hillard

and Jarrahian, 2003; McFarland and Barker, 2004).

Once inside the cell, endocannabinoids are metabolized by

fatty acid amide hydrolase (FAAH), which demonstrates

selectivity for anandamide (Cravatt et al., 1996), and by

monoacylglycerol lipase, which selectively degrades 2-AG

(Dinh et al., 2002). Immunohistochemistry has demon-

strated that in many brain regions, FAAH (Egertova et al.,

2003; Gulyas et al., 2004) and monoacylglycerol lipase (Dinh

et al., 2002; Gulyas et al., 2004) are expressed in a pattern

corresponding to that of the CB1 receptor (Egertova et al.,

1998; Tsou et al., 1998; Ueda et al., 2000; Giuffrida et al.,

2001). The neuroanatomy of the endocannabinoid system is,

therefore, ideally organized to facilitate its role in retrograde

signalling, the process by which endocannabinoids released

postsynaptically modulate neurotransmission via an action

at CB1 receptors located presynaptically.

Supraspinal regulation of pain by cannabinoids

The development of potent, selective pharmacological

agonists and antagonists for the CB1 and CB2 receptors

(Little et al., 1988; Rinaldi-Carmona et al., 1994; Hillard

et al., 1999), CB1 (Ledent et al., 1999; Zimmer et al., 1999;

Marsicano et al., 2003; Domenici et al., 2006), CB2 (Buckley

et al., 2000) and FAAH (Cravatt et al., 2001) knockout mice,

and selective FAAH (Boger et al., 2000; Kathuria et al., 2003;
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Deutsch, 2005) and monoacylglycerol lipase inhibitors

(Saario et al., 2004, 2006; Makara et al., 2005) has proven

indispensable in the advancement of the field of cannabi-

noid research. There are now a large number of studies

providing evidence of a role for the endocannabinoid system

in nociception and these have been reviewed extensively

elsewhere (Pertwee, 2001; Finn and Chapman, 2004; Hoh-

mann and Suplita, 2006; Jhaveri et al., this issue). Moreover,

the promise of this research may soon be realized in the

clinical setting with the recent launch of the cannabis-based

drug Sativex in Canada for the adjunctive relief of neuro-

pathic pain in multiple sclerosis patients. Subsequent

considerations in this review will focus on the supraspinal

neural substrates and neurochemical mechanisms mediating

cannabinoid-induced antinociception with an emphasis on

the role of the amino-acid neurotransmitters GABA and

glutamate.

Direct evidence for the involvement of supraspinal

cannabinoid receptors in the modulation of pain has been

obtained from a number of studies employing intracerebral

microinjection of cannabinoids or endocannabinoid system

modulators in animal models of acute, inflammatory or

neuropathic pain (Table 1). Early work demonstrated that

intracerebroventricular administration of antisense oligo-

nucleotides directed against CB1 receptor mRNA inhibited

the antinociceptive effect of the cannabinoid receptor

agonist CP55,940 in mice, suggesting a role for supraspinal

CB1 receptors in cannabinoid-mediated antinociception

(Edsall et al., 1996). Further studies demonstrated that

intracerebroventricular injection of non-selective cannabi-

noid receptor agonists suppressed nociception in the rat

tail-flick test (Table 1), and these effects were reversed by the

CB1 receptor antagonist, rimonabant (Lichtman et al., 1996;

Lichtman and Martin, 1997; Martin et al., 1998; Welch et al.,

1998). Martin et al. (1999) demonstrated that the cannabinoid

receptor agonist WIN55,212-2 was antinociceptive in the tail-

flick test when injected into a number of rat brain regions

including subnuclei of the amygdala, thalamus, PAG and

RVM (Table 1). Additional evidence supporting a role for the

amygdala as an important site mediating cannabinoid-

induced antinociception comes from work demonstrating

that bilateral lesions to the amygdala abolish the antinoci-

ceptive effects of systemically administered WIN55,212-2 in

the tail-flick test in rhesus monkeys (Manning et al., 2001).

In vivo electrophysiological studies have enabled the

activity of ON and OFF cells in the RVM to be assessed in

lightly anaesthetized rats during the tail-flick test. Micro-

injection of the cannabinoid receptor agonists WIN55,212-2

and HU210 into the RVM increased the rat tail-flick latency

(Martin et al., 1998). WIN55,212-2 also decreased the firing

of the ON cells while decreasing the duration of the OFF-cell

pause and increasing ongoing OFF-cell activity (Meng and

Johansen, 2004). Similarly, the local administration of

WIN55,212-2 into the nucleus reticularis gigantocellularis

pars-a, an area in the RVM, also increased latency to

withdrawal in the rat tail-flick test and reduced nociceptive
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Figure 1 Diagrammatical representation of an endocannabinoid synapse. Anandamide (AEA) and 2-arachidonylglycerol (2-AG) are
synthesized following an increase in cytosolic calcium (Caþ þ ) resulting from activation of postsynaptic ion channels or G protein-coupled
receptors. The activation of Gq protein-coupled receptors results in the synthesis of inositol trisphosphate (IP3) and diacylglycerol (DAG) from
phosphoinositol bisphosphate (PIP2). IP3 mobilizes calcium release from intracellular stores triggering the formation of 2-AG from DAG by the
enzyme diacylglycerol lipase (DGL). The activation of Caþ þ gating ion channels facilitates the influx of Caþ þ , which leads to the formation of
N-arachidonoyl-phosphatidylethanolamine (NAPE) from phosphatidylethanolamine (PhosEA) and phosphatidylcholine (PhosC) via the enzyme
N-acyltransferase (NAT). NAPE is then hydrolized to anandamide by a phospholipase D-type enzyme (NAPE-PLD). The cannabinoids are
released from the postsynaptic neuron and travel retrogradely to the presynaptic membrane to activate cannabinoid receptors (e.g.
cannabinoid1 receptor, CB1R). The activation of the CB1 receptor results in inhibition of Caþ þ channels in the presynaptic membrane and a
number of other signal transduction-mediated events, which generally result in suppression of neuronal activity and neurotransmitter release.
2-AG is catabolized to arachidonyl acid and glycerol by monoacylglycerol lipase (MGL), while fatty acid amide hydrolase (FAAH) breaks down
AEA to arachidonic acid and ethanolamine.
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responses to subcutaneous formalin administration (Mon-

hemius et al., 2001). Intra-RVM administration of rimona-

bant reversed the antinociceptive effects observed in all the

above studies (Martin et al., 1998; Monhemius et al., 2001;

Meng and Johansen, 2004) suggesting a modulatory role for

RVM CB1 receptors in the descending pain pathway (Table 1).

In the rat thermal plantar test, the microinjection of

WIN55,212-2 into the dorsolateral (Palazzo et al., 2001) and

ventrolateral (Maione et al., 2006) PAG increased the latency

of the nociceptive response; an effect which was reversed by

rimonabant (Palazzo et al., 2001). The effects of microinjec-

tion of the FAAH inhibitor URB597 into the ventrolateral

PAG were shown to depend on the dose administered. Low

doses resulted in an immediate and prolonged hyperalgesic

response to the rat thermal plantar test, while medium doses

resulted in a bi-phasic analgesic/hyperalgesic response and

high doses produced an immediate analgesic response

(Maione et al., 2006). URB597 was shown to dose-depen-

dently increase anandamide levels, while 2-AG levels were

maximal with the lowest dose of URB597 administered. The

antinociceptive responses coincided with changes in the

activity of RVM ON- and OFF neurons. The differences

between endocannabinoid concentrations and consequent

nociceptive and electrophysiological responses were attri-

buted to selective activation of CB1 and/or transient receptor

potential vanilloid receptor type-1 receptors (Maione et al.,

2006). These findings support the involvement of the

endocannabinoid system in the descending pain pathway

in animal models of acute pain (Table 1).

Evidence for a role of supraspinal cannabinoid receptors

in the modulation of inflammatory pain comes from work

demonstrating that microinjection of HU210 into the dorsal

PAG decreased the second phase of formalin-evoked noci-

ceptive behaviour in rats, an effect which was blocked by

rimonabant and accompanied by an attenuation of forma-

lin-evoked c-Fos expression in the caudal lateral PAG (Finn

et al., 2003). Similarly, the intra-PAG microinjection of

WIN55,212-2 delayed the response of formalin-treated rats

to the tail-flick test, as well as the formalin-induced increase

Table 1 The effects of supraspinal injection of cannabinoids in rat models of pain

Cannabinoid Injection location Model Effect Reference

Cannabinoid receptor agonists
WIN55,212-2 ICV TFT Antinociceptive Martin et al. (1993)

GiA Monhemius et al. (2001)
dlPAG de Novellis et al. (2005)
BLA Hasanein et al. (2007)
RVM Martin et al. (1998); Meng and Johansen (2004)
ICV, RVM, GiA, dPAG, BLA, CeA,
thalamus, A5 NEergic group, DRN

Martin et al. (1999)

dlPAG PWT Antinociceptive Palazzo et al. (2001)
vlPAG PWT Antinociceptive/

pronociceptive
Maione et al. (2006)

GiA FT Antinociceptive Monhemius et al. (2001)
BLA Hasanein et al. (2007)

D9-THC ICV TFT Antinociceptive Lichtman et al. (1996)
HU210 RVM TFT Antinociceptive Martin et al. (1998)

dPAG FT Antinociceptive Finn et al. (2003)
CP55,940 ICV TFT Antinociceptive Martin et al. (1993); Lichtman et al. (1996)

CB1 receptor antagonists
Rimonabant dlPAG PWT Pronociceptive Palazzo et al. (2001)

BLA SIA Pronociceptive Connell et al. (2006)
RVM Suplita et al. (2005)
dlPAG Hohmann et al. (2005); Suplita et al. (2005)
dPAG FT No effect Finn et al. (2003)

Inhibitors of endocannabinoid degradation
URB597 vlPAG PWT Antinociceptive/

pronociceptive
Maione et al. (2006)

dlPAG SIA Antinociceptive Hohmann et al. (2005)
BLA No effect Connell et al. (2006)

URB602 dlPAG SIA Antinociceptive Hohmann et al. (2005)
BLA No effect Connell et al. (2006)

MAFP dlPAG SIA Antinociceptive Hohmann et al. (2005)
AA-5-HT RVM, dlPAG SIA Antinociceptive Suplita et al. (2005)

Abbreviations: BLA, basolateral amygdala; CeA, central nucleus of the amygdala; DRN, dorsal raphe nucleus; FT, formalin test; GiA, gigantocellularis pars-a; ICV,

intracerebroventricular; PAG, periaqueductal gray; PWT, paw withdrawal test; RVM, rostral ventromedial medulla; SIA, stress-induced analgesia model; TFT, tail-

flick test; D9-THC, D9-tetrahydrocannabinol.

This table reports the effects of cannabinoid compounds on nociception in a number of animal models including the TFT, PWT, FT and SIA. The TFT and PWT are

models of acute thermal nociception measuring the latency to withdrawal of the animal’s paw or tail from the heat source. The formalin test is a model of tonic

persistent inflammatory pain, where formalin is injected into the plantar surface of the hind paw, and nociceptive behaviours are then observed and scored. The

stress-induced analgesia model employs continuous footshocks and subsequent scoring of rat tail-flick responses with footshock stress increasing the latency to tail

withdrawal.
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in activity of ON cells and decrease in OFF-cell pause in the

rat RVM (de Novellis et al., 2005). Both these responses were

blocked by rimonabant. A more recent study determined

that intra-basolateral amygdala (BLA) microinjection of

WIN55,212-2 dose-dependently increased the latency to

withdrawal in the tail-flick test and decreased pain beha-

viours in both phases of the formalin test, effects reversed by

the CB1 receptor antagonist AM251 (Hasanein et al., 2007).

Further support for the involvement of the brain’s endocan-

nabinoid system in inflammatory pain was provided by the

observation that electrical stimulation of the rat PAG, as well

as formalin injection into the hindpaw, increased ananda-

mide release in the PAG as determined by microdialysis

coupled to liquid chromatography/mass spectrometry

(Walker et al., 1999).

Additional evidence for an endogenous cannabinoid pain-

suppressing system comes from work using an animal model

of unconditioned stress-induced analgesia employing con-

tinuous footshocks with subsequent scoring of rat tail-flick

responses (Table 1). It was demonstrated that intra-dorso-

lateral PAG, intra-RVM or intra-BLA microinjection of

rimonabant suppressed stress-induced analgesia relative to

control animals (Hohmann et al., 2005; Suplita et al., 2005;

Connell et al., 2006). 2-AG levels in the dorsal midbrain were

markedly increased 2 min post-footshock and returned to

baseline after 15 min, while anandamide displayed an

increased concentration which peaked at 7–15 min post-

footshock (Hohmann et al., 2005). Further work demon-

strated that intra-dorsal PAG, intra-RVM but not intra-BLA

microinjection of inhibitors of endocannabinoid degrada-

tion enhanced stress-induced antinociception, while there

was no effect on basal nociceptive thresholds in non-

shocked rats (Hohmann et al., 2005; Suplita et al., 2005;

Connell et al., 2006). The enhancement of stress-induced

analgesia by these enzyme inhibitors was blocked by

coadministration of rimonabant. Meanwhile, in a model of

conditioned fear-induced analgesia which involves assess-

ment of formalin-evoked nociceptive behaviour in an

aversively conditioned context, Finn et al. (2004) demon-

strated that this form of psychological stress-induced

analgesia is attenuated by systemic administration of

rimonabant. Despite good evidence for a role of the brain’s

endocannabinoid system in conditioned fear (Marsicano

et al., 2002; Cannich et al., 2004), the neural substrates and

neurochemical mechanisms involved in endocannabinoid-

mediated fear-induced analgesia remain to be elucidated.

Studies employing animal models of nerve injury have

been carried out to determine the potential role of the brain’s

endocannabinoid system in modulation of neuropathic

pain. An increase in CB1 receptor mRNA in the contralateral

thalamus in rats with sciatic nerve ligation was reported

(Siegling et al., 2001), suggesting that CB1 receptor upregula-

tion may account for the increased analgesic efficacy of

cannabinoids in chronic pain conditions. Microinjection of

rimonabant into the nucleus reticularis gigantocellularis

pars-a reversed the inhibitory effects of nerve ligation on

formalin-evoked nociceptive behaviour (Monhemius et al.,

2001), suggesting that increased endocannabinoid signalling

through CB1 receptors in the nucleus reticularis giganto-

cellularis pars-a following nerve ligation acts to reduce

nociception. A recent study evaluating changes in rat

supraspinal endocannabinoid levels 3 or 7 days following

chronic constriction injury of the sciatic nerve has yielded

some interesting results (Petrosino et al., 2007). An increase

in the levels of anandamide and 2-AG was reported in the

PAG 3 days after chronic constriction injury, while after 7

days, anandamide levels were increased in the dorsal raphe

nucleus, PAG and RVM, and levels of 2-AG were increased in

the PAG and RVM. There were also decreases in palmitoyl-

ethanolamine in the dorsal raphe nucleus and RVM 7 days

post-ligation. Similarly, Palazzo et al. (2006) demonstrated an

increase in levels of anandamide, but not 2-AG, in the dorsal

raphe nucleus 7 days after chronic constriction injury, effects

accompanied by an increase in serotonergic firing and

release. The effects of chronic constriction injury on

serotonergic firing and release were reversed by either single

or 7-day systemic administration of the anandamide reup-

take inhibitor, AM404. The effects of AM404 were reversed

by rimonabant. In further electrophysiological and micro-

dialysis experiments, 7 days treatment with WIN55,212-2

also produced similar effects to AM404 (Palazzo et al., 2006).

These results suggest that endocannabinoid-mediated

modulation of central serotonergic function may facilitate

antinociception, although further studies are necessary to

confirm this hypothesis.

There is good evidence for localization of CB1 receptors on

serotonergic (Haring et al., 2007), noradrenergic (Oropeza et al.,

2007), dopaminergic (Rodriguez De Fonseca et al., 2001) and

cholinergic (Nyiri et al., 2005b) neurons. In addition, canna-

binoid compounds have been shown to impact on neuronal

activity and/or neurotransmitter release from cholinergic

(Table 2) and monoaminergic (Table 3) neurons. Despite this

evidence, there are surprisingly few studies investigating the

direct involvement of these neurotransmitters in supraspinally

mediated cannabinoid-induced antinociception. In addition to

the study by Palazzo et al. (2006) discussed above, it has been

demonstrated that the antinociceptive effects of the cannabi-

noid receptor agonist, WIN55,212-2, in the rat tail-flick test are

attenuated following lesion of the descending noradrenergic

spinal pathways (Gutierrez et al., 2003). Thus, while the central

serotonergic and noradrenergic systems may be involved in

cannabinoid-induced antinociception, there is at present an

insufficient body of data and a need for further research in this

area. Cannabinoid-mediated modulation of central GABA and

glutamate and its implications for pain is, however, better

understood and is, therefore, the focus of the remainder of this

review.

Anatomical and functional evidence for modulation
of supraspinal GABAergic and glutamatergic neuro-
transmission by the endocannabinoid system:
implications for pain

Studies of CB1 receptor localization in the brain have been

carried out using a number of techniques including retro-

grade/anterograde labelling, immunohistochemistry, in situ

hybridization and autoradiography. Using the aforemen-

tioned techniques it has been determined that the expres-

sion of the CB1 receptor gene is restricted to specific cell
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types, which serve distinct functional roles in a variety of

neurological processes (Freund and Hajos, 2003; Freund

et al., 2003). There are a large number of studies demonstra

ting a role for supraspinal GABA and glutamate in animal

models of pain (for review see Bleakman et al., 2006; Enna

and McCarson, 2006; Neto et al., 2006). Here, we provide a

summary of the distribution of CB1 receptor binding sites

on GABAergic and glutamatergic neurons in brain regions

known to play an important role in nociception, review the

evidence for cannabinoid-mediated modulation of GABAer-

gic and glutamatergic transmission (Table 4) and discuss its

importance in the context of pain (Table 5).

Cortical and limbic areas

A number of cortical and limbic areas play an important role

in the affective-motivational dimension of pain. Using in situ

hybridization and immunohistochemistry, it has been

shown that the CB1 receptor-positive cells in cortical areas

represent a small percentage of the total cell population in

rat brain and reside on heterogenous GABAergic interneurons

(Mailleux and Vanderhaeghen, 1992; Matsuda et al., 1993;

Tsou et al., 1998). Further double-labelling studies have

shown that mice cortical cells expressing the CB1 receptor

also co-express glutamic acid decarboxylase (GAD65), the

GABA synthesizing enzyme that characterizes GABAergic

cells (Marsicano and Lutz, 1999). These GABAergic inter-

neurons can be further subdivided into separate groups

based on the expression of cell type-specific neurochemical

markers. Double immunostaining determined that the

majority of CB1 receptor-positive GABAergic neurons also

stained positive for cholecystokinin (CCK) in rat somatosen-

sory cortex (Bodor et al., 2005), rat hippocampus (Katona

et al., 1999; Nyiri et al., 2005a), rat septum (Nyiri et al.,

2005b), rat BLA (Katona et al., 2001; McDonald and

Table 2 The effect of cannabinoid compounds on supraspinal acetylcholine release

Cannabinoid Effect Brain area Species Reference

Cannabinoid receptor agonists
WIN55,212-2

In vitro release k[3H]ACh Hippocampal neurons Rat Gifford et al. (2000)
Cortical neurons
Hippocampal slices Rat Gifford and Ashby (1996); Kathmann et al. (2001b)

Mouse Kathmann et al. (2001a, b)
Cortical slices Mouse Kathmann et al. (2001b)

2[3H]ACh Striatal slices Mouse Kathmann et al. (2001a, b)

Microdialysis kACh Hippocampus Rat Gessa et al. (1997, 1998)
Prefrontal cortex Rat Gessa et al. (1998); Verrico et al. (2003b)

kmACh Hippocampus Rat Tzavara et al. (2003a)
mACh Hippocampus Rat Acquas et al. (2000)

Prefrontal cortex Acquas et al. (2001)

CP55,940
In vitro release k[3H]ACh Hippocampal slices Rat Gifford et al. (1997); Kathmann et al. (2001b)

Mouse Kathmann et al. (2001b)

Microdialysis kACh Hippocampus Rat Gessa et al. (1997)

D9-THC
Microdialysis kACh Hippocampus Rat Carta et al. (1998); Gessa et al. (1998); Nava et al. (2001)

mACh Hippocampus Rat Pisanu et al. (2006)
Prefrontal cortex Rat Verrico et al. (2003b); Pisanu et al. (2006)

2ACh Prefrontal cortex Rat Verrico et al. (2003b)
HU210

Microdialysis mACh Hippocampus Rat Acquas et al. (2000)
Prefrontal cortex Acquas et al. (2001)

CB1 receptor antagonists
Rimonabant

In vitro release m[3H]ACh Hippocampal slices Rat Gifford et al. (1997, 2000); Gifford and Ashby (1996)
2[3H]ACh Cortical, striatal slices Rat Gifford and Ashby (1996); Gifford et al. (2000)

Striatal slices Mouse Kathmann et al. (2001a)

Microdialysis mACh Prefrontal cortex Rat Gessa et al. (1998); Tzavara et al. (2003a)
Hippocampus Rat Gessa et al. (1997, 1998)

Mouse Degroot et al. (2006)
2ACh N.accumbens Rat Tzavara et al. (2003b)

AM251
Microdialysis mACh Hippocampus Rat; mouse Degroot et al. (2006)

Abbreviation: Ach, acetylcholine; D9-THC, D9-tetrahydrocannabinol.

Upwards or downwards arrows indicate increases or decreases, respectively, in Ach release, whereas no change is indicated by a ‘2’.
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Table 3 The effect of cannabinoid compounds on supraspinal monoaminergic neurotransmitter release and the firing of supraspinal monoaminergic
neurons

Cannabinoid Effect Brain area Species Reference

Cannabinoid receptor agonists

WIN55,212-2

In vitro release 2[3H]DA N. accumbens; C. striatum slices Rat Szabo et al. (1999)

k[3H]NE HC slices Human Schlicker et al. (1997)

HC, cerebellar, hypothalamic, cortical

slices

G. pig Schlicker et al. (1997)

2[3H]NE HC slices Rat; Mouse Schlicker et al. (1997)

k[3H]5-HT Cortical membranes Mouse Nakazi et al. (2000)

Tissue levels 2DA N. accumbens, C. striatum Rat Verrico et al. (2003a)

kDA Prefrontal cortex

Electrophysiology mDA firing Substantia nigra Rat French et al. (1997)

VTA Rat French et al. (1997); Diana et al. (1998);

Gessa et al. (1998); Pistis et al. (2001)

kDA firing VTA Rat Pillolla et al. (2007)

2NE firing L. coeruleus Rat Mendiguren and Pineda (2006)

mNE firing L. coeruleus Rat Mendiguren and Pineda (2006);

Muntoni et al. (2006)

Microdialysis mDA N. accumbens Rat Tanda et al. (1997); Lecca et al. (2006);

Fadda et al. (2006)

mNE Frontal cortex Rat Oropeza et al. (2005)

CP55,940

In vitro release 2[3H]DA N. accumbens, C. striatum slices Rat Szabo et al. (1999)

k[3H]5-HT Cortical membranes Mouse Nakazi et al. (2000)

Electrophysiology 2NE firing L. coeruleus Rat Mendiguren and Pineda (2006)

mNE firing L. coeruleus Mendiguren and Pineda (2006)

D9-THC

In vitro release km[3H]DA;

km[3H]NE

Hypothalamic, striatal neurons Rat Poddar and Dewey (1980)

Tissue levels 2DA N. accumbens, C. striatum Rat Jentsch et al. (1998); Verrico et al. (2003a)

kDA Prefrontal cortex Jentsch et al. (1998); Verrico et al. (2003a)

Electrophysiology mDA firing

mesolimbic

VTA Rat French (1997); French et al. (1997);

Diana et al. (1998); Gessa et al. (1998);

Ng Cheong Ton et al. (1988); Malone and Taylor

(1999); Melis et al. (2000); Wu and French (2000)

mDA firing Substantia nigra Rat Tanda et al. (1997)

Nigrostriatal French et al. (1997); Wu and French (2000)

mNE firing L. coeruleus Rat Melis et al. (2000); Muntoni et al. (2006)

Microdialysis mDA N. accumbens Rat Tanda et al. (1999)

mDA Prefrontal cortex Rat Chen et al. (1990)

Anandamide

Electrophysiology mDA firing N. accumbens Rat Solinas et al. (2006)

CB1 receptor antagonists

Rimonabant

In vitro release 2[3H]DA N. accumbens; C. striatum slices Rat Szabo et al. (1999)

m[3H]NE HC slices Human Schlicker et al. (1997)

2[3H]NE HC, cerebellar, hypothalamic, cortical

slices

G. pig Schlicker et al. (1997)

2[3H]5-HT Cortical membranes Mouse Nakazi et al. (2000)

Electrophysiology kDA firing

Mesolimbic

VTA Rat Pistis et al. (2001); Pillolla et al. (2007)

kNE firing L. coeruleus Rat Muntoni et al. (2006)

Microdialysis mDA; mNE Prefrontal cortex Rat Tzavara et al. (2003b)

2DA; 2NE N. accumbens; Rat Tzavara et al. (2003b)

m5-HT Striatum prefrontal cortex,

N. accumbens

Rat Tzavara et al. (2003b)

mDA;25-HT Hypothalamus Rat Tzavara et al. (2001)

Inhibitors of degradation

URB597

Electrophysiology m5-HT firing Dorsal raphe Rat Gobbi et al. (2005)

Abbreviations: C. striatum, corpus striatum; DA, dopamine; G. pig, guinea pig; HC, hippocampus; L. coeruleus, locus coeruleus; N. accumbens, nucleus

accumbens; NE, noradrenaline; 5-HT, serotonin; D9-THC, D9-tetrahydrocannabinol; VTA, ventral tegmental area.

Upwards or downwards arrows indicate increases or decreases, respectively, in monoaminergic neurotransmitter release or firing of monoaminergic neurons as

measured by electrophysiology, whereas no change is indicated by a ‘2’.
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Mascagni, 2001) and mouse forebrain (Marsicano and Lutz,

1999). In addition to the large CCK-positive cells, a much

smaller subset of CB1 receptor-positive GABAergic interneu-

rons were reported to contain calcium-binding proteins in

somatosensory cortex (Bodor et al., 2005), hippocampus

(Katona et al., 1999; Marsicano and Lutz, 1999; Tsou et al.,

1999) and BLA (Marsicano and Lutz, 1999; McDonald and

Mascagni, 2001). It has been suggested that because CCK and

calcium-binding proteins are expressed in separate popula-

tions of CB1 receptor-positive GABAergic interneurons,

Table 4 Studies investigating the functional effects of cannabinoid compounds on supraspinal release of GABA and glutamate, and on the firing of
supraspinal GABAergic and glutamatergic neurons

Cannabinoid Effect Brain Area Species Reference

WIN55,212-2
In vitro electrophysiology kIPSPs HC neurons Rat Irving et al. (2000)

BLA Rat Katona et al. (2001)
Neocortex Rat Bodor et al. (2005)
PAG Rat Vaughan et al. (2000)
RVM Rat Vaughan et al. (1999)
HC slices Rat Hajos et al. (2000, 2001); Hoffman and Lupica (2000);

Hajos and Freund (2002); Foldy et al. (2006)
Lateral amygdala Mouse Trettel and Levine (2002); Azad et al. (2003)

In vitro electrophysiology kEPSPs Prefrontal cortex Rat Auclair et al. (2000)
PAG Rat Vaughan et al. (2000)
HC slices Rat Hajos et al. (2001); Hajos and Freund (2002)
BLA, cortex Mouse Domenici et al. (2006)
Lateral amygdala Mouse Azad et al. (2003)
HC slices Mouse Misner and Sullivan (1999); Domenici et al. (2006)

In vitro release k[3H]GABA HC neurons Rat D’Amico et al. (2004)
HC slices Rat Katona et al. (1999)

Human Katona et al. (2000)
m[3H]Glut PFC neurons Rat Ferraro et al. (2001a)

Microdialysis kGABA PFC Rat Ferraro et al. (2001a)
mGlutamate PFC Rat Ferraro et al. (2001b)

CP55,940
In vitro electrophysiology kIPSPs HC slices Rat Hajos et al. (2000)

BLA Rat Katona et al. (2001)
In vitro release k[3H]GABA HC neurons Rat D’Amico et al. (2004)

AM251
In vitro release k[3H]GABA HC slices Rat Neu et al. (2007)

Abbreviations: BLA, basolateral amygdala; EPSPs, excitatory postsynaptic potentials; GABA, g-aminobutyric acid; HC, hippocampus; IPSPs, inhibitory postsynaptic

potentials; PAG, periaqueductal gray; PFC, prefrontal cortex; RVM, rostral ventromedial medulla.

Upwards or downwards arrows indicate increases or decreases, respectively, in the release of GABA and glutamate neurotransmitters, or in the firing of GABAergic

and glutamatergic neurons, whereas no change is indicated by a ‘2’. IPSPs and EPSPs are temporary changes in postsynaptic membrane potential caused by the

flow of ions into or out of the cell. IPSPs are generally initiated by the activation of GABA receptors on the postsynaptic neuron and suppress the firing of the

postsynaptic neuron, while glutamate receptor activation generally instigates EPSPs, which enhance the firing of the postsynaptic neuron.

Table 5 The role of supraspinal GABA and glutamate in the antinociceptive effects of the cannabinoid receptor agonist, WIN55,212-2

WIN55,212-2 injection location Antinociception reversed by: Model Reference

dlPAG Rimonabant -CB1 R antagonist PWT Palazzo et al. (2001)
MSOP-group III mGlu antagonist
MPEP-mGlu5 antagonist
EGlu-group II mGlu antagonist
APV-NMDA R antagonist

dlPAG Rimonabant (CB1 R antagonist) MPEP (mGlu5 antagonist) FT, EPhys de Novellis et al. (2005)
I.v. Intra-CeA muscimol (GABAA receptor agonist) TFT, FT Manning et al. (2003)
S.c. Intra-RVM muscimol (GABAA receptor agonist) TFT, EPhys Meng et al. (1998)

Abbreviations: CB1 R, cannabinoid1 receptor; CeA, central nucleus of the amygdala; Ephys, electrophysiology; GABA, g-aminobutyric acid; FT, formalin test; i.v.,

intravenous; mGlu, metabotropic glutamate; PWT, paw withdrawal test; RVM, rostral ventromedial medulla; s.c., subcutaneous; TFT, tail-flick test.

This table reports the effects of GABAergic and glutamatergic compounds on the antinociceptive effects of the cannabinoid receptor agonist, WIN55,212-2, in a

number of rat models including the TFT, PWT, FT and changes in the firing of various neurons as measured by EPhys. The TFT and PWT are models of acute thermal

nociception measuring the latency to withdrawal of the animal’s paw or tail from the heat source. The formalin test is a model of tonic persistent inflammatory

pain, where formalin is injected into the plantar surface of the hind paw, and nociceptive behaviours are then observed and scored. The stress-induced analgesia

model employs continuous footshocks with subsequent scoring of rat tail-flick responses with footshock stress increasing the latency to tail withdrawal.
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endocannabinoids could modulate population synchrony as

well as individual neuronal plasticity (Bodor et al., 2005).

A more recent study provides evidence for CB1 receptors

on presynaptic glutamatergic terminals (Katona et al., 2006).

It was shown that principal cell populations of the

hippocampus contain high levels of diacylglycerol lipase-a
(an enzyme involved in 2-AG formation) concentrated in

heads of dendritic spines. Electron microscopy observations

revealed that these specialized postsynaptic dendritic spine

domains receive glutamatergic inputs. These dendritic spine

domains release 2-AG by retrograde neurotransmission to

activate CB1 receptors on presynaptic glutamatergic axon

terminals. The colocalization of CB1 receptors with hippo-

campal vesicular glutamate transporter type 1 has also been

demonstrated (Monory et al., 2006), suggesting that canna-

binoids can impact on glutamate neurotransmission. We

have recently demonstrated that CB1 receptors in the BLA

colocalize with GAD67, a marker for GABAergic neurons,

fibres and terminals (Figure 2).

In immunohistochemistry studies on primate brain slices,

CB1 receptors were reported on putative glutamatergic

pyramidal projection neurons as well as on GABAergic

neurons in the cortex, hippocampus and amygdala (Lu

et al., 1999; Ong and Mackie, 1999). However, in another

study, CB1 immunoreactivity was found exclusively in

GABAergic neurons and axon terminals in these regions

(Eggan and Lewis, 2007). The authors suggest that the

differences observed may be due to differential ability of

antibodies to recognize different phosphorylated forms of

the CB1 receptor.

Consistent with the anatomical localization studies,

electrophysiological and neurotransmitter release studies

have demonstrated a functional role of CB1 receptors in

the modulation of GABA and glutamate release and firing

(Table 4; for review see Doherty and Dingledine, 2003). In rat

hippocampal brain slices, endocannabinoid and CB1 recep-

tor agonist application decreased the amplitude of evoked

inhibitory postsynaptic potentials of GABAergic neurons and

this decrease was reversed by CB1 receptor antagonist

application (Hajos et al., 2000, 2001; Hoffman and Lupica,

2000; Irving et al., 2000; Hajos and Freund, 2002). Further-

more, it was determined that cannabinoid-mediated inhibi-

tion of inhibitory postsynaptic potentials was dependent on

the firing rates of the presynaptic interneurons, as an

increase in the frequency of action potentials reversed

WIN55,212-2-mediated inhibition of GABA release from

hippocampal slices (Foldy et al., 2006). Further studies

demonstrated that GABA release from CCK-positive CA1

hippocampal slices is under tonic inhibitory control by

endocannabinoids, whose release can, in turn, be regulated

by G protein-coupled receptors on the postsynaptic neuron

(Neu et al., 2007). The inhibitory effects of cannabinoid

receptor agonists on IPSPs were absent in CB1 receptor

knockout mice and were reversed with the coapplication of

rimonabant in wild-type mice, confirming that cannabinoid-

mediated modulation of GABA action potentials is CB1

receptor-dependent (Hajos et al., 2000, 2001). Similarly,

endocannabinoid-mediated suppression of GABA currents

was shown both in slices from the rat amygdala (Katona

et al., 2001) and mouse neocortex (Galarreta et al., 2004;

Trettel et al., 2004; Bodor et al., 2005). Furthermore, the

extracellular release of GABA from rat cerebral cortex

(Ferraro et al., 2001a) and human and rat hippocampal brain

slices (Katona et al., 2000; D’Amico et al., 2004) was

decreased with the application of endocannabinoids and

cannabinoid receptor agonists. Evidence for the direct

involvement of the endocannabinoid system in GABA-

mediated antinociception is provided by the observation

that microinjection of the GABAA receptor agonist muscimol

into the central nucleus of the amygdala, but not the BLA,

prevented the antinociceptive effects of intravenous admin-

istration of WIN55,212-2 in the rat tail-flick and formalin

tests (Manning et al., 2003) (Table 5).

Cannabinoid receptor agonists have also been shown to

reduce the amplitude of glutamatergic excitatory postsynap-

tic potentials in slices from mouse hippocampus (Misner and

Sullivan, 1999), rat prefrontal cortex (Auclair et al., 2000),

mouse lateral amygdala (Azad et al., 2003) as well as other

cortical and non-cortical areas such as the ventral tegmental

area (Melis et al., 2004; Riegel and Lupica, 2004), substantia

nigra (Szabo et al., 2000; Freiman and Szabo, 2005; Marinelli

et al., 2007), nucleus accumbens (Robbe et al., 2001) and

striatum (Huang et al., 2001; Kofalvi et al., 2005) (Table 4).

However, the role of the CB1 receptor in cannabinoid-

Figure 2 CB1 receptor immunoreactivity on GABAergic neurones in the rat basolateral amygdala (BLA). A low magnification image of
GABAergic neurons in the rat basolateral amygdala. (b) A section of panel (a) at higher resolution, as stated in the legend. Dual
immunolabelling for GAD67 (blue) and CB1 receptor (brown) demonstrates that the CB1 receptor (arrow head) is expressed in close proximity
to GAD67-immunoreactive cells (white arrows) and fibres (black arrows). (b) High magnification of boxed area in (a). Scale bar (a)¼200mm,
(b)¼100mm. D¼dorsal; M¼medial.
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mediated release of glutamate is not yet clear, although the

aforementioned studies would suggest that a reduction in

firing would suppress glutamate release. In studies where

rimonabant was administered, there was a reversal of these

reductions in firing and presumably, glutamate release. The

involvement of CB1 receptors in the regulation of glutamate

release was complicated by the finding that in CB1 receptor

knockout mice, WIN55,212-2 no longer reduced GABAergic

transmission, but it still affected glutamate transmission

(Hajos et al., 2001).

These findings, together with the limited evidence for

CB1 receptor localization on glutamatergic neurons in various

regions of the brain, led to the hypothesis that the effects of

cannabinoids on glutamate transmission were mediated by a

novel cannabinoid receptor, distinct from CB1, which has not

yet been identified. However, a recent study using conditional

mutant mice lacking CB1 receptors in all the principal

forebrain neurons, but not in GABAergic interneurons,

reported that WIN 55,212-2 did not reduce excitatory

responses in glutamatergic neurons in the forebrain areas as

it did in wild-type mice and mice lacking CB1 receptors

exclusively in GABAergic neurons (Domenici et al., 2006).

While these results do not preclude the existence of a novel

CB1-like receptor, they provide strong evidence for the control

of glutamatergic neurotransmission by CB1 receptors.

Thalamus

The thalamus, with its numerous subnuclei, plays a critical

role in the sensory-discriminatory dimension of pain. In situ

hybridization studies have reported low CB1 receptor mRNA

expression in the thalamus (Mailleux et al., 1992; Mailleux

and Vanderhaeghen, 1992) and subsequent studies have

shown that there is CB1 receptor protein expression in

certain nuclei within the thalamus (Cristino et al., 2006), for

example the anterior dorsal thalamic nuclei, the habenular

nucleus and the reticular thalamic nucleus (Tsou et al., 1998;

Moldrich and Wenger, 2000). The precise identity of

neurotransmitters involved in conveying nociceptive infor-

mation to and from the thalamus remains unclear. A

substantial proportion of thalamic neurons is GABAergic

inhibitory interneurons (Ralston, 1991; Ulrich and Hugue-

nard, 1997). Interestingly, the majority of neurons in the

thalamus are output neurons and it is believed that they

often target N-methyl-D-aspartate, a-amino-3-hydroxy-5-

methylisoxazole-4-propionic acid and mGlu receptors in

target areas, suggesting a role for glutamatergic neurons

originating in the thalamus. Yet, there is no direct anatomi-

cal evidence for expression of cannabinoid receptors on

these neurons in the thalamus.

Hypothalamus

The hypothalamus is a brain area involved in the modula-

tion of neuroendocrine function and is a component of the

descending inhibitory pain pathway. It is also involved in

coordinating the stress response and in mediating anxiety.

Studies have shown that CB1 receptors in the hypothalamus

are colocalized with calretinin, a marker for glutamatergic

nuclei, but not with GAD65 or CCK (Marsicano and Lutz,

1999). This suggests that cannabinoid receptor activation in

this area may alter the activity of glutamatergic neurons.

Although there has been no direct evidence for the

localization of CB1 receptors on GABAergic neurons in the

hypothalamus, de Miguel et al. (1998) observed a parallel

between hormone levels and GABA levels with cannabinoid

receptor agonism and antagonism. It was also demonstrated

that hypothalamic neuroendocrine cells can release endo-

cannabinoids, which then suppresses glutamate release and

postsynaptic spiking in the hypothalamus (Di et al., 2005).

However, as with other regions of the brain including

the midbrain and thalamus, there is still some uncertainty

with respect to the precise identity and localization of CB1

receptor-containing neurons.

Periaqueductal gray and rostroventral medulla

The PAG is a longitudinally orientated tubular structure

organized functionally into four columnar regions. Activa-

tion of the individual columns results in specific behavioural

effects including confrontational defence, flight, quiescence,

hypoactivity and analgesia. While GABAergic and glutama-

tergic neurons, as well as CB1 receptors, are known to exist

in the PAG, only functional evidence exists to suggest the

localization of CB1 receptors on the respective neuron types.

Studies on rat brain PAG slices demonstrated that the

amplitude of GABAergic and glutamatergic postsynaptic

currents was reduced by the cannabinoid receptor agonists

WIN55,212-2, anandamide and methanandamide, effects

blocked by rimonabant (Vaughan et al., 2000).

In the rat thermal plantar test, the microinjection of

WIN55,212-2 into the dorsolateral PAG increased the latency

of the nociceptive response (Palazzo et al., 2001). These

antinociceptive effects were prevented by intra-PAG admin-

istrations of rimonabant, as well as 2-methyl-6-(phenylethy-

nyl)pyridine (MPEP), (2S)- a -ethylglutamic acid (EGlu),

(RS)-a-methylserine-O-phosphate (MSOP) and 2-amino-5-

phosphonopentanoic acid (APV) (mGlu5, group II mGlu,

group III mGlu and N-methyl-D-aspartate receptor antago-

nists respectively), but not 7-(hydroxyimino)cyclopropa[b]-

chromen-la-carboxylate ethyl ester (CPCCOEt) (mGlu1

receptor antagonist) (Palazzo et al., 2001). In another study,

intra-dorsolateral PAG microinjection of WIN55,212-2 re-

sulted in a delayed tail-flick response in formalin-treated

animals compared with controls (de Novellis et al., 2005).

Intra-PAG WIN55,212-2 microinjection also prevented the

formalin-induced increase in basal activity of ON cells and

decreased the OFF-cell pause in the rat RVM. Interestingly,

both the behavioural and electrophysiological responses

were blocked by intra-PAG administrations of rimonabant,

as well as MPEP but not CPCOOEt (de Novellis et al., 2005).

Overall, these data suggest that endogenous glutamate acts

via mGlu and N-methyl-D-aspartate receptors in the PAG

to mediate cannabinoid-induced antinociception. However,

the analgesic effect of intra-PAG CHPG (mGlu5 receptor

agonist) as seen in the plantar test, was blocked by MPEP

but not rimonabant (Palazzo et al., 2001), suggesting
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that while glutamate may mediate the antinociceptive

effects of cannabinoids, the reverse (i.e. endocannabinoid

mediation of glutamate-induced analgesia) does not appear

to be the case.

As discussed earlier, the RVM is a critical component of the

descending inhibitory pain pathway. Evidence for localiza-

tion of CB1 receptors in the RVM has been provided by

autoradiography (Herkenham et al., 1991) and in situ

hybridization (Matsuda et al., 1993), although the expression

of CB1 receptors on GABAergic or glutamatergic neurons in

the RVM is yet to be confirmed anatomically. Application of

submicromolar concentrations of WIN55,212-2, ananda-

mide and methanandamide reduced the amplitude

of postsynaptic GABAergic currents in the rat brain slices,

an effect which was blocked by rimonabant (Vaughan et al.,

1999). The antinociceptive effect of systemic CB1 receptor

activation was prevented by preinjection of muscimol into

the RVM (Meng et al., 1998), suggesting a role for RVM

GABAergic receptors in the mediation of cannabinoid-

induced antinociception.

Spinal cord

The spinal cord is a projection target for neurons descending

as part of the inhibitory pain pathway. An interaction

between cannabinoid and mGlu receptors at the spinal level

has been demonstrated with evidence that the antihyper-

algesic effect of WIN55,212-2, administered intrathecally to

rats with loose ligation of the sciatic nerve, was reversed by

intrathecal administration of the mGlu5 receptor antagonist,

MPEP (Hama and Urban, 2004). In the rat formalin test,

intrathecal pretreatment with rimonabant attenuated

the antinociceptive effect of the GABAB receptor agonist
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Figure 3 Possible mechanism for endocannabinoid-mediated control of nociception. (A) Diagrammatical representation of some of the
interactions between various brain regions of the descending pain pathway. The PAG receives critical input from various cortical areas as well as
from the hypothalamus and amygdala. The net input of afferent neurons to the PAG determines the firing of the various PAG cell types.
(B) Two possible outcomes of this net input. In resting conditions (no pain) the sum effect on the input of ON and OFF cells to the dorsal horn is
neutral. Painful stimuli are proposed to selectively activate pathway (b), where these excitatory neurons from pathways upstream of the PAG
project onto inhibitory projection neurons (possibly GABAergic) as well as inhibitory GABAergic interneurons. This activation of inhibitory
interneurons in the PAG prevents firing of excitatory projection neurons (possibly glutamate) and negatively impacts on OFF cells in the RVM.
Simultaneously, GABAergic projection neurons from the PAG synapse on GABAergic interneurons in the RVM and disinhibit their suppression of
firing of ON neurons to result in nociception. The mediation of antinociception is achieved through pathway (a), when excitatory neurons from
pathways upstream of the PAG activate excitatory neurons in the PAG. These excitatory neurons in turn activate the firing of OFF cells, and
inhibit the firing of ON cells through GABAergic interneurons. It is also proposed that the activity of OFF cells negatively impacts on the firing of
ON cells through an inhibitory mechanism and possibly impacts on OFF-cell duration (represented by an asterix). (C) The circled section of (B),
illustrates the possible mechanism behind cannabinoid-mediated antinociception. The activation of various receptor subtypes leads to an
increase in intracellular calcium by various pathways. This increase in calcium concentration initiates endocannabinoid synthesis and release.
The released endocannabinoids can then prevent the presynaptic release of neurotransmitters possibly by inhibiting calcium influx or vesicular
release of neurotransmitters. See abbreviations list.
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baclofen administered intrathecally suggesting a role for

endocannabinoids in mediating the antinociceptive effects

of GABA agonists at the spinal level (Naderi et al., 2005).

Summary and general discussion

It is now clear from work in animal models that activation of

supraspinal cannabinoid receptors or elevation of brain

endocannabinoid levels is sufficient to induce antinociception.

Moreover, anatomical and functional evidence points towards

an involvement of supraspinal GABA and glutamate in

mediating the antinociceptive effects of cannabinoids (Figure 3).

However, further studies are needed to fully elucidate the

mechanisms involved and their potential clinical importance.

An integrative approach employing powerful techniques such

as in vivo electrophysiological recording from GABAergic

and glutamatergic neurons and microdialysis to assess GABA

and glutamate release in discrete brain regions may afford the

best opportunity to study the mechanisms underlying canna-

binoid-induced antinocieption in clinically relevant animal

models of pain. In this respect, there is a paucity of these studies

in models of inflammatory and neuropathic pain. Small animal

functional and/or pharmacological magnetic resonance ima-

ging also provide an opportunity to explore the effects

of modulators of the endocannabinoid, glutamatergic and

GABAergic systems, and their interactions, in discrete brain

regions in the presence or absence of nociceptive tone.

Work to date has focused largely on the role of supraspinal

CB1 receptors. However, accumulating evidence for the

presence of the CB2 receptor in the brain (Van Sickle et al.,

2005; Gong et al., 2006; Onaivi et al., 2006) now justifies the

need for studies to address the gap in knowledge regarding the

potential role of supraspinal CB2 receptors in nociception and

modulation of neurotransmission. Our understanding of the

endocannabinoid system and its complexity is expanding

rapidly. The implications of the recent discovery that many

cannabinoids also target and mediate biological effects

through an action at peroxisome proliferator-activated recep-

tors for the pain field remain unknown (Burstein, 2005;

LoVerme et al., 2005; Sun et al., 2006). Studies are required to

examine the extent to which these nuclear receptors may

mediate the antinocieptive effects of cannabinoids.

The goal of much of this work is the development of

therapies relevant to the clinical setting. To this end, clinical

trials, which combine pain outcome measures with func-

tional magnetic resonance imaging and/or positron emission

tomography, would be very informative with respect to

identifying supraspinal sites of action of novel cannabinoid-

based analgesics. Targeted, site-specific intracerebral delivery

of cannabinoids or coadministration of cannabinoids with

drugs modulating GABAergic and glutamatergic activity in

pain pathways may one day be used as a therapeutic strategy

to treat some types of intractable pain.
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