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ABSTRACT

Poly(ADP-ribose) polymerases (PARPs) catalyze the
post-translational modification of proteins with
poly(ADP-ribose). Two PARP isoforms, PARP-1 and
PARP-2, display catalytic activity by contact with
DNA-strand breaks and are involved in DNA base-
excision repair and other repair pathways. A body of
correlative data suggests a link between DNA
damage-induced poly(ADP-ribosyl)ation and mam-
malian longevity. Recent research on PARPs
and poly(ADP-ribose) yielded several candidate
mechanisms through which poly(ADP-ribosyl)ation
might act as a factor that limits the rate of ageing.

INTRODUCTION

Poly(ADP-ribose) (PAR), the reaction product of the
large family of poly(ADP-ribose) polymerases (PARPs),
has been discovered in the 1960s (1). Since then, this
molecule and its producers have made an astounding
career from an obscure side reaction of cellular DNA
damage to the ‘Swiss army knife’ for the maintenance of
genomic stability. The areas of involvement of PARPs
range from the modulation of DNA repair and the
regulation of chromatin structure (2,3) to transcriptional
regulation (4–8), mitotic spindle organization (9–12),
telomere maintenance (13–16), regulation of trafficking
(17–19), involvement in multi-drug resistance (20), to cell
death activation (21,22). Understanding the underlying
mechanisms of PARP-mediated regulation is a prerequi-
site for interpretation of the results linking PARP activity
to mammalian ageing. In this review, we are focussing on
the aspects related with ageing processes, including cancer.

Ageing and the connection to PARP

Ageing is a multi-factorial process and has been defined as
time-dependent general decline in physiological function of
an organism, associated with a progressively increasing risk
of morbidity and mortality. It is apparent that during
ageing different organs are losing their functional reserve
and plasticity and become less able to fulfil their
physiological function, especially under conditions of

stress. Molecular hallmarks are (i) changes in extracellular
components (i.e. collagen-matrix, deposits in the vascular
system), (ii) changes in cellular metabolism (i.e. DNA
repair, protein surveillance) as well as (iii) cellular
functionality (senescence and cell death). To maintain
their ability to act and respond in an appropriate way, cells
have to protect their genomic information from the
constant attack of internal and external damaging agents.
DNA repair and DNA damage signalling pathways are
major factors determining the cellular fate. PARPs have
been shown to be a central hinge in maintaining genomic
stability. PARP activity is important for repair of DNA
single- and double-strand breaks, facilitates mitosis by
interaction of PAR with the spindle apparatus, is involved
in the decision of life and death after genotoxic insults,
helps regulating the integrity of the chromosomal ends, and
is a crucial mediator in inflammatory responses, thus
covering all three points mentioned above. Disturbances in
any of these pathways may lead to senescence or cell death,
thus decreasing the functionality of the harbouring organ.
Another detrimental outcome may be cancer initiation.
How are PARPs able to integrate so many tasks?
The following sections will discuss this point by point.

PARP and cell death

PARPs use NAD+ as a substrate from which they cleave
off nicotinamide and form, via repeated reaction cycles,
a polymer of ADP-ribose units, which can be branched
(23,24) (Figure 1). Interestingly the main target proteins
(‘acceptors’) are PARPs themselves, which is referred to as
PARP automodification. Cellular PAR formation is
dramatically stimulated after exposure to DNA-damaging
agents that induce single- or double-strand breaks in DNA
(25). This kind of induced PAR formation depends on the
activation of two abundantly expressed members of the
PARP family, i.e. PARP-1 and PARP-2, with PARP-1
activity accounting for �90% of the polymer produced
under these conditions (26). Under conditions of geno-
toxic exposure poly(ADP-ribose) undergoes a rapid turn-
over, since, in parallel with the synthesis of polymer, its
enzymatic catabolism is highly active. This is catalyzed by
poly(ADP-ribose) glycohydrolase (PARG) and leads to
the formation of free monomeric ADP-ribose. The latter
compound can be recycled for NAD+ synthesis, but this
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requires large amounts of ATP, and as a result cellular
NAD+ levels drop significantly in this process.

For a long time, the response to genotoxic insults was
thought to be the only primary action of PARP(s), and

indeed a large body of data has accumulated showing that,
perhaps surprisingly, both PARP overactivation (21,27)
and the inhibition of the moderate, ‘physiological’ PARP
activity induced by low numbers of DNA strand breaks
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Figure 1. Synthesis and structure of poly(ADP-ribose). b-NAD+ is used as a substrate by poly(ADP-ribose) polymerases. Nicotinamide is released
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increase cell death. Interestingly, PARP inhibition potenti-
ates the incidence of genomic instability induced by
genotoxic exposure (28–30) while PARP-1 overexpression
has a suppressive effect (31,32). An obvious explanation
could be that inhibited PARP-1 and PARP-2 cannot
contribute to repair pathways anymore or have even
negative functions. Therefore, unrepaired lesions either
are substrates for other repair processes like homologous
recombination (HR) or lead to cell death. In summary,
inactive PARP leads to massive cell death due to
unrepaired DNA damages and subsequent apoptosis,
with escaping cells being genetically altered. On the
other hand, hyperactive PARP restricts genomic instabil-
ity, but kills the cell by energy failure; survivors are not or
only moderately altered genetically.
Cell death by active PARP is mediated by at least two

separate mechanisms. First, massive activation of PARP
by excess DNA damage leads to a drop in cellular NAD+

levels. In order to regenerate this very important cellular
energy carrier, ATP has to be consumed in large amounts
and cells die from necrosis. On the other hand, PARP
activity can induce caspase-independent apoptosis
(Figure 2). Recent data suggest that PAR releases
apoptosis-inducing factor (AIF) from the inter-membrane
space of mitochondria (22,33,34). AIF then translocates
into the nucleus and induces high-molecular weight DNA
fragmentation (35). Which mechanism of cell death is used
probably depends on the cellular system and the stimulus
applied. During classical apoptosis there is an initial burst
of PAR production (36,37) followed by cleavage of

PARP-1 and PARP-2, probably in order to preserve
energy for the apoptosis execution programme by stop-
ping PARP activation and thus NAD+ consumption.
Regardless of the precise mechanism by which cell death
occurs, this phenomenon has an important impact in
pathophysiological settings (Figure 2). In models of
ischaemia-reperfusion damage, PARP inhibitors have
been used to minimize the affected area (38,39). The
tissue damage accompanied by ischaemia leads to massive
cell death and release of reactive oxygen species (ROS),
which damage surrounding cells, activate PARP-1/-2 and
induce further cell death, thus spreading the necrotic area.
Interfering with this vicious cycle by PARP inhibition
obviously has beneficial effects. Additionally, PARP-1 is
not only involved in the cellular reaction to ROS, but also
in ROS production (see next section).

PARP-1 and transcription

In 1983, Roeder and colleagues identified PARP-1 as a
transcription factor (TFII-C) relevant for regulation of
transcriptional initiation (4). Subsequently, PARP-1 has
been shown to interact with and modify several classical
transcription factors (5,40,41). Most strikingly, Parp1
(formerly called ADPRT) knockout mice are protected
from septic shock (42,43) and some pathological effects in
various inflammatory diseases (see above). This depends
partially on the requirement of PARP-1 for NFkB-
coupled transactivation. NFkB is the major transcrip-
tional regulator in the immune system. Failure to activate
it dampens the immune response, which may be advanta-
geous in settings of deleterious over-stimulation of the
immune system. For example, the gene encoding inducible
nitric oxide synthase is a prominent target of NFkB
transactivation. The product of this enzyme, nitric oxide,
and downstream reaction products such as peroxynitrite
are potent DNA-damaging agents, which lead to PARP-
1/-2 stimulation. PARPs consume NAD+ during this
process with potentially lethal outcome (see above). PARP
inhibition has been shown to rescue cells and tissues in
different experimentally induced pathological conditions
such as colitis (44,45), MPTP-induced Parkinson syn-
drome (46), ischaemia-reperfusion damage (47–50) and
type-I diabetes (51–53). These disease-associated features
could be referred to as the ‘ageing-promoting dark
backyard’ of PARPs (Figure 2). On the other hand, fully
functional NFkB is indispensable for normal activation of
the immune response. Ageing of the immune system leads
to a less pronounced defensive response to infectious
agents and therefore to increased mortality. This impor-
tant branch of involvement of PARPs in ageing needs to
be analysed more closely than it has been in the past.

PARP and DNA repair

The best understood function of PARP-1 and PARP-2 is
regulation of the base excision repair pathway (BER),
especially the decision between short-patch and long-
patch repair. DNA-base excision repair occurs in a
‘passing the baton’ fashion (54,55). After recognition
and excision of the damaged base by type II or type I base
glycosylases, the sugar-phosphate backbone of DNA is
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Figure 2. Cell death induced by the activity of poly(ADP-ribose)
polymerases. DNA damage induced by various stimuli triggers the
formation of PAR by PARP-1/-2. Depending on the cell type and
the energy capacity, PAR can either directly induce cell death by AIF
release or by energy depletion. In this process, necrotic cells release
themselves ROS, accelerating the effect. Ischaemia-reperfusion damage
acts on the same line. PARP-1 also interacts with NFkB in
inflammation processes, which induce cellular NO formation by
inducible NO-synthase (iNOS) and accumulation of reactive products.
Also, cytokine production and subsequent immune-cell stimulation is
under control of NFkB, leading to target cell lysis with release of pro-
inflammatory cytokines and death of surrounding cells.
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cleaved on the 50 side either by the same or an additional
enzyme, respectively. The 50dRPase activity of DNA
polymerase b cuts out the residual sugar moiety and fills
in the gap in a one-nucleotide synthesis step, followed by
sealing the nicked DNA by DNA-ligase III (short-patch
repair). Blocked terminal ribose residues can lead to a
switch to long-patch repair either by stimulating the
strand-replacement synthesis activity of polymerase b or
by alternative usage of the processive DNA polymerase d.
The resulting DNA overhang is cleaved by flap endonu-
clease 1(FEN-1) and the nicked DNA is ligated. In-vitro
data point to a necessity of PARP-1 for the activation of
the long patch pathway (56–58). If direct repair by DNA
polymerase b is blocked, PARP-1 helps out by switching
to the alternative route by poly(ADP-ribosyl)ation and
attracting auxiliary proteins. Furthermore, PARP-1 stim-
ulates the strand-displacement synthesis activity of DNA
polymerase b with the help of FEN-1 (59). In vivo, the
chromatin relaxing activity of PAR may aid in this process
and is therefore likely to be involved in short-patch BER
also. Indeed, even slightly poly(ADP-ribosyl)ated PARP-1
is able to recruit the scaffold protein XRCC1 (60–62),
which interacts with DNA polymerase b as well as with
DNA ligase III. Interfering with poly(ADP-ribosyl)ation
by pharmacological inhibition, dominant negative compe-
tition or genetic knockout leads to genomic instability, as
mentioned above. If single-strand breaks arising during
the repair process are not ligated, the next round of
replication may produce a double-strand break, which is
potentially lethal (63). Therefore, cells activate the double-
strand break repair machinery, i.e. either homologous
recombination (HR, during S/G2 phase of the cell cycle),
or non-homologous end-joining (NHEJ). Surprisingly,
PARP-1 and PAR also interact with DNA-dependent
protein kinase (DNA-PK), a heterotrimeric enzyme
complex belonging to the family of phosphatidylinositol-
3-kinase-like kinases (PIKK) involved in DNA damage
signalling. The catalytic subunit DNA-PKcs and also the
Ku70 autoantigen are in vitro targets for covalent ADP-
ribosylation (and also for non-covalent PAR binding),
and vice versa. PARP-1 is a substrate for phosphorylation
by DNA-PK (64–66) (Figure 3). The activity of
DNA-PKcs is stimulated by poly(ADP-ribosyl)ation.
The rationale for the interaction between these two
enzymes is not clear. Perhaps PARP-1 facilitates, by
polymer formation, chromatin opening and therefore
better access of DNA-PK to the break, or weak
poly(ADP-ribosyl)ation might induce a conformational
change in the 3D structure of the kinase, thus increasing
its activity. It was shown recently that the activity of
another PIKK-member, ATM (ataxia telangiectasia
mutated), is positively modulated by PAR (67). Thus, it
becomes more and more evident that PARP-1 and PARP-
2 are general DNA damage sensing and repair regulating
factors.

The impact of PARP-1 on genomic stability is exploited
in cancer therapy. It was reported that simultaneous
treatment of tumours with DNA-damaging agents
like temozolomide and PARP inhibitors increases the
efficacy of the chemotherapeutic drug (68–70). Inactivated
PARP blocks the repair of induced DNA lesions

and therefore triggers cell death more efficiently (71).
Recent experimental data take these findings one step
further. Tumour cells with non-functional BRCA-1/-2
proteins can be sensitized to cell death by simple PARP
inhibition even in the absence of any additional treatment
(72–74). The single-strand breaks that are accumulating in
this setting are converted into double-strand breaks by
DNA replication. As the BRCA proteins are integral
components of the signalling and repair machinery
responsive to this kind of lesions, repair by HR is
blocked, so the cells will die as a result of the persistent
damage. These findings, however, have been challenged
recently (75), and it was suggested that the observed
results may have been due to unspecific effects of PARP
inhibition.

PARP localizing to specific intracellular compartments

Seemingly PARPs are not only regulating DNA repair
pathways, as they have also been found at chromosome-
organizing regions like the centromere, the telomere or the
centrosome. PARP-1 has been shown to localize to the
centromere, and centromeric proteins have been shown to
be a substrate for covalent poly(ADP-ribosyl)ation (3) but
the impact of this modification has been elusive so far.
PARP-2 seems to be specifically involved in

X-chromosomal stability, as Parp2 knockout mice
showed a decreased frequency of female pups born (76).
Cytogenetic analyses revealed a selectively increased
embryonic lethality in females due to X-chromosomal
instability.
PARP-1 seems to be involved in maintaining euploidy

of mammalian cells as Parp1 knockout cells in culture
show increased aneuploidy; the same is the case for
wild-type cells under chronic treatment with PARP
inhibitors (77–79). This effect depends on a deregulation
of centrosome duplication, leading to increased
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Figure 3. Direct interactions of PARP-1/-2 with other proteins
important in repair. PARP-1/-2 and their product PAR interact with
several other proteins involved in different repair pathways. Histones
are a prominent target of poly(ADP-ribosyl)ation, releasing them from
DNA. A full-line arrow marks interactions shown for both PARPs,
whereas dashed arrows indicate established interactions between
PARP-1 and other proteins.
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numbers of spindle-pole bodies and, as a consequence,
aberrant mitosis. One hallmark of cancer is aneuploidy.
Likewise, fibroblasts from Parp1 knockout mice show
increased polyploidy, raising the question if PARP-1 is
also involved in mitotic checkpoints (77). Also, the
product of PARPs, poly(ADP-ribose), has been shown
to be an integral component of mitotic spindles, respon-
sible for their stability (9,10).
At chromosomal ends, a protein complex designated as

‘shelterin’ or ‘telosome’ forms together with roughly 20 kb
of the repetitive hexanucleotide DNA (T2AG3) a protec-
tive cap, the telomere (80,81). Telomeric DNA ends in a
single-stranded 30 extension, which is able to fold back and
invade the double-stranded region of the same sequence.
This plasmid-like structure is called t-loop and has been
detected in vitro as well as in vivo (82,83). Therefore, the
normally highly recombinogenic combination of a DNA
double-strand break with a single-stranded extension is
masked and shielded from the repair machinery to
facilitate genomic stability. Two specific proteins bind
the telomeric double strand, i.e. telomeric repeat binding
factor (TRF) 1 and 2. Whereas TRF-1 is responsible for
telomere length regulation by a protein counting mecha-
nism (84,85), TRF-2 stabilizes the t-loop and is therefore
indispensable for the functionality of the telomere (85–87).
Expression of a dominant-negative version of TRF-2
immediately uncaps telomeres, followed by initiation of
repair and subsequently senescence or chromosomal end-
to-end fusions and massive cell death. Another feature of
TRF-2 is its direct inhibition of ATM (ataxia telangiecta-
sia mutated), the key protein kinase in activating DNA
double-strand repair (88). On the other hand, the t-loop
inhibits progression of the replication fork in vitro (89).
Therefore, this secondary structure has to be resolved in
concert with cell cycle progression in order to enable
complete replication through telomeric DNA. In analogy
to TRF-1, where the tankyrases 1 and 2 (PARP-5
subfamily) have been shown to dislodge TRF-1 from
DNA by poly(ADP-ribosyl)ation (13,90,91), TRF-2 inter-
acts with PARP-1 (15,16) and in a special case with
PARP-2 (14). Displacing TRF-2 from the DNA would
result in an ‘open-state’ telomere without t-loop, not
hindering progression of the replication machinery any-
more. Thus, timed on and off shuttling of TRF-2 is
important for suppressing unscheduled repair (recombina-
tion) as well as telomere replication, keeping telomeric
functions intact and avoiding induction of a damage
signal as discussed above. The WRN protein, a helicase,
may aid in the process of resolving the t-loop after TRF-2
release (discussed below).

PARP-1,WRN and p53: three proteins,
one mission—genomic stability

Interaction of PARP and PAR with proteins already
known to affect ageing adds an additional layer to the
involvement of PARP in this process. The most prominent
example is the modulation of the Werner syndrome
protein (WRN) activity by PARP-1 but not PARP-2
(92). In mice, double knockout of Parp1 and Wrn leads to
increased sister-chromatid exchange and an earlier onset

of tumorigenesis than in each single knockout (93).
Together with BLM (Blooms syndrome), RTD/RecQ4
(Rothmund–Thompson disorder) and other proteins,
WRN belongs to the family of RecQ helicases (94).
As an exception within this family, WRN also contains an
exonuclease activity. Patients with the rare recessive
disorder Werner syndrome show accelerated ageing after
the onset of puberty with symptoms including cataracts,
greying and loss of hair, atherosclerosis, osteoporosis,
diabetes mellitus and a higher incidence of sarcomas,
melanomas and meningiomas. On the molecular level,
Werner syndrome cells show increased numbers of
chromosomal translocations and deletions, an extended
S-phase due to persistent DNA damage, a higher
sensitivity to DNA-damaging agents, accelerated telomere
loss and shortened life span in culture. WRN associates
with many proteins involved in DNA repair, replication
and recombination like proliferating cell nuclear antigen
(PCNA), replication protein A (RPA), all three DNA-PK
subunits (Ku70, Ku 80 and DNA-PKcs), p53, DNA
polymerases b and d (95), flap-endonuclease 1 (FEN-1)
(96,97), telomeric repeat-binding factor 2 (TRF-2) (98,99)
and PARP-1 (92). WRN interacts with most of these
proteins via its RecQ homology domain. WRN acts
in vitro on secondary structures that arise during replica-
tion block, DNA repair and at the telomeric t-loop (100).
In BER, WRN seems to activate the long patch pathway
by direct stimulation of DNA polymerase d and the strand
displacement synthesis activity of DNA polymerase b (95).
It also stimulates the activity of FEN-1 leading to more
efficient cleavage of the overhanging displaced DNA
strand, the ‘flap’, which is a by-product of the synthesis.
The strong interdependence of WRN and PARP-1 is
underlined by the fact that cells from WRN patients show
a modified pattern of poly(ADP-ribosyl)ated proteins, i.e.
less heteromodification of other proteins yet unchanged
automodification of PARP-1 (101). Interaction with
Ku70/Ku80 stimulates WRN exonuclease activity (102),
which may be required to resolve secondary structures or
trim blocked substrates in combination with the helicase
to facilitate NHEJ. On telomeres, WRN directly binds to
TRF-2 and is necessary in telomere regulation, i.e.
opening up the t-loop (103). This is supported by the
observation that cells from WRN patients display
chromosomal fusions and faster telomere shortening,
features similar to expression of a dominant-negative
version of TRF-2. Besides the direct interaction between
PARP-1 and WRN, the two proteins share many binding
partners, such as p53, DNA-PK and TRF-2. Both
proteins are especially involved in the long-patch pathway
of BER. Both have a positive impact on telomere length.
In contrast, whereas Ku70/80 stimulates WRN’s exonu-
clease activity, PARP-1 inhibits both WRN functions
(Figure 4). This is probably not due to direct modification
of WRN protein, although one publication reported
WRN as a substrate for poly(ADP-ribosyl)ation.
All three functional units (PARP-1, WRN, DNA-PK
with Ku70/80 and DNA-PKcs) can form a complex, in
which polymer-modified Ku70/80 shows a decreased
stimulation of WRN (102). Upon automodification of
PARP-1, the inhibition of WRN exonuclease and helicase
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activity is released. Therefore, PARP-1 may regulate the
timing of WRN activity towards its substrates, i.e. giving
other repair proteins a trial before WRN steps in.

Interaction of p53, the ‘guardian of the genome’, with
PARP-1 and PAR is complex and not fully understood
(104–112). Whereas poly(ADP-ribosyl)ation seems to
stabilize p53, it also inhibits the important transcriptional
activity of p53. Moreover, p53 can bind PAR non-
covalently at three sites, two of which are located in the
DNA-binding domain and one in the C-terminal oligo-
merization domain. The function of PAR bound to p53
has to be investigated more deeply.

PARP and ageing

Fifteen years ago, Grube and Bürkle showed that DNA
strand break-dependent PARP activity in permeabilized
peripheral blood mononuclear cells (PBMC) correlates
positively with the maximal life span in mammalian
species (113). Human PBMC displayed a 5-fold increase in
PAR production compared to rat PBMC, yet expressed
the same amount of PARP-1 protein. Subsequent experi-
ments with recombinant PARP-1 proteins from man and
rat revealed a 2-fold higher automodification level in
human PARP-1 although classical enzymatic parameters
like Vmax and Km were not different (114). The interplay
with other proteins either relaying the PAR signal or being
directly influenced by it probably enhances evolutionary
divergences. Interestingly, both in humans and rats,
PARP activity declined with donor age. On the other
hand, a study using immortalized lymphocytes proved
that PARP activity was higher in cells from centenarians
than in appropriate controls (115). Significance was even
further increased if activity was normalized not to total
protein but to PARP-1 content alone. Thus, a high
(but probably tightly controlled) PARP activity may be

beneficial for a prolonged life by suppressing genomic
instability and tumorigenesis. Therefore, it was obvious to
screen for polymorphisms within the human PARP-1 gene
locus (Parp1). Although several polymorphisms in Parp1
have been reported, only a minority of them change the
amino acids sequence and none of them could be
correlated with ‘successful’ ageing as exemplified by
centenarians in a first experimental setting (116).
Intriguingly, recent papers report that the V762A poly-
morphism, originally reported by Cottet and colleagues
(116), is indeed associated with diminished PARP-1
activity (117) and increased risk of some but not all
types of cancer (118,119). Moreover, a duplication within
a PARP1 pseudogene at 13q33 seems to be a pre-
disposition marker for increased cancer risk (120). Also,
a polymorphic tract of CA repeats in the promoter region
seems to pre-dispose to rheumatoid arthritis in the
Spanish population (121), although it is not clear if this
variance influences transcription and/or activity levels.
But still, as valid data are missing that integrate successful
ageing and molecular mechanisms responsible for higher
PARP activity, the factors determining the positive
association remain elusive.

SUMMARY

PARP activity may positively influence ‘healthy ageing’
through several pathways. The classical view is that this is
mediated by facilitating and regulating DNA strand break
repair. Also, the role of PARP activity in triggering cell
death either by energy depletion or by induction of AIF
may protect the individual from the uncontrolled out-
growth of potentially mutated cells after genotoxic insult.
PARP-1 and PARP-2, however, not only stabilize the
genome by their repair activity, but have also been found
at other locations. PARP-1 and PARP-2 were detected at
the centromere, and centromeric proteins have been
shown to be a substrate for poly(ADP-ribosyl)ation.
Additionally, PARP-1 is a part of the centrosome, i.e.
the spindle organizer, and pharmacological inhibition of
PARP-1 or Parp1 knockout leads to increased rates of
aneuploidy in cultured cells. Also, it has been shown that
PAR is a stabilizing component of the spindle, although
its precise function and its origin has not been clarified yet.
Last but not least, PARP-1 interacts with the telomere
DNA double-strand binding protein TRF-2. TRF-2 is
responsible for telomeric stability and suppression of
unscheduled activity of the double-strand break repair
machinery by maintaining the t-loop; it is a key
component of the proteinaceous complex called shel-
terin/telosome, which integrates telomere length regula-
tion as well as protective activities. On the other hand, the
t-loop inhibits passing of the replication fork, and
therefore dislodging the proteins holding the t-loop
in place is necessary for complete duplication of the
genome. As a candidate mechanism, PARP-1 could
modify TRF-2 and target it for destruction, counteracting
accelerated telomere shortening and accompanied senes-
cence or cell death. In mice, PARP-2 is involved especially
in female X-chromosome stability. Independent of
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Figure 4. Interaction map between PARP-1 and the Werner syndrome
protein WRN. The two proteins share many overlapping interaction
pathways. There is a reciprocal interaction with DNA-PK (double-
headed arrow), interaction with p53, stimulation and/or modulation of
base-excision repair (BER, one-headed arrow), and inhibition of TRF-2
DNA binding (blocked arrow). PARP-1 also inhibits WRN functions if
in an unmodified state.
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its genome-stabilizing functions, PARP-1 also impacts
on transcription. The interaction of PARP-1 with the key
regulator of the immune system, NFkB, and the depen-
dence of the latter on the presence of PARP-1 for its
activity (at least in the setting of some NFkB-regulated
promoters) impacts strongly on the functionality of this
important line of defence against deleterious invasion of
pathogenic micro-organisms. The importance of an intact
PAR-system including PARP-1 and PARP-2 is underlined
by the fact that double-knockout mice display embryonic
lethality (76). Therefore, discrimination between the
partially overlapping functions of PARP-1 and PARP-2
is difficult, and redundancy may mask aspects that are
normally accounted for by one of the two proteins in an
in vivo setting.
In conclusion, there are two major branches of how

PARP activity can influence the organismal ageing
process: First, there is modulation of the immune system
via interaction with NFkB, which could lead to a better
fitness in the constant battle with pathogens our bodies
have to fight. Second, there is maintenance of genomic
stability, subdivided in several pathways. (i) Regulation of
BER (via interaction with XRCC1); (ii) modulating DNA
double-strand break repair (DNA-PK, ATM); (iii) telo-
mere stability (TRF-2/shelterin); (iv) spindle organization
and stability (centrosome, PAR at mitotic microtubules,
X-chromosome) and (v) death of cells with heavily
damaged DNA (AIF, energy depletion). All of these
factors merge into the suppression of mutations poten-
tially leading to tumorigenesis. But—as the other side of
the coin—it also can disturb tissue renewal, leading to
reduced functional plasticity of organs. As PARP activity
declines with the age of the individual, the regulative
interplay may not be effective enough to maintain cellular
fitness. The loss of functional cells from tissues either by
senescence or cell death will compromise the respective
organ functions (Figure 5). Along the same lines,

successful ageing of centenarians may be supported by
high PARP activity leaving regulatory circuits intact and
preventing cancer formation.
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