Published online 30 November 2007

SURVEY AND SUMMARY

Nucleic Acids Research, 2007, Vol. 35, No. 22 7545-7556

doi:10.1093/nar|gkm1059

DNA replication stress, genome instability and aging

William C. Burhans* and Martin Weinberger

Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA

Received August 15, 2007; Revised November 5, 2007; Accepted November 9, 2007

ABSTRACT

Genome instability is a fundamentally important
component of aging in all eukaryotes. How age-
related genome instability occurs remains unclear.
The free radical theory of aging posits oxidative
damage to DNA and other cellular constituents as a
primary determinant of aging. More recent versions
of this theory predict that mitochondria are a major
source of reactive oxygen species (ROS) that cause
oxidative damage. Although substantial support for
the free radical theory exists, the results of some
tests of this theory have been contradictory or
inconclusive. Enhanced growth signaling also has
been implicated in aging. Many efforts to under-
stand the effects of growth signaling on aging have
focused on inhibition of oxidative stress responses
that impact oxidative damage. However, recent
experiments in the model organism Saccharomyces
cerevisiae (budding yeast) and in higher eukaryotes
suggest that growth signaling also impacts aging
and/or age-related diseases—including cancer and
neurodegeneration—by inducing DNA replication
stress, which causes DNA damage. Replication
stress, which has not been broadly considered as
a factor in aging, may be enhanced by ROS that
signal growth. In this article, we review evidence
that points to DNA replication stress and replication
stress-induced genome instability as important
factors in aging.

INTRODUCTION

The importance of genome instability during aging is
indicated by the accelerated aging phenotype associated
with defects in genome maintenance programs in a variety
of organisms, as well as accumulating evidence—most
recently in the model organism Saccharomyces cerevisiae
(budding yeast) (1,2)—that genome instability and the rate
at which this instability occurs increase with age.
A number of potential mechanisms, often overlapping,
have been proposed to explain age-dependent genome

instability. These include the accumulation of oxidative
damage to DNA, defects in mitochondrial function that
promote oxidative stress and damage to DNA and other
cellular constituents, mutations in proteins required for
efficient DNA replication, DNA repair and checkpoints,
telomere erosion and epigenetic effects on DNA repair
and other genome maintenance programs.

Although many of these mechanisms are likely to
contribute to aging in some or all eukaryotes, the specific
contributions of each and their relative importance remain
a matter of debate. For example, tests of one of the more
compelling possibilities—that oxidative damage to DNA
is an important determinant of life span—have produced
equivocal results (3). Although it is clear that oxidative
DNA damage accumulates with age in many, if not all,
eukaryotic organisms, experimental manipulations that
mitigate oxidative stress do not always extend life span.
Conversely, although disruption of cellular pathways that
mitigate oxidative stress can lead to increases in age-
dependent oxidative DNA damage, this does not always
coincide with a shorter life span. Also unresolved is the
question of whether oxidative DNA damage impacts
normal aging in the absence of its contributions to age-
related diseases, such as cancer and various neurodegen-
erative disorders.

How cellular processes that regulate aging impact
genome stability also remain unclear. Compelling evidence
now exists that in all eukaryotes, aging is regulated by
conserved insulin/insulin-like growth factor (I-(IFG-1))
pathways and growth-signaling pathways regulated by
the target of rapamycin (TOR) family of kinases (4).
In general, experimental manipulations that upregulate
these pathways promote aging, and manipulations that
downregulate these pathways—including mutational inac-
tivation or caloric restriction—extend life span and
mitigate age-related pathologies. Downregulation of
these pathways often leads to a reduction in oxidative
stress and oxidative damage to DNA and other cellular
constituents. For the most part, however, the relationship
between aging and changes in oxidative damage down-
stream of alterations in growth-signaling pathways
remains correlative rather than causal.

A number of recent studies have revealed that in
mammalian cells, the constitutive activation of highly
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conserved growth-signaling pathways implicated in aging
and in the regulation of oxidative stress responses also
causes DNA replication stress (5-8). Replication stress
and replication-induced genome instability that occur
downstream of oncogenic growth signaling has been
detected at the earliest stages of cancer. Replication
stress was also recently implicated in cellular senescence,
which protects against cancer, but promotes aging (5,7).

Although defects in cellular responses to replication
stress mediated by RecQ helicases, DNA repair enzymes
and checkpoints have been implicated in accelerated aging
by the premature aging phenotypes associated with these
defects, replication stress that arises downstream of
growth signaling has not been broadly considered as a
factor contributing to normal aging. In this article, we
review recently published evidence that suggests DNA
replication stress is an important contributor to normal
aging and age-dependent genome instability in all
eukaryotes. We hypothesize that replication stress induced
downstream of growth signaling by reactive oxygen
produced in mitochondria underlies some of the age-
dependent genome instability attributed to oxidative
damage to DNA.

DNA REPLICATION STRESS

DNA replication stress is defined as inefficient DNA
replication that causes DNA replication forks to progress
slowly or stall. Factors that cause replication stress and
replication stress-induced DNA damage include altera-
tions in pools of dNTP precursors required for DNA
synthesis, changes in the expression of proteins required
for synthesis of dNTPs or other components of DNA
synthesis, decreased frequency with which initiation of
DNA replication occurs at origins of replication (produ-
cing larger replicons), hyper-DNA replication caused by
the activation of origins more than once per S phase,
DNA damage lesions that block replication forks, and
inhibition of DNA replication by drugs. Replication stress
also occurs in regions of DNA that are intrinsically
difficult to replicate due to secondary structures or that are
difficult to unwind during DNA replication. Proteins
bound to DNA can also cause replication forks to pause,
and thus causing replication stress [Figure 1; (9)].

DNA replication stress leads to DNA damage and
genome instability in part because of the unique structure
of replicating DNA molecules (Figure 2). When single-
strand lesions occur in non-replicating molecules of DNA,
the overall integrity of chromosomes is maintained by
hydrogen bond base pairing on either side of these lesions
until they are repaired (Figure 2A). In contrast to non-
replicating DNA, replicating DNA at replication forks
contains unwound, highly recombinogenic single-stranded
template DNA before this DNA is converted to double-
strand DNA by template-directed DNA synthesis
(Figure 2B). The template strands on each arm of
replication forks are no longer base-paired to their
original complementary template strands, and instead
are base-paired to newly synthesized DNA (indicated
by red strands in Figure 2B and C). Consequently,
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Figure 1. Factors that contribute to replication fork stalling (replica-
tion stress). Some of these factors overlap. For example, reduced levels
of dNTPs could be a consequence of reduced availability of nutrient
precursors or downregulation of proteins required for their synthesis.

single-strand lesions within unwound DNA at replication
forks cause double-strand breaks, which are also highly
recombinogenic (Figure 2C). Double-strand breaks are
also more difficult to repair compared to single-strand
lesions in non-replicating DNA. Double-strand DNA
breaks and genome rearrangements triggered at replica-
tion forks can occur in association with spontaneously
arising single-strand lesions produced by reactive oxygen
species (ROS), radiation and other factors. The increased
risk for genome instability arising specifically at DNA
replication forks posed by all these factors is reflected in
the evolution of highly conserved checkpoint pathways
that block entry into or progression through S phase in
cells that have suffered DNA damage. Checkpoint path-
ways also stabilize stalled replication forks. Specific
mechanisms also exist for repairing stalled or collapsed
replication forks (10,11).

BUDDING YEAST AS A MODEL FOR
INVESTIGATING AGING IN EUKARYOTES

Studies in budding yeast suggest a role for replication
stress in aging. Two complementary and partly over-
lapping models of aging have been investigated in this
model organism—the replicative life span model and the
chronological life span model. The replicative life span of
budding yeast is determined by counting the number of
times cells divide in the presence of nutrients before they
senesce and die (12). Replicative life span is regulated by
conserved growth-signaling pathways that respond to
nutrients. Mutations in nutrient-signaling pathways
regulated by protein kinase A (Pka), the Torl kinase
(Torl) and Sch9, a budding yeast homolog of AKT/PKB
kinases that function in growth signaling downstream of
IGF-1 in mammals, extend replicative life span. Caloric
restriction induced by reducing the concentration of
glucose in growth medium also extends replicative life
span (13). The replicative life span-extending effects of
caloric restriction may be related to reduced signaling
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Figure 2. The unique structure of replicating DNA contributes to genome instability at replication forks, which is enhanced by replication fork
stalling. (A) When non-replicating DNA molecules suffer single-strand lesions, the integrity of these molecules is maintained by hydrogen bond base
pairing on either side of the lesions until they are repaired. (B) Replicating DNA molecules contain single-strand DNA at replication forks after
unwinding of double-strand template DNA has occurred in preparation for template-directed DNA synthesis. This single-strand DNA is highly
recombinogenic. (C) Single-strand DNA at replication forks is susceptible to single-strand lesions that effectively produce double-strand breaks.
Double-strand breaks also occur at stalled replication forks in association with attempts to repair the stalled forks and/or due to replication fork

collapse in the absence of checkpoint functions.

through Pka-, Torl- and Sch9-dependent pathways. This
is suggested by the fact that caloric restriction does not
extend replicative life span further when these pathways
have been inactivated (14,15).

Chronological life span in budding yeast is defined as
the length of time cells survive after they are driven into
a non-dividing state by depletion of nutrients from the
medium (12,16). Entry into this state coincides with an
extensive reorganization of transcriptional regulatory
programs leading to changes in the expression of a
significant fraction of all budding yeast genes (17,18).
These changes include the downregulation of many genes
encoding proteins required for DNA replication and cell
division when nutrients are in excess and the upregulation
of genes required for transcriptional responses to a variety
of stresses, including oxidative stress. Budding yeast cells
are capable of surviving in this non-dividing state for an
extended time, during which growth can be restored by
replenishing the medium with nutrients. The non-dividing
state of nutrient-depleted budding yeast cells shares
features with post-mitotic differentiated cells in higher
eukaryotes, including growth arrest of many cells with an
apparent G1 content of DNA. Consequently, compared to
the replicative aging model, the chronological aging model
is considered by some investigators to more accurately
reflect aging of post-mitotic, differentiated cells in more
complex eukaryotes.

Chronological life span in budding yeast is regulated
by the same highly conserved Pka-, Torl- and

Sch9-dependent nutrient-signaling pathways that regulate
replicative life span in this organism. Similar to the
extension of replicative life span by downregulation of
these pathways or by caloric restriction, chronological life
span is extended by these experimental manipulations as
well (19-22). A mechanistic relationship between chron-
ological and replicative life span is suggested by the
observation that chronologically aged cells cultured for an
extended time in depleted medium exhibit a shortened
replicative life span when nutrients are restored (23).

DNA replication stress and replicative aging of budding yeast

Replication stress is a primary determinant of replicative
aging in budding yeast. Although the specific details are
complex and involve a diverse array of cellular programs
that impact replicative aging—metabolism, energy pro-
duction, stress responses, transcriptional changes and
chromatin modification among others—ultimately, the
contributions of these programs to replicative aging
converge on effects that cause genome instability in the
highly repeated rDNA locus (12). Instability in this locus
is promoted by replication fork stalling at a Fobl-
dependent replication fork barrier, which prevents repli-
cation forks from proceeding through rDNA transcription
units in a direction opposite to that of transcription.
Recombinational repair mechanisms triggered by replica-
tion forks stalled at the Fobl barrier produce extra-
chromosomal rDNA circles (ERCs). During cell division,
ERCs are mostly retained in mother cells, where their
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accumulation eventually triggers age-dependent replica-
tive senescence. Although the mechanisms underlying
ERC-dependent senescence remain unknown, one inter-
esting possibility is that in old cells, the large number of
ERCs—each of which harbors an origin of DNA
replication—titrates proteins required for initiation of
DNA replication of cellular chromosomes. This would
amplify replication stress.

Although accumulation of ERCs in old budding yeast
cells causes replicative senescence, this senescent state also
occurs in the absence of ERCs (24-27). Furthermore, the
rate at which genome instability occurs outside the rDNA
locus in budding yeast dramatically increases with
replicative age, and ERC accumulation is not responsible
for this increased instability (1). ERC-independent repli-
cative aging is also accelerated by mutations in proteins
required for efficient DNA replication and genome
stability. These include the budding yeast RecQ helicase
Sgs1 (28), the related Dna2 helicase/nuclease and the Fen-
1 nuclease (26), all of which are required for maintaining
genome instability during DNA replication. In some cases,
replicative senescence produced by mutations in these
proteins may be related to general toxic effects associated
with the loss of function of these proteins rather than
normal aging processes. However, replicative senescence
of dna2 mutants duplicates morphological and biochem-
ical features of aging observed in replicatively senescent
wild-type cells (26), as is the case for some, but not all
replicatively senescent sgs/A cells (28). These findings—
some of which are rarely cited in the aging literature—
clearly point to a role for replication stress in replicative
aging of budding yeast that occurs independently of
ERCs, in addition to the well-established role of replica-
tion stress in ERC-dependent replicative aging.

Replication stress and chronological aging of budding yeast

Until recently, replication stress was not considered a
factor in chronological aging of budding yeast. This is
likely due to the fact that during chronological aging,
most cells appear to arrest growth without buds and with
a G1 content of DNA, which suggests that they are not in
S phase. Many studies of chronological aging have
focused instead on changes in cellular responses to
oxidative and other stresses (16). As in many other
eukaryotes, proteins that mitigate oxidative stress in
budding yeast are induced by caloric restriction and by
the mutational inactivation of growth-signaling pathways.
The induction of oxidative stress responses during nutrient
depletion by these experimental manipulations occurs in
parallel with chronological life span extension. Although
the connections between the induction of oxidative stress
responses and chronological life span extension revealed
by these studies are largely correlative, it is often assumed
they are causally related. This is not always the case. For
example, although mutational inactivation of Torl-
dependent growth signaling in budding yeast upregulates
the expression of the superoxide dismutase-encoding
SOD?2 gene and enhances resistance to oxidative stress in
stationary phase cells, deletion of SOD2 from torl A cells
does not alter their chronological life span (21).

Table 1. Experimental manipulations during nutrient depletion of
budding yeast that impact chronological life span and G1 arrest

Experimental
manipulation

GI arrest

Chronological
life span

sch9A

ras2A

RA Szvall 9

riml5A

torl A

Caloric restriction

(reduced glucose)

Osmotic stress
Culture in YPD
Culture in ethanol
Culture in glycerol
mecl-21

rad53-21

cln3A

CLN3 ox

Increased (30)
Increased (30)
Decreased (29,30)
Decreased (30,31)
Increased®
Increased (30)

Increased (30)
Increased (30)
Increased®
Increased®
Decreased (30)
Decreased (30)
Increased (87)
Decreased (30,32)

Increased (20,30)
Increased (30)
Decreased (29,30)
Decreased (30,31)
Increased (21)
Increased (22,30)

Increased (22,30)
Increased (30)
Increased (22)
Increased (22)
Decreased (30)
Decreased (30)
Increased (87)
Decreased (30,32)

Numbers in parentheses indicate references to articles containing data.
#Our unpublished data.

The frequent assumption that budding yeast cells arrest
in G1 during nutrient depletion also is not always correct.
For example, the constitutive activation of nutrient-
signaling pathways during nutrient depletion—which in
general is accompanied by shorter chronological life
span—can dramatically increase the number of cells that
growth arrest in other phases of the cell cycle, including S
phase. Mutations that have this effect include the
constitutively activating RAS2"" mutation (29,30) and
deletion of RIMI15 (30,31) encoding a regulator of
oxidative and other stress responses downstream of the
function of Ras2 and other nutrient-signaling proteins.
Both of these mutations shorten chronological life span.

We recently reported that the converse is true as well—
that is, mutational inactivation of nutrient-signaling path-
ways promotes a tighter G1 arrest during nutrient
depletion in concert with a longer chronological life span
(30). This includes inactivation of the AKT homolog Sch9,
which was previously shown to extend chronological life
span in concert with reduced chronological age-dependent
genome instability (2). Other experimental manipulations
that extend chronological life span, including caloric
restriction (30), growth in respiratory medium (ethanol
or glycerol; our unpublished data), growth in nutrient-rich
medium (YPD) and osmotic stress (30), also promote
a tighter GI arrest in chronological aging experiments.
Thus, a strong correlation exists between chronological life
span and the efficiency with which nutrient-depleted cells
arrest in G1 in association with a variety of experimental
manipulations that impact growth signaling (Table 1).

Growth arrest in S phase is expected to produce
replication stress. Consistent with this possibility, during
nutrient depletion, cells harboring mutations in the DNA
damage and replication stress response proteins Mecl and
Rad53 loose viability faster than wild-type cells or cells
that fail to express the DNA damage response protein
Rad9, which responds to DNA damage, but not replica-
tion stress (30). Ectopic expression during nutrient



depletion of the G1 cyclin Cln3—which promotes cyclin-
dependent kinase activity required for entry into and
progression through S phase—abrogates the G1 arrest
induced by nutrient depletion and causes many cells to
growth arrest in S phase instead. These cells also rapidly
loose viability (30,32) in concert with a dramatic increase
in chronological age-dependent genome instability in
surviving cells (30). Ectopic expression of ClIn3 also
abrogates the GI1 arrest induced by rapamycin, an
inhibitor of Torl signaling, and also leads to growth
arrest in S phase and rapid cell death (32). These findings
establish that during nutrient depletion, growth arrest in
S phase leads to genome instability and shortens
chronological life span due to the accumulation of
replication stress. Importantly, the effects of ectopic
Cln3 expression on genome instability and chronological
life span occur in the absence of upstream alterations in
growth signaling that would impact oxidative and other
stress responses.

The tighter G1 arrest promoted by caloric restriction
and mutations that downregulate growth-signaling path-
ways—which were previously shown to induce oxidative
stress responses—Ilikely extends chronological life span in
part by protecting against replication stress. A role for
replication stress in chronological aging of budding yeast
is consistent with the recent finding that a distinct
subpopulation of nutrient-depleted cells—which includes
all the cells that remain budded after growth arrest has
occurred—expresses a number of genes encoding proteins
required for the resolution of stalled replication forks (33).
It could also explain the shorter replicative life span of
chronologically aged cells when nutrients are subsequently
restored (23). The accumulation of replication stress and
replication stress-induced DNA damage during chrono-
logical aging would be expected to shorten the subsequent
replicative life span of these cells, which (as discussed
above) is also impacted by replication stress.

Replication stress and hormesis effects on aging
in budding yeast

Similar to caloric restriction, chronic low-level osmotic
stress extends both the replicative (34) and chronological
(22,30) life span of budding yeast. Also similar to caloric
restriction, the extended chronological life span of osmo-
tically stressed cells is associated with a tighter arrest in G1
induced during nutrient depletion (30). This tighter G1
arrest is likely related to the transient G1 arrest induced by
osmotic stress in cycling populations of cells (35,36), which
protects against genome instability by blocking entry into S
phase (35). The genome-protecting effect of this transient
G1 arrest suggests that osmotic stress also induces
replication stress. A transient G1 arrest is also detected in
cycling cells exposed to other stresses, including oxidative
stress (37,38), heat shock (39) and DNA damage (40). This
likely reflects the existence of replication stress-inducing
effects of these other stresses as well.

The ‘hormesis’ hypothesis of aging is based on the
observation that caloric restriction or chronic low-level
exposure to any of these stresses induces cross-resistance
to other stresses at the same time that it extends life
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span (41). Hormesis effects on aging are observed in many
eukaryotes in addition to budding yeast. Although the
mechanistic details of these effects remain unclear, we
have argued that they include a general response to
environmental stresses that blocks entry into S phase
under environmentally stressful conditions that are sub-
optimal for replicating DNA, thus protecting cells from
replication stress (30).

REPLICATION STRESS AND AGING IN HIGHER
EUKARYOTES

RecQ helicases, replication stress and aging

A universal role for replication stress in aging is suggested
by the premature aging phenotypes observed in many
eukaryotes harboring mutations in highly conserved RecQ
helicases (including Sgsl in budding yeast). Although
RecQ helicases are not essential for viability, they
contribute to genome stability at stalled replication forks
by activating checkpoints, stabilizing stalled replication
complexes, preventing the formation of aberrant recom-
bination intermediates and facilitating the resolution of
these intermediates when they form (42). In humans,
mutations in the human WRN RecQ helicase cause
genome instability and the premature aging syndrome
Werner syndrome. In addition to shortened life span,
Werner syndrome is characterized by premature graying
and thinning of hair, osteoporosis, Type II (‘late onset’)
diabetes, cataracts and an increased incidence of cancer
(43). Defects in two other human RecQ helicases that are
also required for cellular responses to replication stress—
BLM and RECQL4—also lead to genome instability and
cancer-predisposing, premature aging syndromes [Bloom
syndrome and Rothmund-Thomson syndromes, respec-
tively (44)]. Not all the pathologies associated with these
premature aging syndromes are related to normal aging.
However, based on the overlap between features of these
syndromes with various phenotypes of aged individuals,
there is little doubt that they mimic many aspects of
normal aging, perhaps by accelerating the consequences of
replication stress.

Growth signaling, replication stress and aging
in higher eukaryotes

The possibility that replication stress arising downstream
of growth signaling in higher eukaryotes might contribute
to normal aging in the absence of defective responses to
stalled replication forks (such as responses mediated by
RecQ helicases or other proteins) has not been widely
considered. Consistent with this possibility, however,
several recent studies have established previously
unknown connections between replication stress and
growth signaling implicated in cancer and aging in
mammals (5-8). Initially, this included the detection of
DNA damage and activated checkpoints (6,8) as well as
apoptosis (8) in a variety of pre-neoplastic lesions in
humans and mice. In these studies, DNA damage was
detected specifically at chromosomal fragile sites that are
induced in cultured cells by inhibiting DNA replication
with drugs. These findings strongly implicate replication
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stress-induced DNA damage in the etiology of cancer at
its earliest stages. Similar to the effects of RAS2'!
expression or ectopic expression of CLN3 during nutrient
depletion in budding yeast (30), replication stress in pre-
neoplastic lesions is induced by enhanced growth signal-
ing. For example, increased replication stress and DNA
damage were detected in hyperplastic lesions induced
in mice by the ectopic expression of genes encoding
oncogenic growth factors, as well as cyclins that (similar to
ClIn3 in budding yeast) stimulate cyclin-dependent kinase
activity required for entry into and progression through S
phase (6,8).

Even more recently, replication stress associated with
enhanced growth signaling was implicated in the phenom-
enon of cellular senescence, which is more directly linked
to normal aging. Senescence is a non-dividing state that
cannot be reversed by stimulating growth. It is triggered
by a variety of stresses, including DNA damage, telomere
erosion that mimics DNA damage and induces DNA
damage signals and enhanced growth signaling that leads
to DNA damage (45). Senescence induced by oncogene-
enhanced growth signaling is referred to as ‘oncogene-
induced senescence’ (OIS) and requires the induction of
DNA damage responses, including those mediated by p53.
Inhibition of cyclin-dependent kinases required for
progression into and through S phase by the cyclin-
dependent kinase inhibitors p21-—which is induced by
p53—and pl6™K4 underlies the cell cycle arrest that
characterizes the senescent state. This cell cycle arrest
protects against the formation of tumors downstream of
oncogenic growth signaling, because abro§ation of this
arrest (e.g. by mutations in p53- or pl6™**dependent
pathways) can lead to tumorigenesis.

One of the more important recent findings in the cancer
research arena is the discovery that OIS is triggered by
replication stress in pre-neoplastic cells (5,7). In addition
to chromosome instability at fragile sites detected in both
pre-neoplastic and senescent cells, a role for replication
stress in OIS is indicated by the detection in these cells of
aberrant DNA replication and partly replicated chromo-
somes (5,7). Furthermore, oncogene-enhanced growth
signaling does not lead to OIS in cells that are first
arrested outside of S phase by contact inhibition or serum
deprivation.

Similar to the effects of replication stress in nutrient-
depleted budding yeast cells that are assumed (often
incorrectly) to arrest in G1, the role of replication stress in
OIS may have escaped detection earlier in part because
of the frequent, but perhaps erroneous assumption that
senescent cells growth arrest in G1. Although cells that
have undergone OIS often growth arrest with an apparent
G1 content of DNA measured by flow cytometry (45), this
technique cannot detect small increases in DNA content
that would occur in cells that arrest growth shortly after
entering S phase. In fact, the detection of partly replicated
chromosomes in OIS cells using FISH technology (7)
clearly suggests growth arrest of these cells occurs within
S phase. The importance of these findings for under-
standing cancer is emphasized by recent paradigm-shifting
studies suggesting that the tumor-suppressing properties
of p53 are related to its induction of OIS in response to

replication stress, and not the acute responses to DNA
damage previously believed to be responsible for p53-
dependent tumor suppression (46).

The discoveries of oncogene-induced replication stress
and replication stress-induced senescence have important
implications for understanding aging, in addition to
understanding the etiology of cancer. First, these findings
establish that, as in budding yeast, growth signaling
implicated in aging can cause replication stress-induced
DNA damage and genome instability in higher eukar-
yotes, in addition to inhibitory effects on oxidative and
other stress responses. Second, the induction of DNA
damage, cellular senescence and apoptosis by replication
stress points to a specific mechanism by which replication
stress associated with growth signaling might impact aging
in mammals and other higher eukaryotes. Senescent cells
increase in number with age, and increased senescence
mediated by p53 and/or p16™*** has been implicated in a
number of age-related pathologies (45,47). In fact, another
remarkable (and unexpected) recent discovery in the
cancer research arena is the premature aging phenotype
of mice expressing a hyperactive form of p53, despite its
inhibitory effects on tumorigenesis (47). Most likely,
senescence and/or apoptosis mediated by p53 and
pl6™4 promote aging by reducing the proliferative
capacity or number of stem cells or their proliferating
progeny, leading to the decline in capacity for tissue
renewal that underlies many aging phenotypes (47,48).
Senescent cells may also contribute to aging by secreting
substances capable of altering the tissue microenviron-
ment (49).

A role for replication stress-related genome instability
in the age-dependent decline of stem cells and their
proliferating progeny is consistent with the recent detec-
tion of age-dependent chromosome instability specifically
in proliferating cells in various tissues of mice, including
brain and intestines (50). In fact, a compelling argument
for replication stress as a trigger for age-dependent decline
in stem cells populations can be made based on the
findings of a recent study of mice expressing a hypo-
morphic allele of the DNA replication protein Mcm2 (51).
Reduced expression of Mcm?2 in mice homozygous for this
mutation does not impact normal development. However,
beginning at 9 weeks of age, these mice exhibit a
constellation of aging phenotypes, including the develop-
ment of tumors, a reduction in the number of stem cells in
brain, skeletal muscle and intestinal crypts, increased
DNA damage and the expression of markers of premature
aging. To our knowledge, this is the first report of a
progeroid syndrome directly caused by replication stress
rather than by defects in cellular ‘responses’ to replication
stress associated with mutations in RecQ helicases and
other proteins.

Life span extension by inhibition of growth signaling
leading to reduced replication stress

An important corollary to this model is that, as in budding
yeast, reduced growth signaling promotes longevity in
higher eukaryotes by ‘reducing’ replication stress. Several
observations support this notion. First, decades ago it



was reported that caloric restriction—which inhibits
tumorigenesis and prolongs life span in all eukaryotes—
also inhibits DNA replication and reduces the number of
proliferating cells in a variety of mammalian tissues
(52,53). Similar to the tighter GI arrest that protects
against replication stress induced by caloric restriction
in chronologically aged budding yeast (30), the anti-
proliferative effects of caloric restriction in mammals may
protect against replication stress by prolonging residence
of cells in G1.

Second, it was recently discovered that mice (54) and
Drosophila (55) harbor ‘metabolic checkpoints’ that
depend on AMP-activating protein kinase (AMPK) and
p53 to arrest cells in Gl under conditions of energy
deprivation, such as caloric restriction. In mice (and
presumably in other organisms as well), this checkpoint
responds to low glucose levels, and abrogation of the
checkpoint causes lethality associated with an increased
fraction of cells in S phase (54). Presumably, this
checkpoint underlies some of the anti-proliferative effects
of caloric restriction reported earlier. Importantly, unlike
the irreversible growth arrest with partially replicated
chromosomes associated with senescence, the metabolic
checkpoint is reversible, at least after transient exposures
to low glucose—when glucose levels are restored, mouse
cells resume dividing. However, prolonged exposures to
low glucose induces senescence (54).

In fact, AMPK exhibits p53-dependent and mTOR-
dependent anti-proliferative effects in many types of
normal and tumor cells (56). Inhibition of proliferation
by AMPK has been implicated in the neuroprotective
effects of both caloric restriction and resveratrol, a plant
polyphenol that mimics caloric restriction and inhibits
aging in yeast and mice (57). AMPK is required for
longevity in Caenorhabditis elegans (58), and it has been
suggested that an AMPK- and p53-dependent metabolic
checkpoint regulated by mitochondrial events contributes
to longevity in this organism (59).

Numerous other recent studies have reported unex-
pected roles for p53 in responses to (and regulation of)
glucose metabolism in mammalian cells, in addition to its
well-established roles in DNA damage responses.

These studies shed new light on long-standing connec-
tions between metabolism and cancer, as well as aging
(60). They also point to an anti-aging role for p53.
Consistent with this notion is a recent report that p53
negatively regulates IGF-1-AKT and mTOR pathways
implicated in aging (61). An anti-aging role for p53 does
not contradict the pro-aging role of p53 in cellular
senescence described above. In contrast to premature
aging of mice associated with high level of expression of a
mutant form of p53, mice expressing increased, but
normally regulated p53—which may mimic the modest
levels of p53 expression transiently induced by nutrient-
limiting conditions—exhibit an extended life span (62).

In budding yeast, the AMPK homolog Snfl is also
activated by low glucose and promotes chronological
longevity [(63) and references therein]. Snfl null cells also
fail to arrest in Gl during nutrient depletion (our
unpublished data) and thus are exposed to increased
replication stress during chronological aging experiments.
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Compared to wild-type cells, Snfl null cells are also more
sensitive to the replication stress-inducing compounds
hydroxyurea and methymethane sulfonate (63). Together,
these findings suggest that energy deprivation is a source
of replication stress in all eukaryotes and triggers a
conserved metabolic checkpoint that protects against
replication stress by inducing growth arrest in G1. We
propose that this G1 arrest and the protection from
replication stress it affords contribute to the beneficial
effects of caloric restriction.

Third, unlike the premature aging phenotype of mice
expressing a hypomorphic allele of the replication initia-
tion protein Mcm2 described above (51), in adult
C. elegans, RNAI ablation of the mcm-2 gene extends
life span (64). Furthermore, mcm-2 and other mcm
proteins that form replication initiation complexes are
downregulated in long-lived C. elegans daf-2 insulin
receptor mutants, and this downregulation may contribute
to their extended life span (65). Initiation proteins are
required for entering S phase and establishing replication
forks, and Mcm?2 is not expressed in quiescent mammalian
cells. In fact, the absence of Mcm?2 and other (but not all)
replication initiation proteins may be a defining char-
acteristic of the quiescent state (66). In contrast to the
partial inhibitory effects on Mcm2 expression likely
produced by the hypomorphic Mcm?2 allele in mice—
which would permit entry into S phase, but with a reduced
number of replication forks—the life span-extending
effects of RNAi knockdown of mem-2 or its down-
regulation in daf-2 mutants may be related to more robust
downregulation of mcm-2 expression that mimics meta-
bolic checkpoints by blocking entry into S phase.

A caveat to this hypothesis is that except for the
germline, cells in adult C. elegans are post-mitotic, and
therefore do not enter S phase. It is possible that the anti-
aging effects of inhibiting mcm-2 expression in adult
C. elegans are indirectly related to replication stress-
induced genotoxicity in dividing germline cells, the
ablation of which enhances longevity (67). An alternative
possibility is that on rare occasions, post-mitotic cells
undergo unscheduled DNA replication leading to partial
replication of chromosomes, which would require Mcm2.
Relevant here are the many reports that unscheduled
DNA replication in post-mitotic neurons is a feature of
numerous age-related neurodegenerative disorders (68,69).
Even more relevant is a recent report that in a Drosophila
model for age-related neurodegeneration, growth signal-
ing by TOR pathways leads to unscheduled DNA
replication in post-mitotic neurons, which is a causal
factor in neurodegeneration (70).

Replication stress, mitochondria and growth signaling

Increased oxidative damage to DNA and other cellular
constituents by ROS produced in dysfunctional mitochon-
dria is an important component of modern versions of the
‘free radical theory’ of aging (3,71). It is often assumed
that the production of ROS in mitochondria is directly
proportional to the rate of mitochondrial respiration, and
that increased respiration promotes aging. A number of
recent studies in budding yeast and mammals argue
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that these long-held assumptions are incorrect (72).
For example, caloric restriction and other experimental
manipulations that enhance respiration in budding yeast
reduce, rather than increase levels of ROS at the same time
that they enhance life span (73). Similarly, budding yeast
cells cultured in medium containing glycerol or ethanol,
which are metabolized via respiratory pathways, exhibit a
longer chronological life span (22). Furthermore, deletion
of TORI extends chronological life span of budding yeast
by enhancing respiration, but reducing ROS (21). As
might be expected based on these reports, experimental
manipulations that increase the production of ROS in
mitochondria shorten the chronological life span of this
organism (73,74).

The counterintuitive findings that increased respiration
can lead to reduced ROS and longer life span extends to
higher eukaryotes as well. For example, the life span-
extending effects of caloric restriction in rats and cultured
human cells (75), mice (76) and humans (77) is accom-
panied by increased respiration, and in the case of rats and
humans, reduced levels of ROS (ROS were not examined
in the mouse study). In all three studies, caloric restriction
also stimulated mitochondrial biogenesis. In budding
yeast, the tighter G1 arrest induced by caloric restriction
in nutrient-depleted cells in concert with chronological
life span extension is also accompanied by increased
mitochondrial biogenesis (30). The chronological life
span-extending effects of deleting TORI that increase
respiration and reduce ROS referred to above are also
accompanied by evidence for mitochondrial biogenesis
(21). Thus, mitochondrial biogenesis that increases
respiration, but reduces ROS and is inhibited by growth
signaling may be a general feature of the life span-
extending effects of caloric restriction in all eukaryotes.

Interestingly, mammalian mitochondrial biogenesis is
stimulated by AMPK (78-80), and the neuroprotective
effects of resveratrol associated with its stimulation of
AMPK-dependent inhibitory effects on proliferation
discussed above are accompanied by mitochondrial
biogenesis (57). Thus, AMPK appears to play an
important role in mitochondrial biogenesis that connects
this process to growth signaling. These findings suggest a
revised model for the role of mitochondria in aging. In this
model, mitochondria lie at the nexus of growth-signaling
pathways that promote aging by inhibiting mitochondrial
biogenesis, reducing respiration and increasing ROS.
Conversely, inhibition of growth-signaling pathways
extends life span in part by stimulating mitochondrial
biogenesis, increasing respiration and reducing ROS.

This model is consistent with the free radical theory
that posits oxidative damage as a primary determinant of
aging, although it conflicts with the long-held assumption
that higher rates of aerobic metabolism shorten life span
by increasing ROS. However, accumulating evidence
indicates that in mammals, superoxide anions and other
species of reactive oxygen produced in mitochondria
signal growth (81). In the context of this information as
well as the emerging evidence connecting growth signaling
to replication stress and the evidence for a role for
replication stress in aging, another possibility must be

considered—that inhibition of mitochondrial biogenesis
by growth signaling produces ROS that contribute to
aging by transducing replication stress-enhancing growth
signals downstream of mitochondrial events.

Although a role for ROS in growth signaling in budding
yeast has not been directly addressed, budding yeast
exhibit a metabolic redox cycle that is coordinated with
the cell cycle (82), which suggests that ROS signal growth
in this organism, as in mammals and other eukaryotes.
Although the evidence is strictly correlative, the reduced
ROS reported to occur in calorie-restricted budding yeast
cells during nutrient depletion (73) might contribute to the
tighter G1 arrest accompanied by evidence for mitochon-
drial biogenesis we recently observed in calorie-restricted
cells during chronological aging (30). Similarly, since ROS
contribute to growth signaling in mammals, AMPK-
dependent mitochondrial biogenesis in response to low
glucose in mammalian cells might contribute to the anti-
proliferative effects of the metabolic checkpoint by
reducing ROS.

In fact, a role for ROS-dependent growth signaling in
aging of ecukaryotes is clearly evident in a recent study
employing the Drosophila model of TOR-dependent, age-
related neurodegeneration described above. In this study,
unscheduled DNA replication and neurodegeneration
occurring in post-mitotic neurons downstream of TOR
signaling were blocked by genetic manipulations or
pharmacological treatments that reduce ROS (83). We
think it is likely that some of the well-documented pro-
aging effects of growth signaling and increased oxidative
stress in all eukaryotes could be related to enhanced
growth signaling by ROS that promotes replication stress-
induced DNA damage, in addition to oxidative DNA
damage, and is inhibited by caloric restriction.

SUMMARY AND FUTURE PERSPECTIVES

Despite many tests of the free radical theory during the
several decades that have eclapsed since it was first
proposed, in many organisms (including humans), the
nature of age-dependent genome instability and whether
oxidative damage to DNA limits life span remains
unclear. The emerging connections between growth
signaling and DNA replication stress in budding yeast
and in higher eukaryotes outlined in this article suggest a
revised model for understanding aging and age-dependent
genome instability: in addition to oxidative damage,
age-dependent DNA damage and genome instability are
caused by DNA replication stress arising downstream of
deregulated growth signaling.

According to this model, replication stress that impacts
aging is likely caused by the downregulation of some, but
not all, growth-signaling pathways during entry into a
non-dividing state. This leads to growth arrest within S
phase in the absence of a full complement of factors
required for efficient DNA replication. This can occur
during nutrient depletion of budding yeast cells expressing
a constitutively active Ras2 protein, for example, which
leads to the transcriptional induction of CLN3 encoding



a protein required for the GI1-S transition, but not genes
required for DNA replication [(84), including
Supplementary data]. In higher eukaryotes, replication
stress that impacts aging likely occurs in stem cells or their
proliferating progeny when the constitutive activation of
some growth-signaling pathways by mutations or other
factors coincides with the downregulation of other
growth-signaling pathways (in quiescent stem cells or
during differentiation, for example) required for efficient
DNA replication. This leads to apoptosis or the irrever-
sible growth arrest in S phase with partially replicated
chromosomes that characterizes OIS. Both outcomes
would cause the reduced capacity for tissue renewal that
underlies many age-related pathologies. Age-related repli-
cation stress also likely arises in post-mitotic neurons. As
discussed above, inappropriate activation of growth
signaling and ectopic entry into S phase after neuronal
differentiation has occurred have been implicated in a
variety of age-related neurodegenerative disorders.

This model also predicts that caloric restriction exerts
some of its anti-aging (and anti-cancer) effects by
protecting cells from replication stress. Protection from
replication stress by caloric restriction is likely provided
by the induction of energy-sensing ‘metabolic checkpoints’
that coordinately downregulate all growth-signaling path-
ways, leading to an efficient growth arrest in G1, rather
than S phase. This might include growth-signaling path-
ways that have been constitutively activated by mutations
upstream of cyclin-dependent kinase activity required for
progression into S phase, which is likely inhibited by these
checkpoints. Mutations in RecQ helicases and other
proteins that respond to replication stress accelerate
aging by amplifying the consequences of replication
stress that develops during normal aging. Although this
model can account for some of the failures of the free
radical theory of aging to explain various aging pheno-
types, it is not inconsistent with this theory. Most likely,
the roles of oxidative stress-induced and replication stress-
induced DNA damage in aging are inextricably linked by
their common origin in deregulated growth signaling,
perhaps including growth signaling by ROS produced in
mitochondria (Figure 3).

A more complete understanding of how replication
stress potentially impacts aging will require a better
understanding of the non-dividing state induced by
energy deprivation and during differentiation. Pathways
that regulate the G1 to S phase transition in cycling
populations of cells and their downregulation in response
to DNA damage and other stresses have been extensively
investigated. However, much less is known about how
these pathways are downregulated during differentiation
or in response to nutrient-limiting conditions that lead to
quiescence, or how quiescence is maintained. The paucity
of details concerning downregulation of these pathways in
mammalian cells is reflected by the following fact: only
recently was it determined that p53—one of the most
thoroughly characterized mammalian proteins—induces a
G1 arrest in response to low glucose, in addition to DNA
damage.
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Figure 3. Replication stress model of aging. Growth signaling inhibits
mitochondrial biogenesis and respiration and increases ROS, leading to
replication stress, genome instability, cellular senescence and aging.
Replication stress is likely enhanced by ROS-dependent growth
signaling and by growth signaling that occurs independently of ROS.
Caloric restriction and mutational inactivation of growth-signaling
pathways stimulate mitochondrial biogenesis, increase respiration and
reduce ROS. Reduced ROS-dependent and -independent growth
signaling reduces replication stress and genome instability and
promotes life span. In mammals, exercise also extends life span
extension and promotes mitochondrial biogenesis and increased
respiration (77,89). The effects of replication stress on aging likely
occur in parallel with oxidative damage to DNA and other cellular
constituents.

Even less is known about how cells arrest in Gl in
response to nutrient-limiting conditions in budding yeast,
the organism that (together with fission yeast) was
employed in numerous studies of growth in the presence
of excess nutrients that provided the framework for
understanding cell cycle regulation in all eukaryotes. For
example, although the PUBMED search engine identifies
(as of late October 2007) 3145 publications associated with
the terms ‘Cln” (G1 cyclins), Cdc28 (the cyclin-dependent
kinase required for entry into S phase regulated by Clns)
or ‘Sicl’ (an inhibitor of Cdc28), it identifies just 20
publications associated with these terms and the term
‘stationary phase’ (the growth-arrested state induced by
nutrient depletion), most of which are not relevant to
stationary phase G1 arrest.

This paucity of information exists despite the likelihood
that in budding yeast, events associated with the down-
regulation of growth during nutrient depletion—such as
those detected in chronological aging experiments—more
accurately model how replication stress arises and
contributes to cancer and aging compared to models
based on studies of cells dividing in the presence of excess
nutrients. This view runs somewhat counter to the
conventional wisdom that the chronological aging model
of budding yeast is mostly relevant to aging of post-
mitotic cells in higher eukaryotes. However, the
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chronological life span of this organism is clearly impacted
by events during early stages of nutrient depletion that
impact a ‘post-mitotic’ growth arrest before this arrest is
established. For example, the effects of caloric restriction
by reducing glucose concentrations must be limited to the
first few days of nutrient depletion when cells have not yet
arrested growth. This is because after this time period, the
concentration of glucose approaches zero, and thus the
reduced glucose levels present at the beginning of these
experiments can no longer impact life span. Similarly, the
life span-extending effects in budding yeast cells associated
with increased respiration when Torl is inactivated are
limited to the first few days when cells are arresting
growth, and are absent after this growth arrest has been
established (21). In short, at least some of the molecular
events that impact chronological life span in budding yeast
likely mimic events in dividing stem cell populations or
their proliferating progeny at early stages of differentia-
tion in higher eukaryotes, before the permanent ‘post-
mitotic’ growth arrest associated with the differentiation
of many cells has occurred.

However, chronological aging experiments can also
mimic events in post-mitotic cells. For example, caloric
restriction imposed during chronological aging experi-
ments by replacing depleted medium with water after
growth arrest is established dramatically extends chrono-
logical life span (16). Furthermore, stimulation of growth
by adding glucose, but not other nutrients, to growth-
arrested stationary phase cultures rapidly induces apop-
tosis in concert with evidence that cells are attempting to
re-enter the cell cycle (85). Apoptosis may occur because
the addition of glucose in the absence of other nutrients
stimulates some, but not all, growth regulatory pathways
required for efficient DNA replication, leading to replica-
tion stress-induced DNA damage. These observations
may be relevant, for example, to age-dependent neuro-
degeneration that occurs when unscheduled DNA replica-
tion and apoptosis are triggered in post-mitotic neurons
downstream of the inappropriate activation of growth-
signaling pathways (86).

The role of replication stress in aging may reflect a
broader role for replication stress in evolution than
previously considered. In addition to its potential impact
on the evolution of budding yeast after an ancient whole
genome duplication [(87); see Ref. (30) for discussion],
replication stress may have been an important factor in
the evolution of many multicellular organisms. High
concentrations of salt induce mutations in budding yeast
and DNA strand breaks in many eukaryotes (88). The
increased mutation frequency associated with entry into S
phase in osmotically stressed budding yeast cells that fail
to arrest in G1 (35) suggests strand breaks produced by
increased salinity might be caused by replication stress. It
has been hypothesized that DNA strand breaks and
mutations produced when the salinity of seawater
increased during the Precambrian-Cambrian period
enhanced genetic diversity that drove the explosive
adaptive radiation of species during the Cambrian
period (88). Thus, replication stress may have contributed
to this adaptive radiation. As may have been the case for
the evolution of budding yeast, this adaptive radiation

may have required the evolution of mechanisms for
protecting against replication stress that impact aging.
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