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Summary 
Exposure of normal juvenile chicken bone marrow cells to the replication defective avian 
reticuloendotheliosis virus strain T (REV-T) (chicken syncitial virus [CSV]) in vitro resulted 
in the generation of transformed cell lines containing T cells. The transformed T cells derived 
from bone marrow included cells expressing either od3 or 3,/8 T cell receptors (TCRs) in proportions 
roughly equivalent to the proportions of TCR-od3 and TCR-3,/~ T cells found in the normal 
bone marrow in vivo. Essentially all TCK-o#~-expressing transformed bone marrow-derived 
T cells expressed CD8, whereas few, if any, expressed CD4. In contrast, among TCR-3,/~ T 
cells, both CD8 + and CD8- cells were derived, all of which were CD4-. Exposure of ex vivo 
spleen cells to REV-T(CSV) yielded transformed polyclonal cell lines containing >99% B cells. 
However, tLEV-T(CSV) infection of mitogen-activated spleen cells in vitro resulted in transformed 
populations containing predominantly T cells. This may be explained at least in part by in vitro 
activation resulting in dramatically increased levels of T cell REV-T(CSV) receptor expression. 
In contrast to REV-T(CSV)-transformed lines derived from normal bone marrow, transformed 
lines derived from activated spleen cells contained substantial numbers of CD4 + cells, all of 
which expressed TCR-og3. While transformed T cells derived from bone marrow were stable 
for extended periods of in vitro culture and were cloned from single cells, transformed T cells 
from activated spleen were not stable and could not be cloned. We have therefore dissociated 
the initial transformation of T cells with REV-T(CSV) from the requirements for long-term 
growth. These results provide the first demonstration of efficient in vitro transformation of chicken 
T lineage cells by REV-T(CSV). Since productive infection with REV-T(CSV) is not sufficient 
to promote long-term growth of transformed cells, these results further suggest that immortalization 
depends not only upon expression of the v-tel oncogene but also on intracellular factor(s) whose 
expression varies according to the state of T cell physiology and/or activation. 

(REV-T) t replica- " ~  eticuloendotheliosis virus strain T is a 
~ .  tion-defective avian retrovirus, first characterized as in- 

ducing acute reticuloendothelial neoplasia in vivo (1, 2). REV:r 
contains the transforming v-tel oncogene inserted within its 
env gene (3, 4), although the molecular basis for cell trans- 
formation by v-tel is currently unclear. KEV:F requires a helper 
virus for replication, the most widely used of which has been 
the REV-A retrovirus (5). However, KEV-A itself is suppres- 
sive for lymphoid cells in vivo (6, 7), and infection in vivo 
or in vitro with REV-T(REV-A) has led to transformation 
of target cells frequently defined as being immature cells of 
hematopoetic origin (8-10). Subsequently, chicken syncitial 
virus (CSV) has been used as a helper virus for KEV-T, and 

1 Abbreviations used in this paper: CSV, chicken syncitial virus; REV, 
reticuloendotheliosis virus strain. 

the resulting REV-T(CSV) has proved to be highly efficient 
in the induction of lymphocyte transformation in vivo (11, 
12) or in vitro (13, 14). Exposure of chickens in vivo leads 
to the rapid induction of polyclonal B cell tumors that can 
readily be adapted to in vitro growth (11, 12). Similarly, ex- 
posure of lymphoid cells in vitro to REV-T(CSV) also leads 
to polyclonal B cell transformation (13). While some reports 
have suggested that REV-T(REV-A)-transformed B lineage 
cells may undergo loss or changes within the Ig loci during 
in vitro culture (15-17), REV-T(CSV)-transformed B lineage 
clones induced in vivo or in vitro have stable Ig loci during 
extended periods of in vitro growth (11, 13). Recently, ex- 
posure of B cell-deficient chickens to tLEV-T(REV-A) in vivo 
led to the generation ofT cell tumors in vivo (18), suggesting 
that REV-T-based viruses might provide a means of trans- 
forming at least some subsets of chicken T cells. 

Avian species have provided valuable models for studies 
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of lymphoid cell development from immature precursors 
largely as a consequence of the accessibility of the embryo 
to surgical manipulation (e.g., reference 19). The degree of 
conservation of T cell developmental biology (20, 21) and 
cell surface antigen expression (22-29) between avian and 
mammalian species is extremely high with the result that 
the analysis of avian T cell development has general relevance 
to mammalian as well as avian species. One drawback of avian 
models of T cell development and activation has been a rela- 
tive paucity of defined transformed cells, compared with mam- 
malian species, as sources of material for the analysis of the 
biochemistry of cell surface molecules and their interactions. 

In this report we demonstrate that transformed T cells can 
be derived from exposure of normal ex vivo or activated normal 
chicken T cells to REV-T(CSV) in vitro. Such T cells express 
either TCR-ot/3 or -'y//~, the latter representing the first stable 
isolation of transformed chicken 3'//~ T cells. Whereas REV- 
T(CSV) transformation of ex vivo spleen cells generated cell 
lines containing exclusively B cells, exposure of mitogen- 
activated spleen cells to REV-T(CSV) resulted in transformed 
lines containing predominantly T cells, and including both 
CD4 + and CD8 + cells. While transformed T cell lines de- 
rived from mitogen-activated spleen cells were unstable, lines 
derived from normal bone marrow could be cloned with high 
efficiency, and T cell clones of either or/3 or 3'/# lineage were 
generated. Consequently, while the activity of the v-tel on- 
cogene is functionally expressed in T cells, parameters other 
than v-tel expression limit the immortalization of chicken T 
cells by REV-T. 

measured by quantitation of colonies visible to the naked eye after 
8-11 d of culture. The frequency of splenic T cells transformed 
by REV-T(CSV) was established by limiting dilution analysis in 
10-#1 Terrasaki cultures containing titrated numbers of splenic T 
cells and 75% $2A3 supernatant. Transformation was defined 
by growth in 10-#1 cultures requiring passage to 100-#1 cultures 
within 7 d. 

Antibodies and Flow Cytometric A nalysis. The mAbs used in these 
studies were as follows: 6E1, anti-chicken Ig light chain (31); 
EP96, anti-chicken CD4 (29); EP72, anti-chicken CD8 (29); 
CT3, anti-chicken CD3 (22); TCR1, anti-chicken TCR.-y/~ (23); 
TCR2, anti-chicken TCR-ot/3 (24), defining those T cells using 
the V31 gene (32); and TCR3, anti-chicken TCR-cd3 (25), 
defining those T cells using the VB2 gene (32). Binding of pri- 
mary antibodies was detected using either FITC-conjugated mono- 
clonal rat anti-mouse Ic (187.1) (33) as described elsewhere (29) 
or using FITC- or R-PE-conjugated goat anti-mouse Ig isotype 
antibodies (Southern Biotechnology Associates, Birmingham, AL). 
Viable cells were analyzed on a FACScan | (Becton Dickinson Canada 
Inc., Mississauga, Ontario, Canada) by gating on forward and 
side scatter. 

Southern Blot Analysis. Cellular DNA was prepared from ".,4 
• 106 cells/track and digested with a 10-fold excess of restriction 
enzymes according to manufacturer's instructions (Pharmacia, Baie 
D'Urf-6, Quebec, Canada). Digested DNA was run on 0.8% agarose 
gels before depurination, denaturation, blotting onto nylon mem- 
branes, and UV crosslinking. Blots were probed with a nick- 
translated probe comprising a 967-bp EcoKI fragment of the 
PKW101 plasmid, which hybridizes to v-tel and c-tel sequences (34), 
incorporating c~-[32p]dCTP (ICN Biomedicals Canada, Ltd., 
Toronto, Ontario, Canada) to a specific activity of between 6 x 
10 s and 2 x 109 cpm/#g DNA as described elsewhere (13). 

Materials and Methods 
Cells. Bursa, spleen, bone marrow, and PBL were prepar~l from 

6-8-wk-old SC chickens (Hyline International, Dallas Center, IA) 
as described elsewhere (29), Spleen T cells were prepared by incu- 
bation of normal spleen cells with the anti-Bu-1 antibodies 21-1A4 
and FuS.11G2 (30) for 15 min followed after washing by incuba- 
tion at 37~ for 30 min with rabbit anti-mouse Ig and guinea pig 
complement (Cedarlane Laboratories, Homby, Ontario, Canada), 
each preabsorbed on chicken lymphoid cells. 

Tissue Culture. All tissue culture was performed in IMDM sup- 
plemented as described elsewhere (13). Superuatant from the S~3 
cell line was filtered, aliquotted, stored at - 70~ and thawed im- 
mediately before use as a source of ILEV-T(CSV) (13). Spleen cells 
were activated by culture for 3-4 d at 5 x 106 cells/m1 in the pres- 
ence of 3 #g/ml Con A (Sigma Chemical Co., St. Louis, MO). 
Con A was subsequently removed by washing cells in 0.05 M methyl 
Ce-D-mannopyrannoside (Sigma Chemical Co.) before further use. 

Cells were transformed by culture at 2-5 x 106/ml in the pres- 
ence of 75% $2A3 supernatant. When cell growth was evident, 
ceUs were passaged in IMDM without further addition of virus- 
containing supernatants. Cell lines were cloned by growth from 
microscopically observed single cells in 10-#1 Terrasaki cultures es- 
tablished in the absence of any exogenous filler cells, as described 
elsewhere (13). 

The frequency of bone marrow cells transformed by REVZI'(CSV) 
was established by colony formation in 15 ml 0.3% Bacto-Agar 
(Difco Laboratories, Detroit, MI) in IMDM in 8.5-cm-diameter 
petri dishes containing between 2 x 10 s and 1 x 107 cells in the 
presence of 75% S2A~ supernatant. Transformation ef~ciency was 

Results 
REI/:T(CSV) Transforms Chicken T Cells Expressing Either 

TCR-cr//Y or -'y/8. Exposure of chickens in vivo to the REV- 
T(CSV) retrovirus leads to the rapid induction of polyclonal 
B cell lymphomas that can readily be adapted to in vitro 
growth (11, 12). More recently, however, exposure of cyclo- 
phosphamide-treated (B cell-deficient) chickens to REV- 
T(REV-A) resulted in the induction of T cell tumors in vivo 
(18). We have shown that transformed ceUs expressing sur- 
face Ig can be isolated and cloned from embryo bone marrow 
after exposure to REV-T(CSV) in vitro (13). However, infec- 
tion of cells from embryo bone marrow with REV-T(CSV) 
induced transformation of not only slg + cells but a substan- 
tial population of slg- cells (13) whose lineage is currently 
unclear but nonetheless demonstrated that slg expression is 
not a prerequisite for REV-T(CSV) transformation in vitro. 

Exposure of unfractionated lymphocytes from spleen, bursa, 
or peripheral blood of 3-8-wbold normal chickens to REV- 
T(CSV) in vitro resulted in the generation of transformed 
ceUs, essentially all of which expressed slg (Fig. 1). In con- 
trast, exposure of bone marrow cells from 6-wk-old chickens 
to REV-T(CSV) resulted in the generation of cell lines that 
routinely contained considerably <100% slg + cells. Typi- 
cally, 2 wk after initiation, one such culture contained ,v37% 
of slg + cells (Fig. 1 d) and was clearly polyclonal as judged 
by the multiple loci of ceU growth in the primary cultures. 
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Figure 1. ILEWI'(CSV) transformation of slg- cells from chicken bone 
marrow. Spleen, bursa, PBL, and bone marrow cell suspensions from normal 
chickens were transformed with REV-T(CSV) in the presence of PMA. 
Transformed cells from: (a) bursa, 14 d after transformation; (b) spleen 
12 d after transformation; (c) PBL, 14 d after transformation; and (d) bone 
marrow, 14 d after transformation were stained with 6E1 (anti-chicken 
Ig light chain) followed by FITC-conjugated 187.1. Staining profiles from 
10,000 viable cells are shown. 
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Figure 2. Presence of T cells among REV-T(CSV)-transformed chicken 
bone marrow cells. A REV-T(CSV)-transformed chicken bone marrow 
cell line was stained 6 wk after transformation with: (a) 6E1 (anti- 
chicken Ig light chain) followed by FITC-cunjugated 187.1; (b) CT3 
(anti-chicken CD3) followed by PE-conjugated anti-mouse IgG1; (c) 
EP96 (anti-chicken CD4) followed by FITC-conjugated anti-mouse IgM; 
or (d) EP72 (anti-chicken CD8) foUowed by FITC-conjugated anti-mouse 
IgG2b. Staining profiles from 10,000 viable cells are shown. 

Each of the REV-T(CSV)-transformed cell lines described in 
Fig. 1, including the line from bone marrow, contained ex- 
clusively cells expressing high levels of MHC class II (de- 
tected with the 21-1A6 mAb [35]) and undetectable levels 
of the Bu-1 B cell surface antigen (detected with the Fu5.11G2 
mAb [30]) (data not shown). This is consistent with the ob- 
served phenotype of cells transformed with REV-T(CSV) in 
vivo (11) or in vitro (13). 

Another similarly transformed cell line derived from juve- 
nile bone marrow contained *35% of slg + cells 6 wk after 
transformation and was further analyzed for the expression 
of T cell surface antigens (Fig. 2). Approximately 45% of 
cells within this line expressed the CD3 complex as deter- 
mined by the CT3 mAb (Fig. 2 b). Fewer than 1% of cells 
expressed the CD4 accessory molecule, whereas 47% of cells 
expressed CD8 (Fig. 2, c and d). 

To estimate the frequency of cells transformed by REV- 
T(CSV), titrated numbers of bone marrow cells were cul- 
tured in soft agar in the presence of virus. The formation 
of macroscopic colonies was dependent on the presence of 
REV-T(CSV), and the frequency of bone marrow cells trans- 
formed by the virus was '~,1 in 500-1,000 (Table 1). Since 
the majority of cells transformed by REV-T(CSV) were ei- 
ther CD3 + or slg +, and these cells represent "~'5% of the 
ex vivo bone marrow cell suspensions, as judged by flow 
cytometry, the frequency of bone marrow lymphoid cells trans- 
formed can be estimated at "~1 in 20-40. 

Chicken T cells, as is the case in mammalian species, can 
be divided into those expressing TCR-a/3 heterodimers and 
those expressing TCR-3,//S heterodimers (20). 8 wk after trans- 
formation, the bone marrow-derived cell line described in 
Fig. 2 contained 15% cells expressing TCR-3"/6 as defined 
by the TCR1 (23) mAb (Fig. 3 a, y-axis). The chicken TCR 

T a b l e  1. Frequency of Bone Marrow Cells Transformed 
by gF.V- T(CSV) 

Colonies* 

Per 10 2 
Cell number REV-T(CSV)* Per plate lymphocytesS 

2 x 106 + 3,300 3.2 

2 x 106 + 2,600 2.6 

2 x 106 - <10 - 

6 x lO s + 1,600 5.4 

6 • 10 s - <10 - 

2 x 10 s + 650 6.4 

2 x 10 s - <10 - 

" Macroscopic colonies were counted after 8-11 d of culture. 
* Bone marrow cells were cultured in the presence of 75% $2A3 super- 
natant in 15-ml soft agar cultures. 
$ Colonies per 102 lymphocytes were calculated from the number of colo- 
nies per plate by accounting for the percentage of lymphocytes in the 
starting bone marrow cell populations (typically 3-5%). 
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Figure 3. Presence of all3 and 3"/~ T cells in ILEV:l'(CSV)-transformed 
bone marrow cells. The cell line described in Fig. 2 was stained after 8 
wk of culture with: (a) TCK1 (anti-TCR-~/r and EP72 (anti-CDS); (b) 
TCK2 (anti-TCR V/31) and EP72; (c) TCK3 (anti-TCR VB2) and EP72; 
or (d) a mixture of TCR1, TCR2, TCR3, and EP72. TCR1, TCK2, and 
TCR3 were each detected with PE-conjugated anti-mouse IgG1, and EP72 
was detected with FITC-conjugated anti-mouse IgG2b. Contour plots from 
20,000 viable cells are shown. The numbers in each panel represent the 
percentage of cells falling within the respective quadrant. 

chain locus contains two V/3 genes, VB1 and V132 (36). 
All T cells expressing the V131 gene as part of a TCR-a/B 
complex are recognized by the TCR2 mAb, and all T cells 
expressing VB2 are recognized by the TCR3 mAb (32). Flow 
cytometric staining of the REV-T(CSV)-transformed bone 
marrow cell line revealed 13% V/32 + cells (Fig. 3 b, y-axis) 
and 17% Vj33 + cells (Fig. 3 c, y-axis). The frequency of 
CD3 + cells within this line at this time was 45%, consis- 
tent with the finding that the TCK1, TCR2, and TCR3 an- 
tibodies stained mutually exclusive populations of cells within 
this line, which together accounted for all the surface CD3 + 
cells (data not shown), as they do in normal ex vivo chicken 
T cells (25). The relative proportions of odi3- and 3'/~-ex- 
pressing T cells within the line were approximately equiva- 
lent to the relative proportions of these cells in the normal 
chicken. It is clear therefore that 1LEV-T(CSV) can produc- 
tively infect in vitro and transform chicken T cells of both 
c~/13 and 3'//~ lineages. 

All TCP,.-cff{3 § (TCR2 + and TCR3 +) T cells within the 
bone marrow-derived line expressed high levels of the CD8 
accessory molecule (Fig. 3, b and c). In contrast, TCR-3,/~ 
(TCRI+) T cells were heterogeneous for the expression of 
CD8 (Fig. 3 a). Specifically, about one-third of TCR-'r/~ 
cells were CDS- ,  and two-thirds were CD8 +. This is con- 
sistent with the distribution of CD8 on peripheral 3'//~ T 
cells in the normal chicken (22), and demonstrates that de- 
spite the expression of CD8 on essentially all transformed 
bone marrow ode  T cells, the expression of CD8 is not re- 
quired for REV-T(CSV)-mediated T cell transformation. 

Transformation of CD3-/CD8 + Cells. Since the propor- 
tion of CD8 + cells (68%) within this transformed bone 
marrow line at 8 wk after transformation exceeded the number 
of cells staining with a combination of the three TCK mAbs 
(a total of 45%; Fig. 3, a-c) or with the CT3 anti-CD3 anti- 
body (data not shown), and further, that some 3~/8 T cells 
were CD8- ,  it seemed probable that the line contained 
CD8 + cells that did not express surface TCR. This was 
demonstrated directly in Fig. 3 d, where 29% of cells within 
the line were TCR- ,CD8 + . It is possible that these cells 
represent the transformed counterparts of the TCR0 cells 
found in the normal chicken that have been characterized as 
surface TCR- ,CD3-  but contain CD3 component(s) cyto- 
plasmically, as detected by staining with the CT3 antibody 
on fixed cells (37). At least some TCR0 cells express the CD8 
molecule (38), consistent with the surface CD3- ,  CD8 + 
phenotype of some cells within the bone marrow line. 

Transformation of CD4 + T Cells from Activated Spleen Cell 
Populations. The transformation of T cells from bone marrow 
was surprizing since juvenile chicken bone marrow typically 
contains <5% T cells compared with 40-60% T cells in the 
spleen. We considered the possibility therefore that the relative 
susceptibility of bone marrow T cells to ILEV-T(CSV)-medi- 
ated transformation was a reflection of differences in T cell 
physiology compared with splenic T cells. Spleen cells were 
therefore stimulated for 3 d in vitro with Con A, after which 
time such populations routinely contained >95% CD3 § 
cells, "~20% CD4 § cells, ~75% CD8 § cells, and <3% 
slg + B cells. Con A-activated spleen cells were then cultured 
in the presence of REV-T(CSV)-containing supernatants 
without any further stimulus. Continued and extensive cell 
growth occurred in cultures containing virus, whereas cul- 
tures not containing virus had no viable cells after 48-72 h. 
As before, transformed cell growth was dearly polyclonal and 
rapid. Staining this population 12 d after transformation re- 
vealed "~10% TCR-3,/~ cells, all of which were CD4-  and 
about half of which were CD8 + (Fig. 4), similar to the 
phenotypes of TCR-3,/~ + cells transformed from juvenile 
chicken bone marrow. 

55% of cells within the line expressed TCR-odJ3 using 
the Vl31 gene (TCR2+). Of  these, about one-quarter (24%) 
expressed CD4, and three-quarters (76%) expressed CD8. 
Similarly, of the 30% of cells expressing TCtL-cx/13 using 
the V132 gene (TCK3+), 25% expressed CD4, and 75% ex- 
pressed CD8 (Fig. 4). Double staining revealed that CD4 
and CD8 in this line were expressed on mutually exclusive 
populations of cells (data not shown). Consequently, it is 
clear that REV-T(CSV) can transform CD4 + as well as 
CD8 + T cells, and that the CD4 + population of cells trans- 
formed is restricted to those expressing TCK-cff~. 

The frequency of Con A-activated splenic T cells trans- 
formed by tLEV-T(CSV) was estimated by limiting dilution 
in 10-#1 Terrasaki cultures containing 75% $2A3 superna- 
tant. Regression analysis of the limiting dilution (Fig. 5) 
demonstrated that '~1 in 420 activated splenic T cells was 
transformed by REV-T(CSV). As before, growth was com- 
pletely dependent on the presence of virus. 

Activation-induced Receptors for REIAT(CSV) on T Cells. It 
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Figure 4. REVzr(csv) transformanon ofCD4 + and CD8 + cells from 
acuvated spleen Transformed cells derived by exposure of acuvated spleen 
cells to REV-T(CSV) were cultured for 14 d and stained for the expressmn 
of TCR, CD4, and CD8 Cells were stamed wtth either TCR1 (anu- 
TCR-y/~), TCR2 (anu-V/~l TCR), or TCR3 (antt-VB2 TCR), each being 
detected using PE-conjugated antt-71, m conjuncuon with either EP96 
(anu-CD4) or EP72 (antt-CD8), whtch were detected wtth FITC- 
conjugated antv/~ or FITC-conjugated anta~2b, respecuvely Contour plots 
from 20,000 viable cells are dxsplayed, and the numbers m each panel rep- 
resent the percentage of cells falhng within each quadrant 

seemed possible that the failure to efficiently transform ex 
vivo splenic T cells with REV-T(CSV) might  be, at least m 
part, a consequence of a lack of T cell surface expression of 
a receptor for the wrus. Consistent wi th  this hypothems, 
purified splenic T cells (>95% CD3 +) were unable to ab- 
sorb the transforming actiwty from REWF(CSV)-contaming 
supernatants (Fig. 6), as assayed by the ablhty of  absorbed 
supernatants to subsequently transform ex wvo bursal cells. 
In contrast, Con A-activated spleen cells, after washing in 
0.05 M methyl a-D-mannopyrannoside to remove cell-bound 
Con  A, absorbed transforming actiwty more efficiently than 
did ex vivo bursal cells, an established target of REV-T(CSV) 
transformation. Consequently, activation of splenic T cells 
reduced expression of functional receptors for the REWF(CSV) 
retrovlrus. 

Stability and Cloning of REI, CF(CSV)-transforraed T Cells. 
The  transformed hnes derived from bone marrow were rela- 
tively stable over extended periods of  t ime in vitro. Changes 
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Figure 5. Frequency of acti- 
vated spleen cells transformed by 
REV-T(CSV) Tttrated numbers 
of mttogen-actlvated T cells were 
cultured m 10-/~1 Terrasaka m the 
presence (0) or absence (O) of 
REV-T(CSV) 10-/,1 cultures 
(144/pomt) were scored as post- 
twe when cell growth completely 
covered the bottom of the well 
(~ Frequency of cells transformed 
wtth REV-T(CSV), correspond- 
mg to the input cell number at 
whlch 37% of cultures contained 
no cell growth 

in the relative proportion of phenotypicaUy distract cells were 
consistent wi th  small differences in growth rates among the 
different cell populations within the lines. In contrast, trans- 
formed lines derived from Con A-activated spleen were not 
stable. After ,'02-3 wk of growth, the frequencies of  CD3 +, 
CD4 +, and CD8  + cells declined from those seen in Fig. 4 
such that by 4-6  w k  after transformauon the majority of  
cells w~thin the line were negative for these T cell markers. 

To determine whether the T cells transformed from chfferent 
sources had differing potentials for long-term growth,  we 
established limiting dilution cultures of  REV-T(CSV)-trans- 
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Figure 6. Expresmon of receptors for REV-T(CSV) on activated T cells 
1-ml al~quots of S~A3 R.EV-T(CSV)-contammg supernatant were in- 
cubated with the indicated number of bursal cells, spleen T cells, Con 
A-activated spleen T cells, or m the absence of cells (O) for 30 mm at 
37~ Cells were removed by centnfugauon, and the resulting superna- 
rant was cultured at 25% with 6 x 104 bursal cells m 200-/A cultures 
m the presence of 20 ng/ml PMA for 48 h Dunng the last 6 h cultures 
were pulsed with pH]thymldme (1 IzCt/well), harvested, and counted 
Means and SDs of mphcate cultures are shown 
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Figure 7. Clonability ofREV-T(CSV)-transformed T cells derived from 
bone marrow or spleen. REV-T(CSV)-transformed cells were phted at 
a concentration one ceU/10/zl in 10-/zl cultures in the absence of added 
filters or virus-containing supernatants. (1~) The percent of cultures with 
cell growth over the first week of cuhure; (11) the percent of cultures 
containing cells that maintained growth subsequent to passage into 
200/~I followed by 2-ml cultures. 

formed lines derived from normal bone marrow or Con A-ac- 
tivated spleen cells. 10-pl cultures, each containing an average 
of one cell per culture, were established in the absence of added 
fillers, and growth was monitored during the first week. Cul- 

tures with significant cell growth (100-1,000 cells) as judged 
microscopically were expanded into 100-/xl cultures and sub- 
sequently into 2-ml cultures as necessary. 

Limiting dilution cultures established from bone marrow 
showed a high cloning efficiency within the first week of cul- 
ture (30--45% of wells with growth). The majority of these 
cultures (>65%) maintained growth subsequent to passage 
into larger cultures and continued to grow for weeks to months 
(Fig. 7). Large panels of clones were thereby derived from 
transformed bone marrow lines, and ~200 clones (those de- 
rived from microscopically observed single cells) were exam- 
ined for cell surface antigen expression. Representative ex- 
amples of the cloned cell phenotypes are shown in Fig. 8. 
In general, the relative frequency of clones of a given pheno- 
type corresponded to the proportion of cells with that pheno- 
type in the starting population of cells from which they were 
cloned. After cloning, the levels of expression of TCR (ei- 
ther ot/3 or "y/~) and CD8 were stable for weeks to months 
thereafter. 

In contrast, considerably less short-term growth was ob- 
served in limiting dilution cultures established from REV- 
T(CSV)-transformed Con A-activated spleen ceils (Fig. 7). 
Typically, <15% of the input cells grew over the first week 
of culture. The proportion of cultures in which continued 
cell growth was maintained was extremely small (<2%). 
Among the few ceils cloned from these lines, none expressed 
the T cell markers CD3, CD4, or CD8. This suggests that 

TCR TCR TCR 
T~ ot 13 - V [31 ot ~ .  V [~ 2 CD3 CD4 CD8 

7.17 

7 . 1 8  

'L1Lt_ I:LI  
LLLLL,:L  

Relative Fluorescence Intensity 
Figure 8. Surface antigen expression among 1LEV-T(CSV)-transformed clones. Clones isolated from tLEV-T(CSV)-transformed bone marrow as de- 
scribed in the text were stained with TCR1, TCR2, TCR3, CT3 (anti-CD3), EP96 (anti-CD4), or EP72 (anti-CDS), each being detected with the 
appropriate FITC- or PE-conjugated antiisotype reagent as described. Profiles from 10,000 viable cells are shown. 
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Figure 9. REV-T proviral integration in cloned transformed chicken 
T cells. DNA from 5 x 106 cells from clones of REV-T(CSV)-trans- 
formed bone marrow was digested with Bcll, subjected to electrophoresis, 
blotted, and probed with 32P-labeled v-rel sequences. The phenotypes of 
these clones were: lanes 9.54 and 9.56, TCR-'y//t + ,CD3 + ,CDS-; lane 9.3, 
TCK-~x/t5 (Vt81) + ,CD3 + ,CD8+; lane 9.53, TCK-cff~ (V~2) + ,CD3 + , 
CDS+; lane 9.17, TCR-,CD3-,CDS+; lanes 9.21, 9.23, and 9.33, 
TCR- ,CD3- ,CDS-, c-rel-spedfic bands are indicated with arrows. The 
numbers on the left refer to molecular size markers (kb). 

REV-T(CSV)-transformed T cells derived from Con A-acti- 
vated spleen cell populations have limited growth potential 
in the absence of exogenous growth support, and in the poly- 
donal line were outgrown by transformed non-T cells. 

Proviral Integration into the T Cell Genome. 1LEV-T(CSV) 
is a highly effcient virus for transforming B cells. Since the 
results demonstrated here represented the first description of 
efficient T cell transformation by supernatants containing 
REV-T(CSV), it was important to confirm that the tLEV-T 
proviral genome was indeed integrated into the transformed 
T cell genome. Analysis of the DNA from a panel of clones, 
derived from REV-T(CSV)-infected bone marrow cells, of 
a variety of phenotypes (either TCR-ci/~! +, TCR-G///t +, or 
TCR- ,CD3-) demonstrated the presence of the integrated 
REV:F genome as judged by hybridization with the v-tel probe 
(e.g., Fig. 9). Bands at 7 kb and, more weakly, at 4.7 kb 
(arrows) were observed in Bd-1 digests of all clones (as well 
as normal cells [13]) and corresponded to the c-tel homologue 
of the v-rel oncogene (11). In addition to these bands each 
clone contained unique bands not present in normal cells, 
demonstrating the random integration of the REV-T provirus 
as is seen in B cells transformed with REV-T(CSV) in vivo 
(11) or in vitro (13). Therefore, T cell transformation can 
be mediated by productive infection with ILEV-T(CSV) and 
consequent KEV-T proviral integration and expression of the 
v-tel oncogene. 

Discussion 

The REV-T(CSV)-transformed clones of chicken T cells 
derived from bone marrow and expressing either TCK-oL//3 
or ~//f  heterodimers represent the first demonstration of stable 
clonal populations of chicken T cells transformed by exposure 
to REV-T in vitro. Such clones obviously provide an ideal 
source of material for characterization and ultimate cloning 
of molecules expressed on the T cell surface. A major use 
of transformed cells has been the definition of the biochem- 
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istry of intraceUular signaling during cell differentiation and/or 
activation. At present we have not determined whether the 
T cell clones described here are responsive to extracellular 
signals such as TCR ligation, which has been shown in mam- 
malian T cells (e.g., reference 39) and in normal chicken T 
cells (22, 40) to induce changes in T cell physiology. In addi- 
tion, however, the results demonstrated here provide the op- 
portunity for further analysis of the mechanism(s) of cell trans- 
formation by the REV-T virus. 

The REV-T(CSV) receptor is currently undefined. In- 
creasing numbers of bursal cells or activated T cells absorbed 
increasing amounts of transforming activity from REV- 
T(CSV)-containing supernatants. This, taken together with 
the observation that ex vivo splenic T cells fail to absorb such 
transforming activity, demonstrates that transformation of 
chicken T cells with REV-T(CSV) requires virus adsorption 
to cell-specific and saturable receptor(s). REV-T(CSV) trans- 
forms both B and T cells in vivo (11, 29) and in vitro. There 
is no reason to postulate a priori that distinct receptors are 
used for viral adsorption to B and T cells, and so candidate 
molecules for the REV-T(CSV) receptor would therefore be 
expressed on the surface of at least subpopulations of B cells 
and activated T cells. 

The expression of REV-T(CSV) receptors on the surface 
of ex vivo bone marrow T cells has not been determined 
directly due to the low numbers of T cells ('~2%) in bone 
marrow suspensions. Consequently, while it is attractive to 
suggest that at least some bone marrow T cells in vivo ex- 
press REV-T(CSV) receptors, it cannot formally be ruled out 
that culture of bone marrow T cells together with other leu- 
kocytes and/or stromal cells within the bone marrow popu- 
lation induced viral receptor expression. Such induction would 
by necessity need to be extremely rapid since the half-life of 
active REV-T(CSV) in tissue culture is •4 h. 

We have been unable to demonstrate REV-T(CSV)-medi- 
ated in vitro transformation of immediately ex vivo splenic 
T cells from normal chickens. However, exposure of ex vivo 
spleen cells from surgically bursectomized (B cell-deficient) 
chickens to REV-T(CSV) in vitro resulted in transformation 
of T cells with a distribution of phenotypes indistinguish- 
able from those seen in the transformed bone marrow cul- 
tures shown in Fig. 3. This is analogous to the transforma- 
tion ofT cells in vivo with REV-T(REV-A) (18) and suggests 
the presence in normal spleen of a low frequency of T cells 
susceptible to REV-T transformation. 

While T cells transformed from normal bone marrow grew 
for extended periods of time in vitro in the absence of any 
exogenous stimulus, T cells transformed from activated spleen 
cell populations grew for a maximum of 6 wk, typically for 
3-5 wk, after transformation and could not be cloned. For 
the sake of this discussion we will refer to those bone 
marrow-derived T cells in which we have observed prolonged 
cell growth as being immortalized and distinguish this from 
T cell transformation, while appreciating that at this stage 
it is not possible to determine whether they will indeed grow 
indefinitely. For practical purposes, however, we have observed 
continued clonal growth for at least 4-6 mo, suffcient time 
to generate very large quantities of cloned cells. 



We can therefore distinguish, based on the growth prop- 
erties of T cells transformed from bone marrow as compared 
with activated spleen, T cell transformation from T cell im- 
mortalization. Since both T cell transformation in the short 
term and T cell immortalization require the target cell to 
express KEV-T(CSV) receptors, parameters other than viral 
receptor expression must limit the long-term growth poten- 
tial of KEV-T(CSV)-transformed cells. Such parameters may 
also limit the transformation of B cells or ex vivo splenic 
T cells such that REV-T(CSV) receptor expression is not the 
only limit to target cell transformation. Consequently, in vitro 
activation of splenic T cells may lead not only to REV:T(CSV) 
receptor expression but also to other (intraceUular) changes 
in T cell physiology required for transformation. 

The transforming oncogene of KEV-T(CSV) is v-tel (3, 
4), the founding member of the tel family of cytosolic and/or 
nuclear proteins, which includes its cellular homologue, c-tel, 
as well as the NFKB complex proteins p50 and p65 (41-43). 
The v-re/-encoded protein pp59 v-ra has been found in the 
cytosol, associated with other members of the tel family, 
notably pp75 r (44), as well as a protein of 40-kD, pp40 
(45), a member of the avian IKB family (46) and higher mo- 
lecular mass proteins (47), which include the p105 precursor 
of NFKB p50 (48). The molecular mechanism by which v-tel 
expression transforms target cells is currently unclear, but 
has been linked to its ability to form intracytoplasmic com- 
plexes with other proteins (49). There is evidence that v-rel 
functions as a transcriptional regulator (50, 51), although 
whether this function is mediated directly by the regulation 
of transcription by pp59v-"t-containing complexes, or in- 
directly, by pp59 v-ra sequestering normally active transcrip- 
tion regulating complexes, is unclear. Nonetheless, under ei- 
ther circumstance the oncogenic properties of v-rel likely 
depend on the endogenous expression and/or activation of 
other members of the tel protein family, possibly including 
NFKB. Mitogen activation of mammalian T cells leads to the 
rapid activation of NFKB (52). Therefore, the susceptibility 
of mitogen-activated chicken T cells to REV-T(CSV)-induced 
transformation may reflect not only induction of viral receptor 
expression, but activation of intracellular tel-related signal- 
transducing complexes. 

The dissociation of transformation from immortalization 
further suggests that the retroviral integration and transcrip- 
tion of v-tel, driven by the retroviral LTK promoter required 
for transformation, is not sufficient for immortalization. Thus, 
intracellular factors other than v-rel expression are likely re- 
quired to maintain the transformed state leading to cell im- 
mortalization. The difference in growth properties between 

bone marrow T cells and mitogen-activated splenic T cells 
demonstrates that independent of whether or not the bone 
marrow T cells are activated in vivo, they are nonetheless 
physiologically distinct from in vitro mitogen-activated splenic 
T cells. Therefore, it is possible that not only does the initial 
transformation of cells by v-tel require the coincident pres- 
ence of active complexes containing tel-related proteins, but 
that the persistence of the transformed phenotype leading 
to immortalization requires that such complexes be consti- 
tutively active. The failure to isolate transformed and/or im- 
mortalized CD4 + T cells from bone marrow, despite their 
presence in the ex vivo bone marrow population, further sug- 
gests that there are physiological differences between CD4 + 
and CD4- (including but not restricted to CD8 +) T cells 
in the normal bone marrow. Whether this reflects differences 
in retroviral receptor expression or intracellular differences 
is not currently clear. 

Short-term transformation of in vitro activated chicken T 
cells by exposure to REV-T(KEV-A) in vitro has been de- 
scribed recently elsewhere (53). While it is difficult to judge 
from these results which populations of splenic T cells were 
transformed, growth of REV-T-infected splenic T cells was 
maintained in supernatants enriched for I1.,2. It is quite pos- 
sible therefore that the growth of the KEV-T(CSV)-trans- 
formed T cells derived from activated spleen cells described 
here might be extended in the presence of appropriate 
cytokines. While this approach does not yield truly immor- 
talized cells, dependent as they are on exogenous cytokines, 
it might provide a means of cloning and expanding selected 
populations of chicken T cells, since it is likely that the ini- 
tial mitogen activation can be replaced by antigen-specific (or 
anti-TCR antibody) induced activation. 

The efficiency of transformation of bone marrow cells (based 
on colony formation in soft agar; Table 1) suggests that at 
least 1 in 50 ex vivo bone marrow T cells can be transformed 
by KEV-T(CSV). About 1 in 400 activated splenic T cells 
are transformed by KEV-T(CSV), as judged by limiting dilu- 
tion (Fig. 5). These frequencies compare very favorably with 
human T cell transformation by HTLV-I or HTLV-II, where 
efficiencies of transformation are considerably lower and fre- 
quently require that the target cells be coeultured with virus- 
producing cell lines (54). To date, rel-based constructs have 
not been effective in transforming mammalian cells. How- 
ever, the results demonstrated here suggest that should this 
limitation be overcome, oncogenic forms of mammalian rel 
should provide a potent means of transforming mammalian 
T cells. 
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