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Summary 
The major histocompatibility complex-encoded transporter associated with antigen processing 
(TAP) is required for the efficient presentation of cytosolic antigens to class I-restricted T cells. 
TAP is thought to be formed by the interaction of two gene products, termed TAP1 and TAP2. 
We find that TAPs consisting either of human subunits, or mouse TAP1 and human TAP2, 
facilitate the presentation of numerous defined viral peptides to mouse class I-restricted T cells. 
As human and mouse TAP2 and TAP1 differ in 23 and 28% of their residues, respectively, this 
indicates that TAP1 and TAP2 can form a functional complex with partners considerably different 
from those they coevolved with. Moreover, these findings indicate that widely disparate TAPs 
facilitate delivery of the same peptides to class I molecules. These findings suggest that TAP 
polymorphism does not greatly influence the types of peptides presented to the immune system. 

C D8 T cells (TcDs+) recognize MHC class I molecules 
bearing antigenic peptides that in most cases derive from 

a cytosolic pool of proteins (1, 2). Efficient presentation of 
cytosolic antigens requires the expression of two MHC- 
encoded proteins (termed TAP1 and TAP2 [transporter as- 
sociated with antigen processing]) that are members of a family 
of proteins that transport various molecules across cellular 
membranes (3-6). In cells lacking expression of one or both 
functional TAP subunits, the assembly of class I oe chains 
with 32-microglobulin to form stable class I molecules is 
compromised (7-10). Since such class I molecules can be sta- 
bilized by addition of antigenic peptides, it is believed that 
TAP functions to transport peptides from the cytosol to the 
early exocytic compartment where class I assembly normally 
occurs (7). TAP has not, however, been directly demonstrated 
to facilitate peptide transport across membranes, and could 
function in other ways to enhance the delivery of cytosolic 
peptides to class I molecules (11). TAP genes from humans 
and rats are polymorphic (12-14). In rats, this polymorphism 
can directly influence the types of peptides that are bound 
to class I molecules (12), suggesting that TAP polymorphism 
might generally greatly influence the types of determinants 
presented to TcDs+. To address this issue, we examine 
whether TAPs formed by human TAP1 and TAP2 subunits, 

or mouse TAP1 and human TAP2 subunits, are capable of 
facilitating presentation of determinants to mouse TcDs+. 

Materials and Methods 
Cells and Virus. RMA and RMA/s cells (H-2 b) were provided 

by Dr. K. I~rre (Karolinska Institute, Stockholm, Sweden). C1R 
and T2 cells and their Kk-expressing transfectants were provided 
by Drs. J. Alexander and P. Cresswell (Yale University, New Haven, 
CT)..45 cells were provided by R. DeMars (University of Wis- 
consin, Madison, WI). The expression of K ~ molecules by trans- 
fectants was confirmed by immunoprecipitation of K k from deter- 
gent extracts of [3SS]methionine-radiolabeled cells. Cells and trans- 
fectants were maintained in RPMI 1640 supplemented with 7.5% 
(vol/vol) FCS. The influenza virus A/PR/8/34 and the Sendai 
parainfluenza type I virus were propagated in the allantoic cavity 
of 10-d-old chicken eggs. The Indiana strain of vesicular stomatitis 
virus (VSV) was grown in baby hamster kidney cells. Recombinant 
vaccinia viruses (rVVs) were propagated in thymidine kinase- 
deficient human 143B osteosarcoma cells, rWs expressing influenza 
virus gene products nucleoprotein (NP), basic polymerase 2, and 
hemagglutinin (HA) without its NH2-terminal endophsmic retic- 
ulum (ER) insertion sequence (VV-NP, VV-PB2, and VV-L-HA, 
respectively) and H-2K d (W-K d) have been described (15-17). 
rVVs expressing H-2 D d (Dd-VV), or residues 1-168 of the 
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A/PK/8/34 NP (W-NPt-t6s), were produced by inserting cDNAs 
encoding the respective genes behind the early/late VV p7.5 pro- 
moter into a modified pSC11 plasmid as described (18). 

Mice. 6-8-wk-old C57BL/6 (H-2b), CBA/J (H-2k), and 
BALB/c (H-2 a) mice were obtained from The Jackson Laboratory 
(Bar Harbor, ME). Mice were immunized with influenza virus or 
/~-propiolactoneqnactivated Sendai virus by intraperitoneal injec- 
tion, and with rVV by intravenous injection. 

Cytotoxicity Assays. Target cells were infected with viruses as 
described previously (19, 20). TCD8+ were generated from spleno- 
cytes derived from animals immunized with viruses 2-6 wk previ- 
ously by 7-d in vitro stimulation with virus-infected autologous 
splenocytes as described (19, 20) or with synthetic peptides provided 
by the Biological Resources Branch (NIAID). Microcytotoxicity 
assays were performed as previously described (19, 20). Data are 
expressed as percent specific release defined as: 100x [(experimental 
cpm - spontaneous cpm)/(total cpm - spontaneous cpm)]. 

Production of Transfected RMA/S Cells. The full-length human 
TAP2 cDNA (21) was subcloned into RSV.5(neo) plasmid (22) using 
flanking XbaI sites. RMA/S cells were transfected by electropora- 
tion in 0.4-cm cuvettes at 210 V and 960 ttFD. Transfectants were 
selected by growth in 24-well plates in the presence of I mg/ml 
G418.4 wk after transfection, cells were analyzed by cytofluorog- 
raphy after indirect immunofluorescence using the H-2 Db-specific 
mAb 28.14.8S (FIB-27; American Type Culture Collection, Ikock- 
ville, MD). Increased levels of surface staining were detected on 
22 of 36 G418-resistant populations. The H-2 Kb-specific mAb Y3 
(HB-176; American Type Culture Collection) was also used to quan- 
titate class I surface expression. 

Results and Discussion 

We first examined whether TAP consisting of mouse TAP1 
and human TAP2 could present peptides to mouse TcDs +. 
RMA/S cells were transfected with a plasmid containing 
cDNA encoding the human TAP2 and the neomycin resis- 
tance gene. KMA/S is a mouse cell line selected from muta- 
genized KMA lymphoma cells on the basis of reduced class 
I expression. The single TAP2 gene present in RMA/S cells 
has a point mutation at nudeotide position 97 resulting in 
the introduction of a premature stop codon (23). RMA/S 
cells demonstrate a diminished capacity to present cytosolic 
antigens to TCDS+, although the severity of the defect varies 
among antigens (24-26). Antigen processing and class I cell 
surface expression is enhanced after transfection with mouse 
or rat TAP2 genes, which indicates that the antigen processing 
defect is due largely, if not solely, to the absence of normal 
TAP2 (27, 28). 

Two RMA/S transfectant clones resistant to G418 selec- 
tion expressing increased levels of cell surface D b by cyto- 
fluorography were selected for further study. Additional 
cytofluorographic analysis of the clones revealed that both 
demonstrated increased expression of K b and D b class I mol- 
ecules (Table 1). In the tables, results are shown for only the 
6.2 done, which expressed slightly more class I molecules 
than 5.2. In most of the functional experiments described 
below, both 5.2 and 6.2 clones were examined, and 5.2 be- 
haved similarly to 6.2. It is notable that although expression 
of class I molecules was increased by expression of the human 
TAP2 gene, it remained lower than in RMA cells. While 

Table  1. Cytofluorographic Analysis of RMA/S Cells Transficted 
with the Human TAP2 Gene 

Percent positive 

Cells Control Anti-D b Anti-K b 

RMA 2 (20) 100 (233) 100 (239) 
P, MA/S 2 (20) ts (20) 5s (21) 
RMA/S 6.2 1 (20) 95 (49) 98 (70) 

Viable cells were incubated with a control mAb specific for VSV G pro- 
tein, or mAbs specific for D b (HB-27) or K b (HB-176). Antibody bind- 
ing was detected by addition of FITC-conjugated rabbit anti-mouse IgG. 
Nonviable cells were gated out of analysis based on their light scattering 
properties. Data are expressed as percent positive (relative to no first an- 
tibody) and mean channel fluorescence of positive cells (in parentheses). 

this could be due to differences between human and mouse 
TAP2 subunits that limit the effectiveness of human TAP2 
in mouse cells, a similar difference was noted between RMA 
cells and RMA/S cells transfected with the mouse TAP2 gene 
(27). As noted previously (27), RMAA cells may be defec- 
tive in other genes that enhance class I assembly, transport, 
or stability. 

The ability of clone 6.2 to present cytosolic antigens from 
influenza or Sendai viruses to TCD8§ was investigated next. 
TCDS+ specific for influenza virus NP were generated by 
PR8 in vitro stimulation of splenocytes derived from mice 
primed with a rVV-expressing NP. Such TCDS§ have been 
shown to recognize a single D b peptide from NP corre- 
sponding to residues 366-374 (28a). TCDS+ specific for 
Sendai virus NP were generated by Sendai virus stimulation 
of splenocytes derived from Sendai virus-primed mice. Based 
on the findings of Kast et al. (29), it is likely that these 
TCDS+ principally recognize a single Kb-restricted peptide 
corresponding to NP residues 321-328. As seen in Table 2, 
6.2 cells demonstrated enhanced presentation of both viral NPs. 

The antigen processing capacity of 6.2 cells was further 
characterized using TcDs+ specific for a peptide corre- 
sponding to residues 52-59 from VSV N (30). After infec- 
tion with VSV, 6,2 cells were lysed at higher levels than 
RMA/S cells (Fig. 1). Since cytotoxicity assays provide a poor 
quantitative measure of the amount of peptide-class I com- 
plexes displayed on the cell surface, the recognition of cells 
expressing limiting amounts of peptides was tested. Cells were 
treated at various times after VSV infection with either a mix- 
ture of protein synthesis inhibitors or the fungal metabolite, 
brefeldin A (BFA), which blocks the exocytosis of peptide-class 
I complexes formed in the ER (31, 32). These treatments 
provide, respectively, measures of the effaciency of peptide 
generation from a limited amount of protein, and the rate 
at which class I-peptide complexes are delivered to the cell 
surface in the absence of protein synthesis inhibitors. Addi- 
tion of protein synthesis inhibitors to RMA/S cells greatly 
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Table  2. Presentation of Individual Influenza and Sendai Virus Antigens by Transfected RMA/S Cells Expressing the Human TAP2 Gene 

Percent specific SICr release 

Antiinfluenza NP Anti-Sendai 

Exp. Cells 10:1 5:1 40:1 20:1 

A RMA 
RMA PR8 
RMA/S 
RMA/S PR8 
RMA/S 6.2 
RMA/S 6.2 PIL8 

RMA 
RMA Sendai 
RMA/S 
RMA/S Sendai 
RMA/S 6.2 
RMA/S 6.2 Sendai 

26 6 
85 70 

5 0 
31 9 

4 2 
65 56 

3 3 
85 72 

2 3 
31 15 

5 4 
83 80 

Uninfected or virus-infected cells were tested in a 4-h slCr release assay at the E/T ratios indicated. TCDS+ specific for individual influenza virus 
antigens were generated by in vitro PR8 stimulation of splenocytes derived from mice immunized with W-NP. TCDS + specific for Sendai virus 
were generated by in vitro Sendai virus stimulation of splenocytes derived from mice immunized with Sendai virus. 

compromised their presentation of antigen to TCD8+ (Fig. 
1 A).  By contrast, presentation by 6.2 cells was less affected, 
and control values of  lysis were reached by allowing protein 
synthesis to proceed for 90 min after infection. Indeed, the 
residual and constant levels of  lysis observed at the 0-30-min 
time points wi th  6.2 cells probably represents breakthrough 
biosynthesis of  nucleocapsid (N) protein at levels too low to 
sensitize nontransfected R M A / S  cells. Similarly, while BFA 
completely blocked presentation of N by R M A / S  cells even 
when added as late as 90 min after infection, 6.2 cells trans- 
ported sufficient peptide-dass I complexes to enable recog- 
nition of some cells as soon as 60 min after infection (Fig. 
1 B). This is similar to the kinetics of  presentation of N by 
R M A  cells (24). Thus, we conclude that expression of the 
human TAP2 gene concomitantly enhances the efficiency of 
R M A / S  cells to produce antigenic peptides from a limited 
pool of  protein, and increases the rate at which class I-pep- 
tide complexes can be produced and transported to the cell 
surface. 

Figure 1. Effect of inhibitors on presentation of VSV N by RMA/S 
and 6.2 cells. (A) Cycloheximide (15 ~g/ml) and anisomycin (26 #g/ml) 
were added to cells at the times indicated after infection and maintained 
throughout the infection and slCr labeling periods until the 4-h 
microcytotoxicity assay, in which only cycloheximide (15/~g/ml) was 
present. (B) BFA (5/~g/ml) was added to cells at the times indicated after 
infection and maintained throughout the infection and slCr labeling 
periods until the 4-h microcytotoxicity assay, in which BFA was present 
at 1.25/~g/ml. BFA or cycloheximide at these concentrations do not in- 
hibit TCDS+ activity (31). The actual percent specific release values are 
given within the bar depicting the time point. 
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Table 3. TAP-dependent Presentation of Mouse Class 1-restricted Peptides by Human Ceils 

Exp. Cells 

Percent specific release 

K k• K k K k K a K d 
HA* HA NP HA NP D d 

245-252s 340-348 50-57 519-527 147-155 PR8 
(18:1) (4:1) (6:1) (3:1) (20:1) (20:1) 

A C1R K k + VV 
CIR.  K k + VV L -HA 

C1R K k + VV-NPI-t6s 
T2 K k + VV 
T 2 K  k + V V L - H A  

T2 K k + VV-NP1-16s 

B CIR + VV-K d 
CIR + VV-K d + VV-L-HA 
CIR  + VV-NP 

C 

T2 + VV-K a 
T2 + VV-K d + VV-L-HA 
T2 + VV-K d + VV-NP 

.45 + VV-D d 

.45 + VV-D d + VV-PB2 
T2 + VV-D d + VV-PB2 

10 
49 

5 
5 

3 
37 

1 
5 

7 

62 
4 

6 

1 
41 

0 
8 

2 

50 
3 

3 

0 
42 
0 

Uninfected or virus-infected cells were tested in a 6-h SlCr release assay at the E/T ratios indicated. Presentation of PB2 was assessed using Tcns+ 
induced by influenza virus in vitro stimulation of splenocytes derived from influenza virus-infected mice. The other TcDs+ were generated from 
spleneocytes derived from mice immunized with rWs expressing individual influenza virus proteins by in vitro stimulation with the synthetic peptide 
corresponding to the naturally processed determinant. Indirect immunoperoxidase staining using mAbs specific for VV gene products demonstrate 
that T2 cells expressed equal or greater amounts of VV-encoded proteins than .45 or C1R cells. Additionally, Kk-transfected T2 cells and VV K d- 
infected T2 cells are able to efficiently present determinants delivered to the ER through the action of a NH2-terminal leader/signal peptide (39, 
and our unpublished results). 
* Restriction element. 
* Specificity of TcDs +. 
S Peptide recognized. 

These findings demonstrate that human TAP2 can substi- 
tute for its mouse homologue in facilitating the presentation 
of each of three cytosolic viral antigens tested. If TAP1 and 
TAP2 function as a complex as believed, this would mean 
that widely different subunits can be substituted for each other 
without  grossly affecting function. This implies that the 
human TAP functions similarly to mouse TAP. 

To test this idea, we examined the capacity of EBV-trans- 
formed human B cell lines (C1R and .45) expressing mouse 
class I molecules to present peptides to mouse TcDs+. 
Mouse class I molecules were expressed from either trans- 
fected genes (K k) or genes inserted into rVVs (K a and Dd). 
In either case, influenza virus proteins were expressed by in- 
fection with rVVs expressing the relevant influenza virus pro- 
tein. Mouse TcDs + specific for each of five defined peptide 
determinants tested from influenza virus HA and NP (33-35) 
were able to lyse human cells expressing the appropriate class 
I molecules and viral protein (Table 3). Additionally, an 
undefined Dd-restricted determinant from PB2 (36) was 

presented to polyclonal anti-influenza virus mouse TcDs +. 
To establish the TAP dependence of antigen presentation, an- 
tigen processing-deficient T2 cells (10, 37) were included in 
each of the experiments. These cells possess a single copy of 
chromosome 6 that contains a 1-Mbp deletion in the HLA 
region encoding the TAP. Despite expressing similar amounts 
of VV-encoded proteins (not shown), T2 cells were lysed 
at or near background levels by each of TcDs§ tested. In ad- 
ditional experiments, we found that the presentation of each 
of these antigens can be reconstituted by the expression of 
TAP1 and TAP2 genes in the absence of other M H C  gene 
products (our unpublished results). Similar TAP-dependent 
presentation was found for three defined Kb-restricted deter- 
minants from Sendai NP, VSV N, and OVA (38, and not 
shown), and for undefined VV-derived determinants in as- 
sociation with K b, K k, D b, K d, and L d (not shown). Thus, 
all told, human TAP was able to facilitate the presentation 
of each of at least 14 viral determinants examined. 

Our  findings indicate that human and mouse TAPs func- 
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tion to facilitate presentation of the same set of peptides. As 
these TAPs are almost certain to exhibit greater differences 
than TAPs within a given species (human and mouse TAP2 
and TAP1 differ, respectively, in 23 and 28% of their residues), 
this suggests that polymorphism in TAPs does not greatly 
affect the repertoire of peptides presented by class I mole- 
cules to the immune system. The recent findings of Lobigs 
and Mtillbacher (40) lead to the same conclusion. This con- 
clusion conflicts with the observation of the relatively large 
effect observed on peptides derived from rat RT1.A a class I 
molecule after the expression of a rat TAP2 allele that differed 
from the naturally coexpressed allele by as few as 25 residues 
out of 703 (4% nonhomology) (12). There are a number of 
potential explanations for this apparent discrepancy. (a) Differ- 
ences in TAP peptide specificity are of a more quantitative 
than qualitative nature, and such differences are difficult to 

detect by the measure of Tcos + recognition. (b) Rat TAP2 
is particularly sensitive to amino acid alterations. (c) TAP2 
genes can accommodate a large number of changes in many 
positions without altering its peptide specificity (or changes 
in different locations balance the effect of one another), while 
particular changes in certain residues have a large effect on 
peptide specificity. (d) Amino acid substitutions in TAP2 affect 
the interaction of the TAP complex with only a subset of 
peptides, such a subset being preferentially bound by 
RT1.A a molecules. 

Distinguishing among these possibilities will require fur- 
ther efforts. Ultimately, to establish the effect of TAP poly- 
morphism on TCDS + responses in vivo, it will be necessary 
to produce transgenic animals expressing foreign TAP alone, 
or in combination with their natural TAP. 
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