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Summary

The severe combined immunodeficiency (scid) mouse has a defective V(D)J recombinase activity
that results in arrested lymphoid development at the pro-B cell stage in the B lineage. The defect
is not absolute and scid mice do attempt gene rearrangement. Indeed, ~15% of all scid mice
develop detectable levels of oligoclonal serum immunoglobulin and T cell activity. To gain more
insight into the scid defect and its effect on V(D)J rearrangement, we analyzed D]y recombina-
tion in scid bone marrow. We determined that DJy structures are present in scid bone marrow
and occur at a frequency only 10-100 times less than C.B-17+/+. The scid D], repertoire is
limited and resembles fetal liver D], junctions, with few N insertions and predominant usage
of reading frame 1. Moreover, 70% of the DJj structures were potentially productive, indicating
that normal V(D)J recombinants should be arising continually.

he formation of functional Ig and TCR genes requires

the rearrangement of several genetic elements encoding
the variable regions: V, J, and, in some cases, D (1). The
mechanism of this recombination is only now beginning to
be elucidated, and most of what we know about the process
is derived from studies of its substrates and its products (for
review, see references 2 and 3). The process of rearrangement
is mediated by an enzymatic system, the V(D)] recombinase,
which is targeted by the recombination signal sequences
(RSS)! flanking the elements to be rearranged. RSS consist
of three parts; a heptamer, a 12- or 23-bp spacer, and a nonamer.
As a result of V(D)J recombination, two types of junctions
are formed: signal joints and coding joints (4). In the signal
joints, which are usually precise, RSS are joined in a head-to-
head orientation. Coding joints, which are usually impre-
cise, have a few nucleotides added and/or deleted at the coding
termini.

V(D)J recombination is essential for normal lymphoid de-
velopment. Mice deficient for the recombinase activating genes,
Rag-1 and Rag-2, as well as scid mice, have defective V(D)J
recombinase activity (5-8), and lymphoid development in all
these mice is arrested at the pro-B cell stage. Unlike the
Rag-1- and Rag-2~ mice, however, scid mice attempt gene
rearrangement, but these attempts fail to produce functional

1 Abbreviations used in this paper: A-MulV, Abelson murine leukemia virus;
BM, bone marrow; RF, reading frame; RSS, recombination signal sequence.

receptors. In Abelson murine leukemia virus (A-MuLV)-
transformed scid bone marrow lines (5, 9) and in long-term
cultures of scid bone marrow (10), there are large deletions
in the coding joints even though signal joints are relatively
normal (8, 11).

The scid defect is leaky. Approximately 15% of all scid mice
develop detectable levels of oligoclonal serum Ig and T cell
activity (12-15). The incidence of leakiness varies with both
the age of the mice and their environment (12). Petrini et
al. (16) have postulated that a genetic reversion occurs in a
B cell precursor permitting normal V(D)] recombination in
subsequent daughter cells. In support of this hypothesis, some
functional T cell clones derived from leaky scid mice have
normal rearrangements on their nonexpressed TCR alleles.
This result is unexpected from the high frequency of abnormal
coding joints found in A-MuLV scid lines (16, 17). Further,
normal TCR rearrangement at the  DJ locus has been ob-
served in scid thymocytes (18, 19). However, there is no evi-
dence of attempted VO rearrangement or rearrangement at
the 8 and 7 loci (20). An alternative hypothesis to explain
the leaky phenotype is that scid mice make productive rear-
rangements at a higher frequency than previously expected
(see below), so that a few B cells are produced each day de-
pending on the chance occurrence of several rearrangement
events. Thus, whether or not a mouse becomes leaky depends
in part on whether a chance clone of B cells is stimulated
by antigen before it is eliminated as part of the normal B
cell turn-over.
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To gain more insight into scid defect and its effect on the
mechanism of V(D)J rearrangement, we have analyzed D],
recombination products in scid mice. Using a quantitative PCR
assay devised to determine the extent of DJy formation (21),
we found DJy structures in scid mice occur at a frequency
only 10-100 times less than in C.B-17+/+ mice. Sequencing
of these structures revealed that the scid DJ, repertoire is
limited and resembles fetal liver DJ, junctions, with few N
insertions and predominant usage of reading frame 1. More-
over, 70% of these structures were potentially productive,
indicating that normal V(D)J recombinants should be arising
continually in scid mice.

Materials and Methods

Mice and Cell Lines. The C.B-17scid (referred to in the text as
scid mice) and C.B-17 wild type (referred to in the text as C.B-
17+/+ mice) were originally obtained from Melvin Bosma (Fox
Chase Cancer Center, Philadelphia, PA). C57BL/6 mice were pur-
chased from The Jackson Laboratory (Bar Harbor, ME). All mouse
strains were bred and maintained in the animal colony of the On-
tario Cancer Institute (Toronto, Canada) under defined flora con-
ditions. Nonleaky and leaky scid mice were differentiated on the
basis of serum Ig detected by Ouchterlony diffusion. Bone marrow
(BM) and spleens were removed from individual mice at 6 or 27
wk of age. A-MulLV cell lines were derived and maintained as de-
scribed (22).

DNA Preparation.  Single-cell suspensions were prepared from
the adult BM and spleens using standard procedures (23). Genomic
DNA was isolated from the BM, spleen, and cultured cell lines
by the “spooling” method as previously described (22).

Oligonucleotide PCR Primers. The DFS primer is a 3lmer
hybridizing to the 5’ RSS of the D, elements of both the Dsp and
the DFL families. Its sequence is 5'-AGGGATCCTTGTGAAGGG-
ATCTACTACTGTG-3" The DQ52 primer is 5'-GCGGAGCAC-
CACAGTGCAACTGGGAC-3'. It is a 26mer specific for DQ52;
it hybridizes to the region within the 5’ spacer through the hep-
tamer and contains all of the DQ52 coding region. The J4 primer
is 5-AAAGACCTGCAGAGGCCATTCTTACC-3". It is a 26mer
containing sequences of the major J-C intron immediately 3' of
Ju4. The Ju2-IN primer is 5'-TGGCCAGGATCCCTATAAATC-
TCTGG-3' It is a 26mer that contains sequences ~200 bp 3’
of J,2 in the J.2-].3 intergenic sequence. The J,4-IN primer is
5'-GAGGAGACGGTGACTGAGGTTCCTTG-3" It is a 26mer that
is entirely contained within the J, element and shares no overlap-
ping sequence with the J,4 primer (described above). The oligo-
nucleotides were synthesized on a DNA synthesizer (Applied Bio-
systems, Inc., Foster City, CA) and purified using NENSORB
PREP cartridges (Du Pont Co., Wilmington, DE).

Standard PCR Assay. PCR amplifications were performed as
described (21). Fresh aliquots of reagents were used for each set
of experiments. In brief, a set of standard DNAs derived from
A-MulV lines containing known numbers of DJ, targets were
diluted into DNA that had no DJ, targets (CB32, a VDJ/VD]
A-MulLV line). The diluted standards were amplified at the same
time as the experimental and control DNAs. A hot start method
with Ampliwax (Perkin-Elmer, Emeryville, CA) was used, with
the Taq polymerase (Boehringer Mannheim Biochemicals, Indi-
anapolis, IN) being added when the reaction temperature reached
80°C. 30 cycles were carried out. To facilitate the cloning of the
larger DJ, structures (DJu1 and DJ.2), secondary amplifications
were performed on 10- and 100-fold diluted primary scid and C.B-
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17+/+ amplifications, respectively; one of the nested primers (J..2-
IN or J,4-IN) was used with the same cycling conditions.

Southern Hybridization Analysis. 10% of each PCR amplification
reaction was loaded on a 1% agarose gel (Sigma Chemical Co.,
St. Louis, MO) and electrophoresis in TAE buffer (23). Gels were
Southern blotted on Zeta Probe nylon membrane (Bio-Rad Labora-
tories, Richmond, CA) using a vacuum blotting system (Vacugene;
LKB Pharmacia). Filters were probed with a *2P-labeled J.4 probe
under conditions previously described (24). Autoradiographs were
exposed without intensifying screens either with Kodak film or
in a phosphorimager cassette.

Densitometry. Densitometry was used to measure the relative
intensities of bands on the autoradiographs. Several exposures of
Southern blots were scanned using a densitometer (Molecular Dy-
namics, Sunnyvale, CA). An example of the raw data output for
one analysis is shown in Table 1. The data were entered in an Macin-
tosh Excel data base and the number of DJ, structures was calcu-
lated using the TREND function based on the curves generated
by the standard values. The averages of a number of experiments
and their standard errors were determined using StatviewlIl. The
values obtained were per microgram of DNA. These values were
converted (Table 2) into numbers per organ using the factors: 1
pg of DNA is 1.8 x 10° haploid genome equivalents; 2 x 107
nucleated cells are in a femur; 1.5 x 10° nucleated cells are in a
C.B-17+/+ spleen; and 3 x 107 nucleated cells are in a scid spleen
(25). At times the data from the C.B-17+/+ mice lay outside the
standard curve. These estimates were necessarily less accurate.

Cloning and Sequencing of DJ,, Products. Products derived from
the DFS/J, primer pair were cloned from amplifications separate
from those used for quantification. To prevent contamination, scid
and C.B-17+/+ DNA were not amplified at the same time, nor
were their amplified products run on the same gel. Negative con-
trols were included with all rounds of amplification. These con-
trols consisted of no DNA and targetless DNA from the 702/3
cell line. 70Z/3 has a VDJ and a DQ52/J,2 rearrangement, and
thus cannot be amplified with the DFS/J, primers. Some primary
C.B-17+/+ and scid amplifications were cloned directly, and others
were cloned after secondary amplification. In these cases, either
secondary amplification proceeded directly or primary amplified
samples were run on lo-melt gels (Nusieve), and plugs, taken from
the control and experimental lanes, were amplified in parallel using
nested primers. Whenever a product was detected in the negative
control lanes, the amplifications were discarded.

The amplified structures were cloned by means of the TA Cloning
Kit (Invitrogen) or by the embedded restriction endonuclease
sites in the PCR primers. Bacteria harboring positive plasmids
were identified by antibiotic selection. Nitrocellulose membranes
(Schleicher & Schuell, Inc., Keene, NH) bearing bacterial DNA
were hybridized at 42°C or 37°C overnight with DIG-dUTP-
labeled (Biochemica; Boehringer Mannheim Biochemicals) Ju2 or
Ju4 probes, respectively. The filters were washed twice with 2x
$SC, 0.1% SDS for 5-min intervals followed by two 1x SSC, 0.1%
SDS washes, at 60°C or 42°C for 30 min. The reduced hybridiza-
tion and washing temperatures for the J,4 probe allowed detec-
tion of the 50-nucleotide homology in the DJ,4 structure. To de-
tect the signal, filters were blocked in a solution of 5x SSC, 5%
skim milk solution, 50% formamide, 0.1% N-lauryl sarcosyl, and
0.02% SDS for 3 h and then exposed to an anti-DIG horseradish
peroxidase (POD)-conjugated antibody (Biochemica; Boehringer
Mannheim Biochemicals) diluted 1/1,000 in blocking solution for
1 h. The filters were washed in 100 mM Tris, pH 7.5, 150 mM
NaCl, and 0.02% Tiween20 four times for 15 min each, and then
subjected to the enhanced chemiluminescence (ECL) detection
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system (Amersham Corp., Arlington Heights, IL). Positive colo-
nies were selected and plasmid DNA was extracted. Sequencing
was performed using the double-stranded method with the T7 Se-
quencing Kit (Pharmacia Fine Chemicals, Piscataway, NJ); both
the reverse and universal sequencing primers were utilized.

Results

Quantification of DJ, Structures. To quantitatively assay
D], structures by PCR we used primers flanking D and .4,
which results in a “ladder” of DJ,1, D)2, DJu3, and DJ.4
when the products are analyzed by gel electrophoresis (Fig.
1 a). By simultaneously amplifying standards containing equi-
molar concentrations of targets of each of the four DJ, prod-
ucts, we can estimate their number in tissues. We previously
showed that none of these products are preferentially amplified
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by the DFS/J,4 primers (21). Fig. 1, b and ¢, show examples
of typical PCR amplifications of D], rearrangements in BM
and spleen DNA from individual scid and C.B-17+/+ mice.
There are four discrete bands of sizes corresponding to DJs1,
DJ.2, DJ.3, and DJi4 structures in all samples. The discrete
nature of the bands was somewhat surprising due to the pau-
city and aberrant nature of the scid coding junctions found
previously (5, 11). We quantified these products using data
derived from seven C.B-17+/+ BM, five C.B-17+/+ spleens,
five scid BM, and four scid spleens. One of the scids was serum
Ig positive. The raw data from a typical quantification are
shown in Table 1; a summary of the quantification data is
shown in Table 2. The data are presented as the sum of the
four J.’s because in some cases individual scid mice had un-
equal usage of the J, segments (Fig. 1, b and ¢, and Discus-
sion). This unequal usage of Ju was not observed in other
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Figure 1. (a) Genomic map of the D], locus showing oligomer primer position sites and expected products (20), not drawn to scale. (b) Southern
blot analysis of PCR amplification of scid and C.B-17+/+ BM and spleen (SP) DNA using the DFS/Ju4 primer pair. Amplifications of the titration
standards were run in parallel. () Southern blot analysis of PCR-amplified BM and SP DNA from nonleaky (Ig~) and leaky (Ig*) scid and C.B-17+/+
mice. 14D FL is 14-d C57BL/6 fetal liver DNA amplified for comparison (see reference 21), CB32.12 is a negative control. Titration standards were

amplified in parallel as in 5.
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Table 1. Typical Densitometric Analysis

DJ.1 DJ.2 DJ.3 DJ4 Total No.
No./ per

DNA source cpm*  Not  cpm No. cpm No. cpm No. 1 ugt organ!
500T 113 500 353 500 142 500 295 500 2,000

1,000 T 202 1,000 595 1,000 195 1,000 733 1,000 4,000

5,000 T 743 5,000 1,750 5,000 875 5,000 1,860 5,000 20,000

+/+ BM -11! 719 4,816 1,480 4,081 1,400 8,172 1,030 2,369 19,000 2.1 x108
+/+ spleen-10 439 2,790 1,100 2,828 1,020 5,881 987 2,240 14,000 1.2 x 10
+/+ spleen-12 398 2,490 1,09 2,795 963 5,537 877 1,909 13,000 1.1 x 107
scid BM-17 698 4,662 273 <500 (101) 218 1,045 124 <500 (143) 6,000 6.7 x 10°
scid BM-19 274 1,598 359 <500 (385) 212 1,009 862 1,864 4900 5.4 x 10°
scid BM-1 221 1,215 521 919 286 1,455 349 <500 (320) 3,900 4.3 x 10°
«id spleen-18 123 506 154 <500 (209) 913 <500 (281) 165 <500 (266) 1,300 2.1 x 10°
scid spleen-20 146 672 104 <500 (44) 419 <500 (483) 134 <500 (173) 1,400 2.3 x 10°

See Materials and Methods for quantification.

* Output on the densitometer.

# Number of structures calculated using Excel TRENDS.
$1 ugis 1.8 x 105 cell equivalents.

I Calculation per organ is based on BM having 2 x 107 nucleated cells for all strains; C.B-17+/+ spleen having 1.5 x 108 nucleated cells; scid

spleen having 3 x 107 nucleated cells.
Y Numbers identify DNA preparations.

strains (Fig. 1, b and ¢, and reference 21). There were v4.2 0.3 x 107 in C.B-17+/+. Serum Ig* leaky scid were not
+ 0.5 x 10° DJ, products per scid femur, which is ~¥10%  significantly different from nonleaky scid. Although easily
that of C.B-17+/+ (3.0 + 0.6 x 10°). In the spleen, there  detectable in C.B-17+/+ BM DNA, no DQ52], products
were V2.8 + 1.0 x 105 DJ, structures in scid and ~1.6 +  were detected upon amplification of scid BM DNA using

Table 2. Quantification of DJ, Structure in BM and Spleen

C.B-17 scid C.B-17 scid
+/+ BM BM +/+ spleen spleen
1.4 x 10° 6.7 x 10° 3.0 x 107 2.1 x 10°
1.0 x 10%* 5.4 x 10° 1.6 x 107 2.3 x 10°
2.1 x 10%* 4.3 x 10% 1.3 x 10’ 5.7 x 10°
6.7 x 10¢ 2.8 x 10% 1.6 x 107! 1.2 x 10°
3.9 x 10% 4.8 x 10° 1.1 x 107

4,7 x 10% 3.0 x 10° 1.2 x 107

1.9 x 10° 3.9 x 10°

2.3 x 10¢

3.3 x 10¢

Average: 3.0 x 10° 4.2 x 10° 1.6 x 107 2.8 x 108
SE: +0.61 x 10¢ +0.49 x 10° +0.29 x 107 0.99 x 10°

2 x 107 nucleated BM cells for all strains. 1.5 x 108 nucleated spleen cells for C.B-17+/+ and 3 x 107 cells for scid.

*#8I The same samples evaluated in different quantifications.
Each value was determined from a set of data analyzed as detailed in Table 1.
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Table 3. Comparison of D], Structures Derived from scid and C.B-17+/+ BM and BALB/c Fetal Liver (FL)

scid CB-17+/+ BALB/c FL
No. of structures 57 57 40
analyzed
Average deletions (range) 8.8 (2-42) 9.1 (0-41) 6.7 (2-15)
No. of structures 14 47 0
containing nucleotide
insertions
Average no. of 5.4 4.2 0
nucleotide insertions for
above structures
RF Usage: 1 63% 44% 70%
2 7% 18% 8%
3 30% 38% 22%
Potentially productive joins 70% 61% 90%
DFL 16.1 usage 39% 81% 52%

Data are summarized from Figs. 2 and 3. BALB/c FL data are derived from Chang et al. (21).

DQ52/Ju4 primers. Since the sensitivity of the assay is 40
targets/ ug DNA (21), this result indicates there are <4.4 x
10° DQ52J. rearrangements per femur (Southern analysis
not shown). From these data, we conclude that scid BM and
spleen have correctly sized DJu1-4 products at ~10 and
~1%, respectively, of the frequency found in C.B-17+/+.

Characterization of DJ,, Structures. Based on the lack of
mature lymphoid cells in scid mice and the aberrant nature
of the coding junctions isolated from A-MulV-transformed

lines from scid mice, we had expected to see few, if any, dis-
crete normal-sized D], fragments. To search for more subtle
differences in the scid DJy joints, we cloned and sequenced
the amplified products and compared them with those from
C.B-17+/+. Fig. 2 shows the D]y structures derived from
6- and 27-wk-old BM of C.B-17+/+ mice. Fig. 3 shows
the DJ, structures from 6-wk-old scid BM. Key features of
the analysis are summarized in Tables 3 and 4.

D], Rearrangements in C.B-17+/+ BM. 57 DJ, struc-

Table 4. Comparison of DJ, Structures with and without N or P Nucleotide Additions
Total scid Unique scid Total C.B-17+/ + Unique C.B-17+/ +
Without Without Without Without
Total NorP Total Nor P Total N or P Total NorP
No. of
structures 57 43 (75%) 22 17 (77%) 57 9 (16%) 56 9 (16%)
RF: 1 63% 79% 55% 59% 44% 67% 45% 67%
2 7% 2% 9% 6% 18% 11% 18% 11%
3 30% 19% 36% 35% 38% 22% 38% 22%
DAfl16.1
usage 39% 21% 50% 32% 81% 90% 80% 90%
Potentially
productive 70% 88% 55% 71% 61% 80% 63% 80%

Data are summarized from Figs. 2 and 3.
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tures from C.B-17+/+ were analyzed. Since no difference
was observed between structures derived from 6- and 27-wk-
old mice, the data in Fig. 2 are pooled from both sources.
Deletions were present in most coding joints. An average
of 9.1 nucleotides was deleted from D and/or the J,. N and
P insertions, which are a common feature in adult Ig gene
rearrangement (26), were observed in 82% of the structures,
with an average of 4.2 nucleotides being added. Nine struc-
tures contain possible P nucleotides, of which seven also have
N insertions.

Although D, elements can be read in all three reading
frames (RF) and in either orientation, RF usage is not random.
In the C.B-17+/+ BM, RFs 1, 2, and 3 were used in 44,
18, and 38% of the structures, respectively. RF1 is most
markedly overused in the fetal repertoire where there are few
if any N additions due to the lack of terminal deoxynucleotidyl
transferase (TdT) activity (27). Terminal homologies of the
recombining elements are thought to promote the RF1 usage
in cases where there is no N addition (21, 26, 28). Indeed,
upon analysis of structures within N nucleotides (nine struc-
tures), the RF1 bias becomes apparent: 67:11:22% (Table 4).

Of the 57 C.B-17+/+ structures, 35 (61%) were poten-
tially productive; i.e., they lack stop codons in the used reading
frame and invariant residues are present in the J, element.
DJ,3 structures were the least productive (40%) due to the
more frequent usage of RF3, which has many stop codons.
The biased D usage reported by us (21) and others (29, 30)
was also present; genetic element DAf16.1 was used in 81%
of the D], rearrangements.

DJ. Rearrangements in scid BM. DNA derived from the
BM of three 6-wk-old, Ig~ scid mice was individually
amplified and cloned. Fig. 3 shows the sequences of 57 D],
structures from scid BM DNA, and key features are summa-
rized in Tables 3 and 4.

The scid Ju structures shown in Fig. 3 are, in fact, quite
similar to those of C.B-17+/+ mice (Fig. 2) and other strains
(21, 26, 28). However, there are marked quantitative and
qualitative differences, particularly in the degree of diversity.
Of 57 scid structures isolated, only 22 were unique; 56 of
57 C.B-17+/+ D], were unique. Moreover, only 14 of the
57 scid structures (5 of the 22 unique ones) contained N or
P nucleotide insertions. Of the five unique structures con-
taining N or P, two contained N only, two contained pos-
sible P and N, and one structure contained possible P only.
The average number of insertions for structures containing
N and/or P was 5.4 (4.4 for unique structures), somewhat
more than C.B-17+/+ (4.2 nucleotides [nt]). The mean
number of nucleotides deleted from the recombined coding
ends was 8.8, which is about the same as C.B-17+/+ (9.1
nt) (Table 3).

scid DJ, structures used RF1 more frequently than C.B-
17+/+. Of the 57 scid D], structures, 63, 7, and 30% used
RFs 1, 2, and 3 respectively (compared with 44, 18, and 38%,
respectively, for C.B-17+/+). Interestingly, RF1 was used
more frequently in both strains when structures joined without
N and/or P insertions (Table 4). 70% (55% of the 22 unique
structures) of the scid structures could yield a functional Ig
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protein as defined by the lack of stop codons and the pres-
ence of invariant residues in the J, element. None of the scid
DJ.3 structures were potentially productive. Dfl16.1 was
overused, but less frequently than in C.B-17+/+. 39% of
the scid (50% if the unique only are considered) structures
use this Dy element (Table 4).

Discussion

Functional DJ, Joints in scid Lymphoid Progenitors. In
A-MulLV-transformed lymphocytes from scid mice, all D],
coding joints were grossly abnormal, containing large dele-
tions of both D and Ji regions (5, 9). Therefore, we ex-
pected to observe few, if any, DJ, joints in cells from scid
bone marrow. To our surprise, normal DJ, joints were ob-
served in the present study. Moreover, the frequency of pro-
genitor cells containing potentially functional joints was also
close to normal. We arrived at this latter conclusion by de-
termining the frequency of normal DJ, joints detected by
PCR and the proportion of cells in BM belonging to the
B cell lineage. In normal BM, ~30% of the cells belong to
the B lineage. Of these cells, approximately two-thirds are
in the pre-B cell stage (i.e., contain cytoplasmic u) or B cell
stage (i.e., express surface Ig). The remaining cells are in the
pro-B stages. According to a recent study by Osmond et al.
(31), the early and intermediate pro-B cells in scid mice are
normal in frequency and proliferation kinetics. The late pre-B
stage is markedly depleted in scid mice, so that overall the
number of B lineage cells in the BM of scid mice is only ~10%
of the number found in the BM of normal mice. Since scid
mice contain ~10% as many DJy joints as normal mice
(Table 2), many of the pro-B cells in scid mice must contain
potentially functional DJ. joints.

These data appear to contradict previously published data
on the frequency of normal D], joints in pro-B cells trans-
formed by A-MulLV (5, 9, 32) and those pro-B cells produced
in long-term BM cultures (10, 33) derived from scid mice.
In both instances, few, if any, normal DJ; joints were ob-
served in cells from scid mice. Several factors may contribute
to this discrepancy: The low number of B220* cells in the
BM of scid mice (31) indicates that cells that fail to make a
functional heavy chain gene are rapidly deleted in the BM.
However, cells with nonfunctional rearrangements may be
rescued either by transformation with A-MuLV or by the
growth conditions in long-term BM cultures. It is also pos-
sible that during the continued growth of these rescued cells
the abnormal recombinase system continues to function so
that further gross deletions are generated under these two
conditions. Thus, the abnormal rearrangements may be a re-
sult of the rescue of cells from programmed cell death, and
they may not accurately reflect the ability of the recombinase
system to carry out DJs recombination.

It is also possible that the major defect in gene rearrange-
ment occurs when the cells attempt to form a V,-DJ, joint.
Quasi-normal DJ rearrangements have been reported in scid
thymocytes at the & locus, while there was no evidence of
V§ rearrangement (20). Studies in long-term BM cultures
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and in A-MulV-transformed cells provided little evidence for
attempted V to D] recombination, though it is possible that
activation of this process is highly abnormal and leads to the
gross deletions mentioned previously. Using primers that de-
tect a large proportion of the V, joints, we are attempting
to investigate VDJy recombination with similar quantitative
PCR studies of the type described in this paper.

Implications for the Leaky Phenotype. As mentioned above,
scid is a leaky phenotype; normal Ig-secreting lymphocytes
arise in scid mice (12). One model put forward to explain
leakiness is the somatic reversion model. The premise of this
model is that a genetic reversion in a pro-B or earlier cell
leads to clones of cells capable of normal gene rearrangement.
The major piece of evidence supporting the somatic rever-
sion model is the observation of normal coding joints on the
nonexpressed alleles in T cells obtained from leaky scid mice
(16). This observation was taken as evidence that the recom-
bination machinery was normal in these cells and hence that
a reversion had taken place. Our hypothesis is, instead, that
leakiness is the result of the chance occurrence of three func-
tional Ig rearrangements in a single lymphoid cell. Indeed,
if a cell ultimately makes a functional receptor (the require-
ment for leakiness), it is not unlikely that the rearrangement
on the other allele is also functional. This explanation would
account for the data from Petrini et al. (16), as described above,
and does not require that there was a reversion in the recom-
binase machinery itself.

Fetal Nature of D] Joints in scid Mice. ~Although the pro-
portion of potentially functional DJy joints in scid mice was
similar to that observed for normal mice, there were unusual
features of the joints in scid mice. Very few additional (N
or P) nucleotides are inserted into the joint. A similar low
frequency is often observed in fetal liver cells (21, 26, 28)
and is attributed to the low levels of TdT in fetal liver (27,

28). As reported by Osmond et al. (31), the frequency of
TdT* cells in scid BM is identical to that observed in the
BM of normal mice. Thus, the low level of N nucleotides
is unlikely to result from overall reduced TdT levels.

The second unusual feature of the D], rearrangements in
scid mice was the restricted repertoire observed. When we
sequenced 57 DJ, joints isolated from C.B-17+/+ mice, we
detected 56 unique sequences. In contrast, the 57 D], clones
from scid mice contained only 22 unique sequences. Six of
these sequences were isolated many times. If, as discussed above,
the scid mutation results in a dissociation between the timing
of gene rearrangement and the sequential transition of cells
from pro-B to pre-B to B cells, it is possible that an abnormal
expansion occurs in the late pro-B cell stage allowing minor
clonal dominance of some DJ, rearrangements. Support for
this explanation can be seen in some of the Southern blots
(Fig. 1, b and ¢) where, at times, one of the four D], bands
is unusually intense. Such band may represent an expanded
clone.

Recently, possible intermediates in V(D)J recombination
have been detected in scid thymocyte DNA. These inter-
mediates are “hairpinned” D§ and Jé coding ends. The in-
ability to isolate such structures from normal mouse DNA
has lead to the speculation that the scid defect affects the reso-
lution and/or generation of these structures (2, 34). Taken
with our finding of a general lack of N insertions in scid,
these data suggest that the scid product might interact, or
rather interfere, with TdT activity at the stage where the
hairpins are resolved. In view of the observations that ho-
mologies at the coding ends promote recombination in the
absence of TdT (21, 26), examination of DJy joints in scid
fetal liver, where recombination occurs solely without N ad-
dition, may be informative.
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