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S R m m a r y  

The ability of endothelial cells to activate helper T (Th) cells by antigen presentation was studied 
using the murine endothelial cell line SVEC4-10 and antigen-specific murine T cell clones. 
SEVEC4-10 cells constitutively express vascular cell adhesion molecule 1 but not intercellular 
adhesion molecule 1. Interferon 7 (IFN-7) treatment of these cells induced class II major 
histocompatibility complex (MHC) expression and antigen-presenting capabilities, but did not 
alter surface integrin expression. IFN-7-treated SVEC4-10 cells were competent at mediating 
antigen-dependent cytokine production and proliferation ofa Th2 done. In contrast, endothelial 
antigen presentation to Thl  cells did not stimulate T cell proliferation. The addition of MHC 
mismatched spleen cells as a source ofcostimulatory molecules resulted in the ability of the endothelial 
cells to stimulate Thl cell proliferation in an antigen-spedfic manner. The failure of the endothelial 
cell line alone to support Thl cell proliferation correlated with the failure to stimulate interleukin 
2 (IL-2) gene expression. T cell exposure to the endothelial cells plus antigen resulted in upregnlation 
of IL-2 receptors and an enhanced response to subsequent antigen presentation by splenic antigen- 
presenting cells. Despite the lack of functional costimulators for IL-2 expression, antigen presentation 
by the endothelial cell line did not induce Thl cell anergy, indicating that costimulator deficiency 
for IL-2 expression is not obligatorily linked to anergy induction. Thus, endothelial cells are 
capable of presenting antigens to helper T lymphocytes, but stimulate only partial T cell responses. 
These partial responses may serve to selectively stimulate transmigration of antigen-specific T 
cells and may enhance functional responses upon subsequent, extravascular antigen exposure. 

T he initiation and regulation of immune responses to for- 
eign antigens is dependent on antigen presentation to 

CD4 + helper T lymphocytes. An effective APC must be 
able to internalize and process exogenous protein antigens 
and express peptide fragments of these antigens in associa- 
tion with class II MHC molecules at the cell surface to acti- 
vate antigen-specific T cells. In addition, APCs express 
costimulatory molecules that bind to signal generating mem- 
brane ligands on the T cells. The antigen-presenting func- 
tions of several cell types have been well described, including 
macrophages (1), B lymphocytes (2, 3), and dendritic cells 
(4). Endothelial cells are a potentially significant APC popu- 
lation in vivo because of their cumulatively large surface area 
and their anatomic location between circulating T cells and 
extravascular sites of antigen exposure. The ability of vas- 
cular endothelial cells to present exogenous protein antigen 
to class II-restricted helper T cells in vitro has been described 
several times (5-9), but this function has been incompletely 
characterized in light of recent insights into the role of adhe- 
sion molecules and costimulatory pathways in T cell activa- 

tion. In part, APC function of any cell type may be deter- 
mined by the regulation of class II MHC expression. Class 
II MHC molecule expression can be induced on cultured 
human (10, 11) and mouse (12, 13) endothelial cells by IFN-% 
In vivo, peripheral human venular endothelial cells express 
class II MHC constitutively (11, 14, 15) and murine endothelial 
cells express class II MHC at sites of active immune-mediated 
inflammation, such as allograft rejection (16) and autoim- 
mune encephalitis (17). 

The expression of costimulatory activities by endothelial 
cells has only been preliminarily characterized. One endothelial 
costimulatory activity for T cell activation has been defined 
on the basis of the ability of human umbilical vein endothelial 
cells to augment IL-2 secretion by PHA-stimulated periph- 
eral blood T cells (18, 19). This activity is dependent on 
CD2-LFA-3 interactions. The presence of costimulatory ac- 
tivity on endothelial cells has been inferred from experiments 
demonstrating the ability of pure endothelial cultures to stimu- 
late proliferative responses of different T cell populations, in- 
cluding naive alloreactive T cells (20) and memory T cells 
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specific for exogenous protein antigens (21). The presence 
or absence of endothelial costimulators for distinct subsets 
of differentiated helper T cells has not been examined. 

The presence or absence of costimulators on APCs may 
profoundly influence the outcome of T cell antigen recogni- 
tion. With costimulators present, antigen presentation results 
in IL-2 gene expression, T cell proliferation, and the genera- 
tion of T cell progeny capable of responding to subsequent 
antigen exposure. In contrast, several experimental models 
have suggested that antigen presentation in the absence of 
costimulators causes suboptimal or no IL-2 gene expression 
(22, 23). Furthermore, costimulator-deficient APC may in- 
duce a long-lived anergic state in which the T cell cannot 
transcribe its IL-2 genes in response to subsequent antigen 
recognition (22-28). This phenomenon of donal anergy has 
largely been studied using murine Thl  clones together with 
APCs that are chemically fixed to destroy mostly uncharac- 
terized costimulatory activities (27). There is evidence that 
some unfixed cell types, such as keratinocytes (29) and renal 
tubular epithelial cells (30) may induce anergy, presumably 
because of the lack of expression of costimulators. Further- 
more, T cell anergy has been induced by T cell receptor stim- 
ulation in the complete absence of accessory cell costimu- 
lators using peptide bound to MHC molecules on planar 
membranes (31), or immobilized antireceptor antibodies (32). 

In this paper, we describe the antigen-presenting functions 
of a well differentiated murine endothelial cell line, SVEC4-10 
(13). Our findings indicate that these endothelial cells have 
the capacity to stimulate proliferation of some helper T cells 
but not others. Furthermore, we show that the inability to 
stimulate some T cells is due to a lack of costimulators, which 
can be supplemented by the addition of nonantigen-presenting 
allogeneic spleen cells. Importantly, these viable, costimulator- 
deficient endothelial cells do not induce anergy in the A.E7 
T cell clone that has been used as a prototype for anergy in- 
duction by chemically fixed APCs (26-28, 33-37). The 
findings are discussed in the context of a hypothetical role 
of endothelial antigen presentation to circulating T cells. 

Materials and Methods 
Mice. BALB/cJ and AKR mice were purchased from The 

Jackson Laboratory (Bar Harbor, ME). 
Cell Lines. The endothelial cell line SV4EC-10 (13) derived from 

a C3H/HeJ mouse lymph node was obtained from Dr. Michael 
Edinin (Johns Hopkins University, Baltimore, MD), and grown 
in DME with 10% FCS. Some SVEC4-10 cultures were treated 
with 100 U/rrd recombinant murine IFNw (Genzyme Corp., Cam- 
bridge, MA) for 6 d before use in functional assays to induce class 
II MHC expression. The mouse CD4 + helper T cell clones used 
in these studies included: A.E7, specific for pigeon cytochrome C + 
I-E k, a gift of Dr. Ronald Schwartz (National Institutes of Health, 
Bethesda, ME)); 100.9, specific for rabbit 3, globulin + I-A k, a gift 
of Dr. Abul Abbas (Brigham and Women's Hospital, Boston, MA); 
and D10.G4, spedtic for conalbumin + I-A k, obtained from the 
American Type Culture Collection (Rockvilh, MD). The clones 
were maintained in ILPMI 1640 supplemented with 10% heat- 
inactivated FCS (Hydone Laboratories, Logan, UT), penicillin (100 
U/ml), streptomycin (100/~g/ml), 2 mM t-glutamine, nonessen- 

tial amino acids (0.1 raM), sodium pyruvate (1 mM), and 5 x 
10 -s M 2-mercaptoethanol. The clones were stimulated with 100 
/zg/ml antigen plus 1,500 tad irradiated whole AKR spleen cells 
every 14 d. Recombinant routine I1:2 (10 U/ml) or supernatant 
from Con A-stimulated rat spleen cells (10% vol/vol) was added 
4 d after stimulation. Pigeon cytochrome c (PCC),J conalbumin, 
and rabbit 3~ globulin were obtained from Sigma Chemical Co. 
(St. Louis, MO), The 81-104 peptide of the PCC molecule, recog- 
nized by the A.E7 done was a gift from Dr. Abul Abbas. Cloned 
T cells were harvested between 10 and 14 d after restimulation for 
experimental cultures, and viable T cells were isolated by centrifu- 
gation over FicoU-Diatrizoate (Organon Teknika, Durham, NC). 

Mouse recombinant Ib2 was used as a culture supernatant from 
the x63-Ib2 cell line that constitutively expresses a transfected mu- 
fine II:2 gene, generously provided by Dr. Fritz Melchers (Basel 
Institute for Immunology, Switzerland) (38). Bioactivity of recom- 
binant II:2 preparations was determined using the HT-2 indicator 
line, as described below. One unit of I1:2 was defined as the amount 
required to produce half-maximal proliferation of the indicator cell 
line in a serial dilution assay. 

Antigen Presentation Assays. Untreated or IFN-~,-treated 
SVEC4-10 cells were grown to confluence in gelatin-coated flat 
bottom 0.2-ml microtiter wells. The monolayers were treated with 
50/zg/ml mitomycin C (Sigma Chemical Co.) for 90 min at 37~ 
washed, and 4 x 104 cloned T cells were added with or without 
antigen. T cell proliferation was assayed by labeling with [3H]TdR 
(Amersham Corp., Arlington Heights, IL) (1/zCi/well) for the 
final 6 h of a 3-d culture. Incorporated radioactivity was measured 
in a Betaplate scintillation counter (LKB-Pharmacia, Gaithersburg, 
MD). To measure secretion of I1:2, 50-/~1 aliquots of supernatant 
were collected from each microwel118 h after initiation of the cul- 
ture and these were assayed for their ability to stimulate growth 
of the HT-2 indicator cells line (39). 

Assay for Anergy Induction. For the attempted induction of 
anergy, 5 x 10 s A.E7 T cells were cocultivated on IFN-y-treated 
SVEC4-10 monolayers in 2-ml wells for 24 h in the absence or 
presence of 10/~M PCC peptide fragment 81-104 or 100/~M in- 
tact PCC. The T cells were then removed from the monolayers 
and rested in tissue culture medium alone for either 48 h or 7 d. 
After rest, they were recultured in 0.2-ml wells at 2 x 104 viable 
cells per well and restimulated with irradiated AKR spleen cells 
plus PCC peptide or PCC as described above, or 10 U/ml recom- 
binant murine I1:2 and T cell proliferation was measured at 48 h. 
As a positive control for anergy induction, primary cultures were 
also set up with 5 x 10 s A.E7 T cells and 2 x 106 AKR spleen 
cells that had been previously fixed with 50 mM ECDI as previ- 
ously described (26) followed by rest and restimulation cultures 
identical to those described above. 

lmmunofluorescence Assays. Immunofluorescent staining of 
SVEC4-10 cells was performed on single-cell suspensions prepared 
from subconfluent monolayers by EDTA treatment. The cells were 
incubated with primary unlabeled rat anti-mouse mAbs of the ap- 
propriate specificities at 4~ for 30 min, washed in ice-cold serum- 
free tissue culture medium, and incubated for an additional 30 min 
at 4~ with FI~IXZ-hbeled goat anti-rat Ig (Southern Biotechnology 
Associates, Birmingham, AL). The cells were then washed in ice- 
cold PBS, fixed in 1% paraformaldehyde, and analyzed by flow 
cytometry on a FACScan | instrument (Becton Dickinson & Co., 
Mountain View, CA). T lymphocytes that were cocultured on 

1 Abbreviations used in this paper: ECDI, 1-ethyl-3-(3-dimethyhminopropyl) 
carbodiimide-HCL; PCC, pigeon cytochrome c. 
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SVEC4-10 monolayers for 24 h were harvested by gentle pipetting 
and stained in the same manner. 

Monoclonal Antibodies. The primary rat anti-mouse antibodies 
used for immunofluorescence staining included M5114 spedfic for 
class II MHC I-A molecules (40), YNI.1 specific for intercellular 
adhesion molecule I (ICAM-1) (41), and 7D4 specific for the II,2 
receptor c~ chain (42), all were obtained from the American Type 
Culture Collection. In addition, MK-2 specific for vascular cell adhe- 
sion molecule 1 (VCAM-1) (41) was obtained from Dr. Paul Kin- 
cede (University of Oklahoma, Tulsa, OK). Purified anti-mouse 
CD28 (Pharmingen, San Diego, CA) was used in some antigen 
presentation assays. 

RNA Isolation and Reverse Transcription PCR Analysis of lL.2 Gene 
Expression. A.E7 cells were cocultured on monolayers of IFN-y- 
treated SVEC4-10 cells in 2 ml polystyrene wells at 106 T cells 
per well in the absence or presence of 5 x 106 BALB/c spleen cells 
plus or minus 100/~g/ml PCC. Viable T cells were harvested from 
the monolayers after 6 h, total cellular KNA was isolated using 
RNAzol TM (Biotecx Laboratories, Inc., Houston, TX), and reverse 
transcriptase (RT)-mediated synthesis of cDNA was performed with 
an oligo(dT) primer. The cDNA samples were precipitated using 
0.2 M ammonium acetate (pH 4.5) and 2 vol absolute ethanol. 
The cDNA samples were then resuspended in 50 #1 of water, and 
2.5/zl was used for PCR amplification with mouse IL-2 (43) and 
B-actin-specific primers. Following amplification, the PCK prod- 
ucts were analyzed by ethidium bromide staining in agarose gels 
using standard techniques (44). 

Results 

Phenot~e o~ S FE C 4-10 Cells. Effective antigen-presenting 
activity to CD4 + T cells depends on class II MHC expres- 
sion by the APC. SVEC4-10 cells do not constitutively ex- 
press class II MHC, but they can be induced to do so by 
treatment with IFN-'y (Fig. 1), as has been reported (13). 
Expression by SVEC4-10 cells of ligands for lymphocyte inte- 
grins was previously uncharacterized. The SVEC4-10 line 
constitutively expresses VCAM-1, but not ICAM-1 (Fig. 1), 
and these phenotypic features were not altered by IFN-'r treat- 
ment (not shown). 

SVEC4-10 Endothelial Cell Antigen Presentation to T Cell 
Clones. The capacity of the SVEC4-10 line to support 
antigen-specific stimulation of murine helper T cell clones 
was tested using a Th2-type murine helper T cell clone, 
D10.G4, and two Thl type clones, A.E7 and AR100. An- 
tigen recognition by all three clones is restricted to class II 
MHC alleles of the k haplotype; the SV4EC-10 cell line was 
derived from an H-2 k mouse (C3H/HeJ). IFN-7-treated 
SV4EC-10 cells were effective APCs for the Th2-type T cell 
clone D10.G4, as assessed by antigen-specific induction of T 
cell proliferation. Endothelial cells not treated with IFN-3/ 
did not present antigen. In contrast, two H-2Lrestricted 
Thl-type T clones, A.E7 and AtL100, were not stimulated 
to proliferate by the IFN~-treated endothelial cell line (Fig. 2). 

Allogeneic Spleen Cells Complement SVEC4-1O Antigen Pre- 
sentation to Induce A.E7 T Cell Proliferation. Antigen-induced 
autocrine growth factor production by Thl clones is gener- 
ally more dependent on accessory cell costimulator molecules 
than are Th2 clones. Therefore, the inability of SVEC4-10 
cells to stimulate Thl  cell proliferation, shown in Fig. 2, may 
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Fig'rure 1. Immunofluorescence analysis of the surface phenotype of 
SVEC4-10 cells. Single-cell suspensions were prepared from endothelial 
cells monolayers, stained with rat anti-mouse mAbs and FITC-labeled goat 
anti-rat Ig, and analyzed by FACS. Untreated SVEC4-10 cells and 
IFN-'J,-treated cells were stained with M5114 (anti-class II MHC) (.4 and 
B, respectively). Untreated cells were also stained with MK2 (anti-VCAM-1) 
or anti-ICAM-1 (YNI.I) (C and D, respectively). Dotted tracings indi- 
cate fluorescence using a primary rat-Ig control antibody. 

have been due to a lack of costimulators. Allogeneic spleen 
cells have been reported to provide costimulatory activity for 
A.E7 activation in experimental systems using chemically 
modified APCs (28). To test whether allogeneic spleen cells 
would complement SVEC4-10 antigen presentation and allow 
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Figure 2. SVEC4-10 presentation of antigens to T cell clones. T cell 
proliferation was measured in cocultures of either untreated or IFN-7-treated 
SVEC4-10 cells with the indicated helper T cell clones in the absence or 
presence of 100 #g/ml antigen (conalbumin for D10.G4, PCC for A.E7, 
rabbit "),-globulin for AR100). The SVEC4-10 cells were mitotically inac- 
tivated by mitomycin C treatment and incorporated less than 100 cpm 
of radioactivity in control microwell cultures. 

a proliferative response to occur, irradiated BALB/c spleen 
ceils were added to the cocultures of the endothelial and A.E7 
cells. Under these conditions, antigen-induced proliferation 
of the T cells was observed (Fig. 3). These spleen cells did 
not induce antigen-specific proliferation of A.E7 cells in the 
absence of the SVEC4-10 cells (not shown), consistent with 
their inability to express the I-E k class II MHC molecule 
which restricts A.E7 antigen recognition. Furthermore, the 
observed proliferation of the T ceils was not due to alloreac- 
tivity because it was not observed in the absence of the specific 
antigen. 

S VEC4-IO Cell Presentation of Preformed PCC Peptide Does 
Not Induce A.E7 T Cell Proliferation. The failure of the 
SVEC4-10 cells to support antigen-induced proliferation of 
A.E7 cells might be observed if the endothelial cell line was 
incapable of processing and generating the specific peptide 
recognized by A.E7 cells. The general capacity of the 
SVEC4-10 cells to internalize, process, and present soluble 
protein antigens to class II-restricted T cells was demonstrated 
in experiments with the D10.G4 clone (Fig. 1). Nonetheless, 
there may have been a selective ability of the SVEC4-10 cells 
to process conalbumin but not PCC. AUogeneic spleen cells 
could theoretically have generated the appropriate peptides 
that were then subsequently delivered to the endothelial cells 
for presentation to the T cells. The data in Fig. 4 indicate 
that this is not the case. Addition of immunoreactive PCC 
peptide 89-104 to cocuhures of SVEC4-10 and A.E7 cells 
did not result in T cell proliferation, as was the case for in- 
tact PCC, unless allogeneic spleen cells were added. It is there- 
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Figure 3. Allogeneic spleen cells are required for proliferative response 
of A.E7 T cells to antigen presentation by SVEC4-10 cells. Antigen-induced 
A.E7 T cell proliferation was measured in cocultures with IFN-7-treated 
SVEC4-10 cells in the absence or presence of PCC with or without the 
addition of varying numbers of irradiated BALB/c spleen cells. In the ab- 
sence of SVEC4-10 cells, BALB/c spleen cells did not support antigen- 
induced proliferation of A.E7 cells (not shown). 

fore likely that the spleen cell effect of permitting AE.7 prolifer- 
ation was due to the provision of costimulatory molecules. 

Allogeneic Spleen Cells Complement SVEC4-10 Antigen Pre- 
sentation to Induce IL-2 Gene Expression. One demonstrated 
role of costimulators in T cell proliferation is to provide signals 
required for efficient IL-2 gene transcription (23). A failure 
of SVEC4-10-mediated induction of proliferation of A.E7 
cells could be the consequence of the failure of these endothelial 
cells to stimulate T cell expression of the IL-2 gene. To test 
this hypothesis, we measured IL-2 in supernatants from cocul- 
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Figure 4. SVEC4-10 presentation of PCC peptide to A.E7 T cells. 
Cocultures of A.E7 T cells and SVEC4-10 cells, with or without irradi- 
ated BALB/c spleen cells were set up as described in Fig. 3, except that 
the 81-104 amino acid PCC peptide recognized by A.E7 cells was used 
instead of intact PCC. 
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tures of A.E7 cells and IFN-?-treated SVEC4-10 cells. 
Antigen-induced IL-2 bioactivity in supernatants of SVEC4-10 
and A.E7 cocuhures was detected only when allogeneic spleen 
cells were added as costimulators (data not shown). Because 
A.E7 cells produce low levels of detectable supernatant IL-2 
under any conditions, in our hands and others (45) 
costimulator-dependent IL-2 gene expression was analyzed 
by the more sensitive technique of RT PCR. As shown in 
Fig. 5, antigen presentation by IFN-q,-treated SVEC4-10 did 
not induce the presence of IL-2 message in A.E7 cells unless 
allogeneic spleen cells were added. This was an antigen-specific 
effect, because no IL-2 message was observed in the absence 
of the PCC, regardless of the presence or absence of allogeneic 
spleen cells. 

The possibility that allogeneic spleen cells were acting 
through the CD28 costimulatory pathway was tested. No 
proliferation ofT cells or expression of IL-2 was seen in cocul- 
tures of A.E7 cells with SVEC4-10 cells plus antigen even 
when anti-mouse CD28 mAb was added at 25 or 100 #g/ml 
(data not shown). 

Evidence for a Partial Activation Response of A.E7 Cells to 
SVEC4-10-Mediated Antigen Presentation. Despite the ob- 
served lack of Thl cell proliferation, it remains possible that 
the endothelial cell line is capable of inducing antigen-specific 
functional changes in A.E7 cells. Even though autocrine 
growth of the T cells does not occur, A.E7 cells exposed 
to SVEC4-10 cells plus PCC do become more responsive to 
exogenously added IL-2 within 18 h (Fig. 6). Furthermore, 
the expression of p55 subunit of the IL-2 receptor increases 
concomitantly with the observed increased functional response 
(Fig. 7). These data indicate that the SVEC4-10 cells are effec- 
tive in presenting antigen to, and inducing functional changes 
in, a Thl cell, but they are costimulator deficient as defined 

by their inability to induce autocrine growth factor-mediated 
T cell proliferation. 

Failure of SVEC4-10 Cells to Induce Anergy in A.E7 
Cells. The A.E7 clone has been extensively studied as a model 
for clonal anergy induction. The presentation of PCC pep- 
tide to A.E7 cells by APCs that have been rendered costimu- 
lator deficient by chemical fixation resuhs in an inability of 
the T cells to undergo autocrine IL-2-dependent prolifera- 
tion upon subsequent presentation of antigen with normal 
APCs (28, 33, 35). The lack of costimuhtors on SVEC4-10 
cells demonstrated above suggested that these endothelial cells 
might induce anergy. To the contrary, A.E7 ceils cocultured 
with IFN-q,-treated SVEC4-10 cells plus PCC protein and 
then rested for 48 h before restimulation were not anergic 
(Fig. 8 A). In fact, these T cells were more responsive to 
subsequent antigen presentation by spleen cells than if they 
had not previously been exposed to antigen. When A.E7 ceils 
were initially cultured with ECDI-treated spleen cells plus 
PCC peptide, their proliferative response to antigen presen- 
tation after 48 h rest was more then 90% inhibited com- 
pared to T cells initially cultured with ECDI-treated spleen 
cells without PCC peptide (data not shown). The lack of 
anergy induction by SVEC4-10 antigen presentation was ob- 
served in all of six separate experiments, including those in 
which the A.E7 cells were removed from maintenance cul- 
tures 7 or 14 d after the last antigen restimulation, and in 
experiments in which the A.E7 cells were grown in the ab- 
sence or presence of exogenously added IL-2 before culture 
with the SVEC4-10 cells. Furthermore, anergy could not 
be demonstrated in A.E7 cells that were rested for a full 7 d 
after exposure to SVEC4-10 cells plus antigen to ensure that 
the T cell responsiveness to IL-2 was back to baseline (Fig. 
8 B). In the experiment shown, intact PCC protein was used 
because this is a more physiologically relevant form of an- 
tigen then high concentrations of preformed immunogenic 
peptide. Nonetheless, 10-#M PCC peptide 89-101 presented 

Figure 5. SVEC4-10 cells lack costimuhtors for A.E7 Ib2 gene ex- 
pression. Ib2 gene expression in A.E7 cells was determined by RT PCR 
analysis of RNA isolated from the T cells after 6 h of coculture with 
IFN-3,-treated SVEC4-10 calls with or without antigen, in the presence 
or absence of BALB/c spleen cells. The predicted size of the amplified I1#2 
eDNA is 450 bp; each increment in the control DNA ladder is 100 bp. 
No IL-2 gene-specific amplification product was seen when A.E7 cells were 
cultured with BALB/c cells plus antigen, in the absence of SVEC4-10 
cells (not shown). 
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Figure 6. SVEC4-10 cell antigen presentation to A.E7 cells upregu- 
lares responsiveness to exogenous Ib2. A.E7 cells were cocultured with 
IFN-3' SVEC4-10 cells in the absence or presence of PCC antigen for 
18 h, varying concentrations of recombinant routine IL-2 were added to 
triplicate microwells, and the cultures were incubated for an additional 
18 h. T cell proliferation was determined by measuring [3H]thymidine 
incorporated during the final 6 h of culture. The results of one experiment 
are shown; two additional experiments had similar results. 
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Figure 7. SVEC4-10 ceU antigen presentation to A.E7 cells upregu- 
lares expression of the IL-2R B chain. A.E7 cells were cocuhured with 
SVEC4-10 cells with or without PCC antigen in 2-ml culture wells for 
18 h. Viable T cells were then harvested, stained for expression of the 
p55 subunit of IL-2R using the 7D4 antibody, and analyzed by flow cytom- 
etry. Dotted tradngs indicate fluorescence histograms of cells incubated 
using a primary rat anti-CD8 antibody as a control. 

by SVEC4-10 cells also did not induce anergy in A.E7 cells. 
As a positive control for anergy induction, the proliferative 
responses of  A.E7 cells to PCC and splenic APCs was mea- 
sured 7 d after exposure to ECDI-treated spleen cells plus 
PCC peptide. This response was 75% inhibited (Fig. 8 B) 
compared to control cells cultured with  ECDI-treated spleen 
cells but no peptide. The  response to IL-2 at this 7 d t ime 
point was not altered by previous exposure to antigen, using 
either ECDI-treated spleen or SVEC4-10 cells. 

D i s c u s s i o n  

The present experiments were aimed at defining the func- 
tional interactions between endothelial cells and T lympho- 
cytes using an in vitro mouse model system. In particular, 
the antigen presentation capabilities and costimulatory ac- 
tivities of  a well-differentiated mouse endothelial cell line, 
SVEC4-10 were examined. The SVEC4-10 cell line was de- 
rived from a primary culture of  mouse lymph node vascular 
endothelium by SV40 virus immortalization (13). In addi- 
tion to the previously reported markers of endothelial cell 
differentiation, such as acetylated-LDL receptor and factor 
VIII  expression, we have shown it constitutively expresses 
VCAM-1 and not ICAM-1.  VCAM-1 is a ligand for VLA-4 
and is potentially important for traf~cking of antigen-specific 
T cells to sites of  antigen challenge. In addition, VCAM-1 
may deliver costimulatory signals to CD4 + T cells (46, 47). 
The absence of ICAM-1 expression by this cell line should 
permit analysis of  VCAM-l-dependent  adhesive and stimula- 
tory interactions in isolation from ICAM-1 effects. 
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Figure 8. Costimulator-defident SVEC4-10 APCs do not induce anergy in A.E7 T cells. (.4.) A.E7 cells were first cocultured for 24 h with IFN-'y-treated 
SVEC4-10 cells in the absence or presence of 100/~g/ml PCC. Viable T cells were then harvested and recuhured with irradiated whole spleen cells 
from AKR mice in the absence or presence of 100 #g/ml PCC. The mean plus SD of triplicate samples is shown from one experiment. No A.E7 
T cell proliferation was observed in the primary cultures, as shown in Figs. 2 and 3. Similar results, including enhanced responsiveness of A.E7 cells 
previously exposed to antigen were obtained in five additional experiments. (B) A.E7 T cells were cultured with ECDI-treated spleen cells or IFN-3,-treated 
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The ability of SVEC4-10 cells to support antigen-specific 
stimulation of the proliferation of the Th2 hdper T cell clone 
D10.G4 indicates that this endothelial call line can take up, 
process, and present a soluble protein antigen in a class II 
MHC-restricted manner. Although full activation of Th2 
cells has less stringent requirements for costimulators, it is 
possible that IFN-'y treatment of the endothelial ceil line, 
required for class II MHC expression, also induced the ex- 
pression of unidentified molecules required for Th2 cell 
proliferation. In contrast, SVEC4-10 cells were not capable 
of stimulating the proliferation of two different Thl  T cell 
clones, including the well-described A.E7 done. This failure 
to induce proliferation correlated with the failure of the 
SVEC4-10 cells to induce the appearance of IL-2 mRNA. 
The data indicate that these endothelial cells lack costimula- 
tory molecules required by A.E7 cells for antigen-induced 
activation of autocrine IL-2-mediated growth. The required 
costimulatory activity can be provided by third party allogeneic 
spleen cells. The ability of SVEC4-10 endothelial cells to 
stimulate proliferation of Th2 but not Thl ceils is consistent 
with a recent report that antigen presentation by brain 
microvessel endothelium also leads to Th2 but not Thl cell 
autocrine growth factor secretion and proliferation (48). 

The best-defined costimulatory system in T ceil activation 
is that involving B7-CD28 interactions (23, 49-55). There 
are two reasons why it is unlikely that the absence or pres- 
ence of B7 is playing a significant role in the T cell functional 
responses described here. First, there is evidence that B7 must 
be present on the APC for it to optimally costimulate T cell 
proliferation (56, 57). In contrast, costimulatory activity for 
A.E7 proliferation that is missing on the SVEC4-10 ceils can 
be provided by nonantigen-presenting, third party allogeneic 
spleen ceils. Second, anti-CD28 antibody used under condi- 
tions reported to costimulate certain other T ceils in culture 
(58) did not have any effect on the ability of the SVEC4-10 
cells to induce proliferation of the A.E7 cells. In addition 
to B7, both VCAM-1 and ICAM-1 have been implicated as 
costimulators ofT cell IL-2 production and proliferation (46, 
47, 59-61). ICAM-1 is not expressed on the SVEC4-10 ceils 
under the conditions used in the experiments reported here, 
and this is a possible reason for the incomplete T cell activa- 
tion observed in response to the antigen presentation by the 
endothelial cell line. We believe that this is unlikely for three 
reasons. First, previous reports indicate that VCAM-1 and 
ICAM-1 are costimulators of resting T cells but not neces- 
sarily of T cells previously activated by antigens (47, 59-61). 
In fact, it has been shown that IL-2 production by T cells 
previously activated by superantigen was not costimulated 
by either VCAM-1 or ICAM-1 (47). In the studies reported 
here, the T ceil clones were activated by antigen within 14 d 

of the experimental culture. Second, when directly compared, 
VCAM-1 and ICAM-1 each independently costimulated TCR- 
mediated proliferation of naive T cells equally well; that is, 
the presence of both ligands was not necessary for optimal 
T cell activation (47). Because the SVEC4-10 line expresses 
VCAM-1, there is no reason to assume that ICAM-1 is also 
needed. Third, some ICAM-1 expression can be induced on 
the SVEC4-10 line by TNF treatment, but TNF did not 
render the endothelial line competent at stimulating a prolifer- 
ative response of A.E7 cells (data not shown). 

Despite the lack of costimulatory activity for Thl  cell 
proliferation, SVEC4-10 antigen presentation to A.E7 cells 
did not induce anergy. The consequences of antigen presen- 
tation by viable but costimulator-deficient APCs to Thl  cells 
is largely uncharacterized. Most studies ofclonal anergy, and 
in particular of anergy induced in the A.E7 clone, have been 
performed using nonviable, chemically fixed APCs. Although 
some "nonprofessional" APCs may induce T cell anergy (29, 
30), the consequences of antigen presentation by many other 
cell types have not been carefully examined. The present results 
indicate that induction of anergy does not strictly correlate 
with the lack of costimulators for antigen-induced Thl  
proliferative responses. Because the molecular events involved 
in costimulation of IL-2 production (62) and anergy induc- 
tion (37, 63) are, at best, incompletely defined, there is no 
a priori reason to assume that the two results ofcostimulator- 
deficient antigen presentation are necessarily linked. In fact, 
there is evidence that blockade of the B7-CD28 costimula- 
tory pathway in vivo can inhibit T cell-dependent immune 
response to protein antigens without induction of tolerance 
to those antigens (64). The experimental system described 
here may help to distinguish divergent mechanisms under- 
lying costimulation of IL-2 production versus regulation of 
anergy induction. 

The partial activation response of A.E7 to SVEC4-10 an- 
tigen presentation, characterized by induction of IL-2 receptor 
expression suggests a possible physiological role for endothelial 
antigen presentation. Antigen-specific interactions of T cells 
with endothelium in the lumena of microvasculature could 
upregulate surface molecules required for tight adhesion and 
extravasation of T cells into tissues without initiating prolifer- 
ative responses. This would result in selective enrichment of 
antigen-specific T cells at a site of antigen exposure. Further- 
more, upregulation of IL-2R and possibly other molecules 
by endothelial antigen presentation might result in enhanced 
functional responses of these T cells to subsequent antigen 
exposure in extravascular sites. In other words, endothelial 
cells may direct antigen-specific T cells to sites of extravas- 
cular antigen and prepare T cells to respond to tissue-based 
APCs. 
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