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Summary

Chediak-Higashi Syndrome (CHS) is an autosomal recessive disease affecting secretory granules
and lysosome-like organelles. In CHS fibroblasts, acidic organelles are abnormally large and clustered
in the perinuclear area. We have analyzed fibroblast cell lines from a CHS patient and from the
murine model for CHS, the beige mouse, to determine which lysosome-like compartments are
affected. Uptake of neutral red showed that in both beige and CHS cell lines, the acidic organelles
were markedly clustered in the perinuclear region of the cells. Giant organelles (>4 pm) were
observed in a fraction of the cells, and these were more dramatic in the beige fibroblasts than
in the CHS fibroblasts. The total dye uptake of both mutant cell lines was similar to their respective
wild type fibroblasts, suggesting that the overall volume of acidic compartments is unaffected
by the disorder. Histochemistry and immunofluorescence showed that the giant organelles in
both beige and CHS fibroblasts were positive for cathepsin D, lysosome-associated membrane
protein (LAMP) 1, LAMP 2, and a 120-kD lysosomal glycoprotein, all marker proteins for late
endosomes and lysosomes. The giant organelles were also negative for transferrin receptor and
mannose-6-phosphate receptor, and most of them were also negative for rab 7. This distribution
of marker proteins shows that the giant organelles in both beige and CHS are derived from late
compartments of the endocytic pathway. This conclusion was confirmed using endocytic tracers.
BSA was transported to the giant organelles, but only after long incubation times, and only
at 37°C. az-Macroglobulin was taken up and degraded at similar rates by CHS or beige cells
and their respective wild type control cells. Taken together, our results indicate that the mutation
in CHS specifically affects late endosomes and lysosomes, with little or no effect on early endosomes.
Although the mutation clearly causes mislocalization of these organelles, it appears to have little
effect on their endocytic and degradative functions.

hediak-Higashi Syndrome (CHS)! is a rare autosomal

recessive disorder in humans, affecting multiple cell
lineages and commonly classified as a lysosomal abnormality
(1). Analogous disorders have been identified in a variety of
species (2-4), the best studied of which is the beige mouse
(5, 6). CHS patients suffer from dilution of skin pigmenta-
tion, severe recurrent infections, lymphoproliferative disorder
and progressive peripheral neuropathy, reflecting the range
of affected cells (7). Many of the clinical manifestations can
be attributed to abnormalities in leukocyte function, and several
hemopoietic lineages, including neutrophils and cytolytic lym-

1 Abbreviations used in this paper: CD-MPR, cation-dependent (46 kD)
mannose-6-phosphate receptor; CHS, Chediak-Higashi syndrome; CI-
MPR, cation-independent (300 kD) mannose-6-phosphate receptor; DTAF,
dichlorotirazinylamino-fluorescein; LAMP, lysosome-associated membrane
protein; lgp-120, 120-kD lysosomal glycoprotein; azM, arz-macroglobu-
lin; NM1, normal mouse 1.

phocytes, have been shown to be functionally defective in CHS
and in beige (8-13).

At the cellular level CHS is characterized by the presence
of giant organelles. There is, however, considerable diversity
and tissue specificity in the nature of these giant organelles;
secretory organelles are enlarged in some cell types while en-
docytic organelles are affected in others (6, 8, 12). Neutro-
phils, platelets, eosinophils, mast cells, and cytolytic lympho-
cytes from CHS patients, all cells that normally engage in
regulated secretion, contain massive secretory granules. In each
case, the enlarged secretory granule retains its characteristic
ultrastructure and protein composition. In nonsecretory cell
types, such as monocytes and fibroblasts, the enlarged or-
ganelles are lysosome-like. Thus, the histological classification
of CHS betrays a complex range of affected cellular organelles.

The giant organelles in CHS and beige cells are often de-
scribed as lysosomes, but this definition is largely based on
classical histochemical criteria (6, 8). In recent years, how-
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ever, it has become apparent that the “lysosomotropic” dyes
that stain the giant organelles, such as neutral red and acri-
dine orange, are not exclusive markers for lysosomes. It is
now known that coated and uncoated vesicles, early endo-
somes, late endosomes, and lysosomes are all acidified to
varying degrees and therefore all can accumulate these dyes
(14). Similarly, acid phosphatase, a “lysosomal marker” found
in the giant organelles, is known to have a broader intracel-
lular distribution (15, 16).

Recent work on the endocytic pathway has resulted in the
characterization of several marker proteins that distinguish
more definitively among distinct endocytic compartments.
Several membrane spanning proteins are now known to re-
side in some but not all of the endocytic compartments. The
transferrin receptor cycles between the plasma membrane and
early endosomes (17); the cation-independent and cation-
dependent mannose-6-phosphate receptors (CI- and CD-MPR)
are found in late endosomes but not in mature lysosomes (18),
whereas the lysosome-associated membrane proteins (LAMPs)
and 120-kD lysosomal glycoprotein (Igp-120) (19, 20) reside
in both late endosomes and lysosomes. Much has also been
learned about how both soluble lysosomal enzymes and
membrane-spanning glycoproteins are targeted to lysosomes,
and conditions have been defined that block movement be-
tween endocytic compartments (21, 22). Finally, small GTP
binding proteins from the rab family have been shown to
be involved in vesicle fusion along the endocytic pathway and
to interact specifically with distinct endocytic compartments
(23). In light of all this new information, it was interesting
to ask more precisely whether the CHS and beige mutations
affect a defined endocytic compartment, and if so, whether
the same compartment is affected in both humans and mice.

Recent clinical advances in treating CHS patients center
around bone marrow transplantation, replacing only hemo-
poietic cells. As survival times of patients increase, under-
standing the effects of the CHS defect on other cells will
be important for predicting and treating abnormalities in other
tissues. Therefore, in this study we focused on defining the
defect in fibroblasts. By better understanding which endo-
cytic compartments are affected in these cells, we seek to de-
velop a unifying explanation for the effects of the disease on
endocytic organelles and secretory granules in various cell types.

Materials and Methods

Cells.  GMO02075A is a skin fibroblast cell line, derived from
an 18-mo-old female with clinical symptoms of Chediak-Higashi
Syndrome, and was obtained from the Human Genetic Mutant Cell
Repository (Camden, NJ). The human control skin fibroblast line,
CCD-455k, was derived from a 3-mo-old female, and obtained from
the American Type Culture Center (Rockville, MD). The beige
and normal mouse (NM1) lines were derived from C57BL/6]-
Bg' and C57BL/6] mice, respectively (24), a generous gift of Dr.
T. Lyerla (Clark University, Worcester, MA). CCD-455k and
GMO02075A were maintained in Dulbecco’s minimal essential
medium supplemented with nonessential amino acids and 10-15%
FCS (both from JRH Biosciences, Lenexa, KS), while the murine
lines were maintained in Dulbecco’s minimal essential medium sup-
plemented with 5% FCS.
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Antibodies.  Antibody to the lysosomal glycoprotein lgp-120 was
a gift of Dr. I. Mellman (Yale University, New Haven, CT); 1D4B
monoclonal anti-mouse LAMP1 and ABL-93 anti-mouse LAMP
2 (20) were originally produced by Dr. T. August (Johns Hopkins
University, Baltimore, MD) and obtained from the Developmental
Studies Hybridoma Bank; rabbit anti-human LAMP1/2 antibody
was a kind gift of Dr. M. Fukuda (La Jolla Research Foundation,
La Jolla, CA); rabbit anti-cathepsin D sera were gifts of Dr. J.
Mort (McGill University, Montreal, Canada) and Dr. K. von Figura
(University of Gottingen, Germany); anti-MPR antisera were gifts
of Dr. W. Brown (Cornell University, Ithaca, NY) and Dr. B.
Hoflack (EMBL, Heidelberg, Germany). Rabbit anti-rab 7 and
monoclonal anti-rab 5 were gifts of Dr. M. Zerial (EMBL, Heidel-
berg, Germany). Mouse mAb B3/25 anti-human transferrin
receptor was purchased from Boehringer Mannheim Corp., Indi-
anapolis, IN. The secondary antibodies used were: FITC-goat
anti-rabbit IgG (Sigma Chemical Co., St. Louis, MO); Texas red-
and FITC-goat anti-rat IgG (Jackson InmunoResearch Labs, West
Grove, PA, and Rockland Inc., Gilbertsville, PA); Texas red- and
Cy3-donkey anti-rabbit Ig (Jackson Labs); and FITC-goat
anti-mouse IgG (Southern Biotechnology, Birmingham, AL).

Light Microscopy. Immunofluorescence studies were performed
as described previously (25). Briefly, cells grown on coverslips were
fixed with 2% paraformaldehyde/PBS, quenched with 50 mM
NHCI/PBS and permeabilized with PBS/0.01% saponin/0.25%
gelatin (PSG). Coverslips were incubated for 1 h with primary an-
tibodies diluted appropriately in PSG, washed six times with PSG,
incubated 1 h with secondary antibody, and washed six times. Lo-
calization of rab proteins was performed essentially as described
in (23). Cells were permeabilized before fixation by a 5-min incu-
bation with 0.03% saponin/80 mM Pipes, pH 7.2/1 mM
MgCl/5 mM EGTA, and then fixed with 2% paraformaldehyde
in PBS. Coverslips were mounted in 10% glycerol/PBS/2.5%
diazabicyclo-(2,2,2)octane, and observed using an Axiovert micro-
scope (Zeiss, Oberkochen, Germany) with a MRC-600 laser con-
focal attachment (Bio-Rad Inc., Richmond, CA). Acid phospha-
tase cytochemistry was performed using the Sigma (St. Louis, MO)
kit according to the manufacturer’s instructions, and visualized using
brightfield optics.

Uptake Studies. For neutral red staining, cells grown on cover-
slips were incubated for 30 min with 20-200 uM neutral red in
PBS, washed three times rapidly in PBS, mounted in PBS, and ob-
served under phase contrast. For quantitation of neutral red up-
take, the cells were lysed in 1% Triton X-100/0.1 M HC] (26) and
the amount of dye was determined spectrophotometrically.

For fluorescence uptake studies, BSA was conjugated to
dichlorotriazinylamino-fluorescein (DTAF). The molar ratio of
DTAF-BSA in the conjugate was 5-6:1. Cells were incubated with
5 mg/ml DTAF-BSA in complete medium for various times at 20°C
or 37°C, fixed, and either viewed directly, or processed as described
above for double-label immunofluorescence.

Electron Microscopy. BSA was conjugated to 12 nm gold parti-
cles (27), and fed to cells for various times at 37°C. The cells were
fixed on the Petri dish with 2% glutaraldehyde/0.15 M sodium
cacodylate, pH 7.4, 1 mM CaCl;, scraped, and processed for elec-
tron microscopy as described previously (28), except that no staining
was done after sectioning.

Immunoblots.  Cells were washed three times with balanced salt
solution and then lysed with buffer containing 1% NP-40 (25).
Nuclei were pelleted and the postnuclear supernatants were sub-
jected to SDS-PAGE. After electrophoresis, the total cellular pro-
teins were transferred onto a nitrocellulose membrane (Amersham
Corp., Arlington Heights, IL) using a Hoefer apparatus and probed
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with antibodies as described previously (29). The anti-human
LAMP1/2 antibody was used at 1:500 dilution and developed using
15]-protein A (Amersham Corp.).

Uptake and Degradation of arMacroglobulin. Purified oy
macroglobulin (az2M) was a generous gift of Drs. G. Salveson and
J. Enghild (from the Dept. of Pathology, Duke University, Durham,
NC). The protein was treated with methylamine as in (30) to con-
vert it to the receptor-binding form, iodinated with the IodoBead
reagent (Pierce, Rockford, IL), and repurified by gel filtration. The
sp act was 9,000 cpm/ng. Binding of 5I-a;M to the cells was
completely inhibited by 100x excess of unlabeled orzM. The up-
take studies were performed using the method of Maxfield et al.
(31). Duplicate 35-mm plates of cells (grown to subconfluency) were
deprived of serum for 1 h, allowed to bind ®I-a;M at 4°C for
1 h, washed at 4°C and then incubated for various times at either
4°C, 20°C, or 37°C. At the end of each time point, medium and
cells were separated, the cells were washed three times with cold
buffer, and then lysed with 0.5% NP-40 in PBS. The TCA soluble
and precipitable cpm in each sample were then determined, to cal-
culate the extent of ;M degradation.

Results

Acidic Organelles Are Abnormally Distributed. The struc-
tural abnormality in beige cells and in CHS cells is commonly
detected by visualizing the uptake of the dye neutral red, which
accumulates in acidic intracellular compartments. As shown
in Fig. 1 B, uptake of neutral red by fibroblasts from a mouse
homozygous for the beige mutation reveals a pattern that is
quite different from that observed with normal mouse fibro-
blasts. First, in comparison with normal fibroblasts, where
a significant number of neutral red-positive organelles are scat-
tered throughout the periphery (Fig. 1 A), the neutral-red
positive organelles in beige cells are much more clustered in
the perinuclear region and are almost completely excluded
from peripheral extensions (Fig. 1 B, arrowheads). Second,
there is a dramatic variation in size of the neutral red-positive
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vesicles in beige fibroblasts. In addition to the normal-sized
structures, several giant organelles (3-4 um in diameter) can
be found in many cells. In normal fibroblasts the size distri-
bution of the neutral red-positive vesicles is much narrower,
and giant ones are seen only very rarely. Though the appear-
ance of the giant vesicles is the most dramatic aspect of the
beige phenotype, there is considerable cell-to-cell variation in
the number and size of the giant organelles. Furthermore,
we noticed that after prolonged incubation with neutral red
the size of the giant organelles increases. The perinuclear
clustering of all the neutral red-positive structures seems to
be a more consistent aspect of the beige phenotype (e.g., 2, 6).

A similar phenotype is displayed by fibroblasts derived from
a CHS-patient (Fig. 1 D). By comparison with a matched
line of normal human fibroblasts (Fig. 1 C), the neutral
red-positive vesicles in the CHS fibroblasts are strongly con-
centrated near the nucleus, and are virtually excluded from
peripheral extensions of the cell (Fig. 1 D, arrowheads). In
addition, the average size of the acidic organelles is larger
than in the control cells. At least in the fibroblast line used
in this study, the appearance of exceptionally large organelles
(Fig. 1 D, arrow) was relatively rare; the clustered distribu-
tion and a moderate size increase were more characteristic
of the CHS cells.

It is clear from the distribution of neutral red in the beige
and CHS cells that both mutations result in the formation
of acidic organelles that are fewer in number and larger than
normal. We therefore compared the total cellular uptake of
neutral red in the two mutant cell lines with that of their
matched control lines. Cells that had been incubated with
neutral red for 30 min were washed briefly, lysed in acidic
detergent solution (26), and their dye content measured spec-
trophotometrically. The total dye uptake by CHS and beige
cells was remarkably similar to that of their respective con-
trol cell lines (Table 1). The total uptake of neutral red should

Figure 1. Neutral red uptake by fibroblast cell
lines. Normal murine fibroblasts (A4), beige mu-
rine fibroblasts (B), normal human fibroblasts (C)
and CHS human fibroblasts (D) were incubated
with neutral red for 30 min and viewed with DIC
optics. Note the perinuclear clustering and size vari-
ability of neutral red-positive organelles in B and
D as compared with A and C, respectively. Ar-
rowheads in B and D point to the cell boundaries.
(Arrow) A giant neutral red-positive organelle.



Table 1. Quantitation of Neutral Red Uptake by Fibroblasts
Neutral red/
Cell Asso/10° cells* nt cell
fmol
Beige 4.187 + 2.748 5 108 + 71
NM1 3.810 + 1.469 4 100 + 39
CHS 3.144 + 0.809 4 75 £ 19
CCD 3.250 + 1.896 4 78 + 43

* Uptake studies were performed with either 20 or 200 uM input neu-
tral red. OD measurements were normalized to the lower input values,
since both concentrations were found to be in the linear range of uptake.
{ Number of separate experiments, each performed on triplicate plates.

be proportional to the product of the total volume of acidic
compartments accessible to the dye and the acidity of those
compartments. In T lymphocytes, where we have used the
DAMP method (32) to determine the pH of individual lyso-
somes and endosomes, the beige mutation showed no effect
on the pH of either organelle (Hester, S., J. Burkhardt and
Y. Argon, unpublished data). Assuming that the same is true
in beige and CHS fibroblasts, we surmise that the comparable
uptake of neutral red by the fibroblasts reflects comparable
overall volumes of the endosomal/lysosomal compartments.
Taken together, the results with neutral red show that the
acidic compartments in beige and CHS fibroblasts are normal
in pH and volume, but abnormal in their intracellular distri-
bution.

The Giant Organelles Contain Markers for Late Endocytic Com-
partments.  Since neutral red is taken up by many acidic or-

Figure 2. Distribution of lysosomal and endosomal
marker proteins in beige cells. Acid phosphatase (AcP)
was detected histochemically and observed using bright
field optics. Cathepsin D (CatD), (LGP-120), and the
cation-independent mannose-6-phosphatase receptor
(MPR) were detected by confocal immunofluorescence
microscopy, as described in Materials and Methods.
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ganelles, we used specific marker proteins to determine more
precisely which compartments are affected in the beige and
CHS fibroblasts. Acid phosphatase, a hydrolase present in lyso-
somes and in endosomes, was detected histochemically (Fig.
2, A and B). Most of the acid phosphatase-positive vesicles
were tightly clustered in the perinuclear region in beige cells,
whereas in normal fibroblasts they could be seen in periph-
eral processes. In the beige cells, numerous giant organelles
were acid phosphatase positive. Similar staining of clustered
organelles was obtained in the CHS fibroblasts (Fig. 3 B)
as compared with control human cells (Fig. 3 A). Cathepsin
D, an endosomal/lysosomal hydrolase, which unlike acid phos-
phatase (16) bears the mannose-6-phosphate lysosomal tar-
geting signal, was localized by confocal immunofluorescence
microscopy. Although the anti—cathepsin D antibody labeled
small peripheral structures in addition to the giant organelles,
it was clear that the compartment affected by beige and CHS
contains this hydrolase (Figs. 2, C-D, and 3, C-D).
Because these hydrolases reside in both endosomes and lyso-
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somes, we examined the distribution of membrane glycopro-
teins that have been used to distinguish between endosomes
and lysosomes (33). The cation-independent mannose-6-
phosphatase receptor (CI-MPR) is present in early and late
endosomes, but is absent from mature lysosomes (18). In con-
trast, members of the LAMP family of lysosomal glycopro-
teins, including LAMP1/1gp120 and LAMP2, are present in
late endosomes and lysosomes but absent from early endo-
somes (19, 20, 34). As shown in Figs. 2 F and 3 F, the giant
vesicles were LAMP-positive in both CHS and beige fibro-
blasts. Importantly, in both mutants the giant vesicles were
negative for CI-MPR (Figs. 2, G-H and 3, G-H). Indeed,
they sometimes appeared as “negatively stained” structures,
made visible by the surrounding MPR-positive endosomes
(Fig. 2 H, arrowheads). These results were confirmed using
four independent antibodies to the LAMP family of proteins,
and three separate anti-CI-MPR antibodies (not shown).
The distribution of two small GTP binding proteins was
also examined as a means of identifying the defective com-

Figure 3. Distribution of lysosomal and endosomal
marker proteins in CHS cells. The same histochem-
ical assay and antibodies as described in legend to Fig.
2 were used on CHS and normal human fibroblasts,
with the substitution of the anti-human LAMP1/2
(LAMP) antibody as a lysosomal membrane glycopro-
tein marker.



partment. Rab 5 and rab 7 have been shown to bind to early
and late endosomal compartments, respectively (35, 36, 23).
When the distribution of these proteins was examined in the
beige and CHS fibroblasts, anti-rab 5 antibody did not stain
the giant perinuclear organelles (data not shown). In con-
trast, anti-rab 7 antibody did label some giant organelles, as
well as other smaller structures (Fig. 4). When double label
immunofluorescence was performed on normal mouse cells,
the distribution of rab 7 (Fig. 4 B) was a subset of the distri-
bution of LAMP-1 (Fig. 4 A). This is in keeping with the
late endosomal localization of rab 7 in other cell types (35,
36, 23). In beige cells, some of the large LAMP-positive struc-
tures were positive for rab 7 (Fig. 4, C-D, arrow), whereas
most were negative (Fig. 4, C-D, arrowheads). Single labeling
of the human cells with anti-rab 7 revealed occasional giant
organelles and a clustered distribution in the CHS cells (Fig.
4 F) relative to wild type controls (Fig. 4 E).

Finally, we tested the distribution of the transferrin receptor
as another criterion to distinguish between early and late en-
dosomes. Anti-transferrin receptor antibody gave a fine punc-
tate labeling pattern on all the cells tested. The giant organelles
were consistently negative for this marker of early endosomes
(data not shown).

The presence of the hydrolases and lysosomal membrane
proteins in the giant organelles indicates that these structures
derive from late endosomal or lysosomal compartments. The
markers that usually distinguish late endosomes from lyso-

somes, MPR, and rab 7, give somewhat conflicting results.
The absence of CI-MPR from the giant organelles defines
them as mature lysosomes, but the presence of rab 7 on at
least some giant organelles marks these as more similar to
the late endosomal compartment.

The CHS Mutation Does Not Affect the Total Amount of
LAMP Family Proteins. 'The marker analysis showed that
the LAMP glycoproteins were the best markers for the
clustered giant organelles in both CHS and beige cells. The
staining with these antibodies was almost completely restricted
to the affected compartment. The fluorescence intensity was
very strong in the mutant cells with each of the anti-LAMP
antibodies tested, raising the possibility that these proteins
are overexpressed in beige and CHS cells. Western blot anal-
ysis was performed to test this possibility. Lysates were pre-
pared from CHS and control cells, and equivalent amounts
of lysate were compared by SDS-PAGE and immuno-blotting
with a rabbit serum that recognizes LAMPs 1 and 2 in human
cells (20). Similar levels of LAMP glycoproteins were detected
in CHS and control cell lines (Fig. 5). Therefore, the apparent
increase in immunofluorescence intensity with antibodies to
LAMP family proteins must be due to concentration of these
proteins in the perinuclear region and the increased size of
the organelles, but not due to overexpression of these proteins.

The Giant Organelles Function As Late Endocytic Compart-
ments. Are the defective lysosomes/late endosomes still
capable of receiving endocytosed material, or are they off-

Figure 4. Distribution of rab 7, a marker for
late endosomes. A and B, wild type mouse fibro-
blasts. C and D, beige fibroblasts. Each pair shows
cells doubly labeled with anti-LAMP1 (rat MAb
1D4B) followed by Texas red goat anti-rat Ig (4
and C), and with rabbit anti-rab 7 followed by
FITC goat anti-rabbit Ig (B and D). The arrows
in A and B point to typical vesicular structures
in the wild type cells that are positive for both
markers. The arrows in C and D show 2 giant or-
ganelle that is double labeled, whereas the arrow-
heads show a giant organelle that lacks rab 7. (E)
Normal human fibroblasts labeled with anti-rab
7 followed by FITC goat anti~rabbit Ig; note the
disperse distribution. (F) CHS fibroblasts labeled

similarly; note the clustered distribution.
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CHS WT

1.2 3 4 Figure 5. Comparison of LAMP pro-
tein levels in CHS and normal cells. Total
detergent lysates from CHS or control

180 -1 i fibroblasts were fractionated by SDS-
116 - PAGE, transferred onto nitrocellulose
:;: membrane, and probed with rabbit
anti-human LAMP1/2 serum, followed

4 by 1%]-protein A. (Lanes 1 and 3) Lysates
a9 from 3 x 105 cells. (Lanes 2 and 4) Ly-
o sates from 1 x 105 cells. The mobilities
of marker proteins are indicated at left.

pathway aberrant structures? To address this question, beige
cells were incubated with DTAF-conjugated BSA for 3 h at
37°C, chased overnight to load the lysosomal compartment
(37), and then fixed and counter-labeled with anti-lgp120 to
mark the giant organelles. When viewed by confocal micros-
copy, the DTAF-BSA had accumulated in various-sized vesicles,
including giant perinuclear structures (Fig. 6 A) that were
rimmed with lgp120 (Fig. 6 B). DTAF-BSA could be detected
in the giant organelles after 2.5 h of continuous uptake, but
the intensity of fluorescence increased with longer incuba-
tion times, up to 6 h of uptake or more. This finding was
verified by electron microscopy of BSA-colloidal gold uptake
by beige cells (Fig. 7). After 20 min of uptake at 37°C, BSA-
gold particles were found in small (<0.4 gm in diameter)
endosomal vesicles, both in the cell periphery and in the
perinuclear region (not shown). After 4 h of continuous up-
take, some BSA-gold particles were still located in these small

Figure 6. Uptake of fluorescent BSA into the giant organelles of beige
cells. A representative beige cell doubly labeled with endocytosed DTAF-
BSA and anti-lgp120. Beige cells were incubated with DTAF-BSA for 3 h
at 37°C, and chased overnight. They were subsequently fixed and counter-
labeled with rat anti-lgp120 followed by Texas red goat anti-rat Ig. (A4)
DTAF-BSA. (B) anti-lgp120. Arrowheads point to giant organelles filled
with BSA which also show membrane distribution of 1gp120.
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Figure 7. Electron microscopy of BSA uptake into the giant organelles
of beige cells. Profile of a beige cell after 4 h of uptake of colloidal gold-
BSA. Note the multivesicular ultrastructure of the giant organelle. (Arrow)
A small endosome, typical of the BSA containing structures found also
after 20 min of uptake.

early endosomes (Fig. 7, arrow) while others had reached
the giant perinuclear bodies (up to 4 um in diameter; Fig.
7). These pleiomorphic organelles contained membranous
whorls and other material, and their structure was consis-
tent with that reported by others (1, 38, 39). BSA-gold first
appeared in these giant organelles between 60 and 120 min
of uptake, consistent with transport to late endosomes and
lysosomes.

Incubation at 20°C has been shown to block transport of
internalized material from early endosomes into late endo-
somes and lysosomes (22). When beige and CHS fibroblasts
were incubated with DTAF-BSA at 20°C instead of 37°C,
the tracer did not reach the giant organelles. Instead, the
DTAF-BSA remained in smaller, more dispersed structures
(Fig. 8). By this operational criterion the giant organelles
function as late endocytic compartments. The distribution
of DTAF-BSA at 20°C was the same as in the wild type con-
trol cells (not shown), indicating that there are no gross func-
tional abnormalities in early endosomes of CHS and beige cells.

Taken together, these studies show that the giant clustered
organelles in beige and CHS cells are still active in endocytic
traffic of exogenous ligands, and are therefore on-pathway
structures. Traffic to the affected compartment is somewhat
slowed, but overall, it has the properties expected for traffic
to late endosomes and lysosomes.

The Mutant Cells Take Up and Degrade an Exogenous Ligand
Normally. To quantify the receptor-mediated uptake and
degradation of an exogenous ligand in the CHS and beige
cells we used iodinated az-macroglobulin (c;M). This
serum protein binds, in a complex with proteases, to a sur-
face receptor present on fibroblasts, and their endocytic route
has been studied extensively (31). 1%I-a,M was bound to the
cells at 4°C and then chased at 37°C for various times. As



compared with their normal counterparts, CHS and beige
cells bound similar amounts of azM and internalized similar
amounts over a 4-h time course (data not shown). c:M
degradation was measured as the appearance of TCA soluble
counts in both the cell lysates and the media. Both beige and
CHS cells were capable of degrading the internalized o;M,
with neither mutant showing dramatic defects in compar-
ison to its matched control line (Fig. 9 A). Within individual
experiments, a small decrease in the extent of zM degra-
dation was consistently observed in the beige cells, but this
difference was small relative to the variation among experi-
ments. To determine what portion of the measured degrada-
tion occurred in early and late endocytic compartments, cells
were allowed to internalize bound a;M for 3 h at either
20°C or 37°C. In both mutant and control cell lines, degra-
dation was blocked at 20°C (Fig. 9 B), indicating the re-
quirement for transport to late endocytic compartments, pre-
sumably including the giant organelles.

Discussion

One main finding of this study is that the abnormally en-
larged vesicles commonly observed in fibroblasts from both
beige mice and human patients with CHS are derived from
the late organelles of the endocytic pathway: mature secondary
lysosomes and late endosomes. Previous reports had described
the giant structures as “lysosomes” because they take up neutral
red and endocytic tracers and contain acid phosphatase (e.g.,
[6, 8]), or because they lack specific lysosomal enzymes (39a).
However, these criteria do not distinguish among the var-
ious compartments along the endocytic pathway. In this study
we used more precise markers and functional criteria to show
that the giant organelles are late endocytic compartments.

It is clear from our studies that early endosomal compart-
ments are not affected in either CHS or beige. First, trans-
ferrin receptor and rab 5, proteins found on the plasma mem-
brane and early endosomes, are not found on the giant
organelles. CI-MPR, which marks the same early endosomes

Figure 8. Effect of reduced temperature on ar-
rival of endocytosed BSA at the giant organelles.
Beige or CHS cells were viewed after continuous
uptake of DTAF-BSA for 3-4 h at either 20°C or
37°C. Note that at 20°C DTAF-BSA is limited
to small endocytic vesicles throughout the
cytoplasm and is absent from the giant organelles.

as well as later endosomes, is also missing from the defective
organelles. Second, DTAF-BSA does not appear in abnormally
large structures until late times of uptake, and at 20°C, where
movement between early and late endosomes is blocked, the
transfer of BSA to the giant organelles is blocked.

Marker analysis and functional studies both indicate that
the defects in CHS and beige are in late endocytic compart-
ments. The giant organelles contain acid phosphatase and
cathepsin D, hydrolases which are targeted by independent
mechanisms to late endosomes and lysosomes (16). In addi-
tion, the defective compartment contains much of the cells’
lysosomal membrane glycoproteins (LAMP1/1gp-120 and
LAMP2). These glycoproteins are present in both late endo-
somes and mature lysosomes, but are not present to any ap-
preciable extent in earlier endocytic compartments (40, 19,
20, 34). The properties of tracer uptake are also character-
istic of late endocytic compartments. The kinetics of uptake
into the giant organelles and the sensitivity to reduced tem-
perature are similar to those found for transport into late en-
dosomes and lysosomes in wild type cells.

It is difficult to determine to what degree the CHS and
beige mutations selectively affect late endosomes vs. lysosomes.
Functional studies provide no clues, since conditions have not
been found that block exchange of material between the two
compartments, and since late endosomes are active in degra-
dation of proteins (41). By electron microscopy, the giant
organelles resemble the complex membranous structure of
late endosomes more than the dense, spherical structure of
lysosomes. Marker proteins that are usually used to classify
the late endosomes and lysosomes give a somewhat mixed
picture. The giant organelles were negative for CI-MPR, as
expected for mature lysosomes, but some of them were posi-
tive for rab 7, which is a marker protein for late endosomes.
It is, of course, possible that the mutations cause selective
mislocalization of either CI-MPR or rab 7. In this context,
it should also be noted that the presence of CI-MPR in cer-
tain late endosomal/lysosomal structures is somewhat vari-
able. For example, phagolysosomes in macrophages sometimes
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Figure 9. Degradation of ;M by beige and CHS cells. (A) Kinetics
of degradation. Plates of cells were pulsed with 1%51-or;M at 4°C for 1h,
washed extensively to remove unbound ligand, and then incubated for var-
ious times at 37°C. At the end of each chase time point, medium, and
cells were separated, and the TCA soluble and precipitable radioactivity
in each was determined. The percentage of the initial cell-bound radioac-
tivity which was converted to TCA soluble radioactivity is shown. The
results are expressed as means + SE, derived from three-five independent
experiments with each of the four cell lines. Beige fibroblasts (filled squares).
Wild type mouse fibrablasts (open squares). CHS fibroblasts (filled circles).
Wild type human fibroblasts (open circles). (B) Temperature dependence
of ;M degradation. Beige or wild type cells were pulsed with 1%51-a;M
for 1 h at 4°C, washed, and then incubated for 3 h at either 4°C, 20°C,
or 37°C. The percentages of TCA soluble radioactivity at each tempera-
ture are shown. Beige (dotted bars). Wild type (filled bars).

contain CI-MPR (42) and sometimes lack both it and the
cation-dependent MPR (43). In cytolytic lymphocytes that
contain late endosome-like lytic granules, these lytic granules
sometimes contain (8) and sometimes lack (44) CI-MPR,
and the distribution of CI-MPR changes with the differenti-
ation of these lymphocytes (Griffiths, G., S. Hester, J. Burk-
hardt, and Y. Argon, manuscript in preparation). Such cases
preclude total reliance on the available markers and illustrate
the need for further criteria to distinguish between late en-
dosomes and lysosomes.

The appearance of the giant organelles is superficially
reminiscent of the selective “swelling” of this compartment
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in the presence of sucrose or other nondigestible carbohy-
drates (45). Though the mechanism of giant organelle for-
mation in CHS is not known and in fact is often attributed
to excessive fusion (46, 47), the selective effect of the muta-
tion, like the selective effect of sucrose loading on late endo-
cytic compartments, underscores biochemical differences that
must exist between lysosomes and endosomes despite the many
common features of these endocytic compartments.

A second main conclusion of this study is that despite their
structural abnormality, the giant organelles are part of the
normal endocytic pathway. Exogenous ligands which enter
the cell either by fluid phase endocytosis (BSA), bulk mem-
brane retrieval (cationized ferritin; data not shown), or
receptor-mediated endocytosis (M) all reach the giant lyso-
somes/late endosomes of the mutant fibroblasts. The uptake
into the giant vesicles is slow, however; more than 6 h are
required for substantial accumulation in this compartment
as compared to 3-4 h in wild type cells. Interestingly, nei-
ther the beige mutation nor the CHS lesion impairs the cells’
protein catabolic activity. The o;M employed as ligand here
is typical of proteins that are taken up and degraded efhiciently
in lysosomes (31). In our hands, cuM degradation occurred
only at 37°C, both in normal and in mutant fibroblasts, in-
dicating that degradation required transport to a late endo-
cytic compartment. In the CHS cells, the degradation of
a;M was detectable only after more than 2 h of endocytosis,
but in beige significant degradation was measured already after
60 min. The extent of azM degradation we measured agrees
well with the degradation of a-glucosidase by CHS cells as
measured by Miller et al. (48). It should be pointed out that
since there is considerable heterogeneity of late endosomal/
lysosomal organelles in both CHS and beige cells, it is pos-
sible that most of the degradation occurs in unaffected or-
ganelles, either late endosomes or small normal lysosomes.
However, our studies with the various tracers indicate that
a significant proportion of endocytosed material is transported
to the giant organelles. Therefore, it is more likely that they
either function normally or equilibrate with a functional cata-
bolic compartment.

The normal catabolic activity of late endocytic compart-
ments in CHS and beige is consistent with the observation
that these organelles maintain a constant volume. In this re-
spect CHS differs from lysosomal storage diseases, where
defects in degradation of proteins or lipids often result in a
dramatic increase in the volume of lysosomes/late endosomes
(49). Instead, the phenotype of CHS and beige is more con-
sistent with a defect in fusion or fission of late endocytic struc-
tures, which are now known to be highly dynamic, inter-
connected organelles (8, 33, 34). Such a fusion defect is also
suggested by microscopic and histochemical observations of
polymorphonuclear lymphocytes (46), Langerhans cells (50),
and EBV-transformed cells (47). Therefore, proteins that affect
fusion between specific membranes, such as small GTP-binding
proteins, are candidates for the gene products affected by the
CHS or beige mutations. Indeed, changes in the level of ex-
pression of rab proteins have been shown to affect the size
and cellular localization of the endocytic vesicles they associate
with, and overexpression of some rab proteins can generate



large perinuclear organelles (51). Thus, it is of interest that
the distribution of rab 5, which associates specifically with
early endosomes (35), is the same in both the mutant and
control cells. Rab 7, which associates with late endosomes
(35), is present on some of the giant organelles, but other-
wise its distribution appears to be normal as well. So far,
no rabs have been identified that bind to mature lysosomes.
Given our qualitative results, it will be informative to test
the expression of other rab proteins in beige and CHS.

A third conclusion from our results is that the murine beige
and the human CHS defects cannot be distinguished on the
basis of any of the criteria employed here. The distribution
of marker proteins, the acidity of the giant lysosomes, their
intracellular distribution, the uptake characteristics, and the
degradation of ligands are all affected similarly by the mouse
and human mutations. Our data therefore support the long-
held view that homologous genes are affected in beige and
CHS. Furthermore, our data suggest 2 number of assays that
can be used in genetic complementation studies, towards iden-
tifying the CHS gene.

One of the perplexing aspects of CHS is that secretory
granules are affected in some cell types such as granular leu-
kocytes, while endocytic organelles are affected in other cells,
like the fibroblasts studied here. That these two types of or-
ganelles are affected by the same mutations indicates that they
have common components. Indeed, a number of similarities
have been observed between lysosomes and secretory granules.
Both are acidic organelles, and proteins designated to them

are separated from constitutively secreted proteins by sorting
into clathrin-coated regions of the trans-Golgi network (52).
Furthermore, there are a number of specialized cases where
secretory functions and lysosomal functions are performed
by the same organelles. During bone restructuring, osteoclasts
form a tight intercellular space into which they secrete
lysosomal enzymes (53). In neutrophils, azurophilic granules
fuse with the membrane of the phagosome in a manner that
closely resembles an intracellular secretory process, and under
certain triggering conditions these granules are capable of
direct fusion with the plasma membrane (54). Finally, cyto-
toxic lymphocytes and natural killer cells contain specialized
granules with a cortical domain that resembles late endosomes
or lysosomes, and an inner core of secretory proteins. These
granules are discharged after binding to an appropriate target
cell during cell-mediated cytotoxicity. In cytotoxic lympho-
cytes, and perhaps in other leukocytes as well, regulated secre-
tory granules appear to be especially similar to lysosomes.
This may explain why the effects of CHS are so prominent
in leukocytes: secretory granules in these cells may share with
lysosomes a protein responsible for regulating their intracel-
lular distribution or their fusion activity. If this view is cor-
rect, the affected protein must be much more important for
secretory function than for endocytic trafhc and degradative
function, since the latter is relatively unperturbed by the CHS
defect, while the former results in the major clinical manifesta-
tions of the disorder.

We thank Delores Johnson and Dr. G. McIntyre for help with a number of the experiments. We also
thank Drs. A. Balber, J. Dawson, and B. Sodiek, and members of our group for helpful comments and

suggestions throughout.

This work was supported by grants from the American Cancer Society and the Arthritis Foundation.
J. K. Burkhardt was a recipient of an Irvington Institute fellowship.

Address correspondence to Dr. Yair Argon, Department of Immunology, Duke Medical Center, Durham,
NC 27710. Janis K. Burkhardt’s present address is European Molecular Biology Laboratory, Meyerhofstr.

1, D-69012 Heidelberg, Germany.

Received for publication 16 June 1993.

References

1. White, J.G., and C.C. Clawson. 1980. The Chediak-Higashi
syndrome: the nature of the giant neutrophil granules and their
interactions with cytoplasm and foreign particulates. Am. J.
DPathol. 98:151.

2. Hargis, A.M., and D.J. Prieur. 1985. Light and electron mi-
croscopy of hepatocytes of cats with Chediak-Higashi syn-
drome. Am. J. Med. Genet. 22:659.

3. Penner, ].D., and D.J. Prieur. 1987. Interspecific genetic com-
plementation analysis with fibroblasts from humans and four
species of animals with Chediak-Higashi syndrome. Am. J. Med.
Genet. 28:455.

4. Menard, M., and K.M. Meyers. 1988. Storage pool deficiency

1854

in cattle with the Chediak-Higashi syndrome results from an
absence of dense granule precursors in their megakaryocytes.
Blood. 72:1726.

5. Bennett, ].M., R.S. Blume, and S.M. Wolff. 1969. Character-
ization and significance of abnormal leukocyte granules in the
beige mouse: a possible homologue for Chediak-Higashi aleu-
tian trait. J. Lah Clin. Med. 73:235.

6. Oliver, C., and E. Essner. 1973. Distribution of anomalous
lysosomes in the beige mouse, a homologue of Chediak-Higashi
syndrome. J. Histochem. Cytochem. 21:218.

7. Bejaoui, M., E. Veber, D. Girault, C. Gaud, S. Blanche, C.
Griscelli, and A. Fischer. 1989. The accelerated phase of

Mutation in Beige CHS Affects Late Endosomes and Lysosomes



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Chediak-Higashi syndrome. Arch. Fr. Pediatr. 46:733.

. Kimball, H.R., G.H. Ford, and S.M. Wolff. 1975. Lysosomal

enzymes in normal and Chediak-Higashi blood leukocytes. J.
Lab Clin. Med. 86:616.

. Boxer, L.A., D.FE. Albertini, R.L. Baehner, and J.M. Oliver.

1979. Impaired microtubule assembly and polymorphonuclear
leucocyte function in the Chediak-Higashi syndrome correc-
table by ascorbic acid. Br. J. Haematol. 43:207.

Orn, A., E.M. Hakansson, M. Gidlund, U. Ramstedt, I. Ax-
berg, H. Wigzell, and L.G. Lundin. 1982. Pigment mutations
in the mouse which also affect lysosomal functions lead to sup-
pressed natural killer cell activity. Scan. J. Immunol. 15:305.
Komiyama, A., H. Saitoh, M. Yamazaki, H. Kawai, Y.
Miyagawa, T. Akabane, M. Ichikawa, and H. Shigematsu. 1986.
Hyperactive phagocytosis by circulating neutrophils and mono-
cytes in Chediak-Higashi syndrome. Scand. J. Haematol. 37:162.
Ganz, T, J.A. Metcalf, J.I. Gallin, L.A. Boxer, and R.I. Lehrer.
1988. Microbicidal/cytotoxic proteins of neutrophils are
deficient in two disorders: Chediak-Higashi syndrome and
“specific” granule deficiency. J. Clin. Invest. 82:552.

Roder, J.C., M.-L. Hohmann-Matthes, W. Domzig, and H.
Wigzell. 1979. The beige mutation in the mouse. II. Selec-
tivity of the natural killer (NK) cell defect. J. Immunol. 123:2174.
Mellman, 1., R. Fuchs, and A. Helenius. 1986. Acidification
of the endocytic and exocytic pathways. Annu. Rev. Biochem.
55:663.

Seeman, P.M., and G.E. Palade. 1967. Acid phosphatase local-
ization in rabbit eosinophils. J. Cell Biol. 34:745.

Peters, C., M. Braun, B. Weber, M. Wendland, B. Schmidt,
R. Pohlman, A. Waheed, and K. von Figura. 1990. Targeting
of a lysosomal membrane protein: a tyrosine-containing en-
docytosis signal in the cytoplasmic tail of lysosomal acid phos-
phatase is necessary and sufficient for targeting to lysosomes.
EMBO (Eur. Mol. Biol. Organ.) J. 9:3497.

Bleil, J.D., and M.S. Bretscher. 1982. Transferrin receptor and
its recycling in HeLa cells. EMBO (Eur. Mol. Biol. Organ.) J.
1:351.

Griftiths, G., B. Hoflack, K. Simons, 1. Mellman, and S. Korn-
feld. 1988. The mannose-6-phosphate receptor and the bio-
genesis of lysosomes. Cell. 53:329.

Lewis, V., S.A. Green, M. Marsh, P. Vihko, A. Helenius, and
I. Mellman. 1985. Glycoproteins of the lysosomal membrane.
J. Cell Biol. 100:1839.

Chen, JW., TL. Murphy, M.C. Willingham, I. Pastan, and
JT. August. 1985. Identification of two lysosomal membrane
glycoproteins. J. Cell Biol. 101:85.

Gruenberg, J., G. Griffiths, and K.E. Howell. 1989. Charac-
terization of the early endosome and putative endocytic car-
rier vesicles in vivo and with an assay of vesicle fusion in vitro.
J. Cell Biol. 108:1301.

Dunn, W.A., A.L. Hubbard, and N.N.]J. Aronson. 1980. Low
temperature selectively inhibits fusion between pinocytic vesicles
and lysosomes during heterophagy of 125I-asialofetuin by the
perfused rat liver. J. Biol. Chem. 255:5971.

Zerial, M., R.. Parton, P. Chavrier, and R.. Frank. 1992. Local-
ization of rab family members in animal cells. Methods Enzymol.
219:398.

Lyerla, T.A., SK. Gross, T.B. Shea, P.F. Daniel, and R.H.
McCluer. 1987. Biochemical and morphological characteriza-
tion of primary kidney cell cultures from beige mutant mice.
Cell Tissue Res. 250:627.

Dul, J., O.R. Burrone, and Y. Argon. 1992. Substitution of
His for the conserved Tyr/Phe87 in an immunoglobulin light

1855 Burkhardt et al.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

37.

38.

39.

39a.

40.

41.

chain creates a conditional non-secreted mutant. J. Immunol.
149:1927.

Shau, H., and J.R. Dawson. 1985. Identification and purifica-
tion of NK cells with lysosomotropic vital stains: correlation
of lysosome content with NK activity. J. Immunol. 135:137.
Slot, JW., and HW. Geuze. 1985. A new method of preparing
gold probes for multiple-labeling cytochemistry. Eur. J. Cell
Biol. 38:87.

Burkhardt, J.K., S. Hester, CK. Lapham, and Y. Argon. 1990.
The lytic granules of natural killer cells are dual-function or-
ganelles combining secretory and pre-lysosomal compartments.
J. Cell Biol. 111:2327.

Wiest, D.L., ] K. Burkhardt, S. Hester, M. Hortsch, D. Meyer,
and Y. Argon. 1990. Membrane biogenesis during B cell
differentiation: most endoplasmic reticulum proteins are ex-
pressed coordinately. J. Cell Biol. 110:1501.

Moncino, M.D., P.A. Roche, and SV. Pizzo. 1991. Character-
ization of human alpha 2-macroglobulin monomers obtained
by reduction with dithiothreitol. Biochemistry. 30:1545.
Maxfield, ER., ]. Schlessinger, Y. Schechter, I. Pastan, and
M.C. Willingham. 1978, Collection of insulin, EGF and o:2-
macroglobulin in the same patches on the surface of cultured
fibroblasts and common internalization. Cell. 14:805.
Anderson, RGW.,, ].R. Falck, J.L. Goldstein, and M.S. Brown.
1984. Visualization of acidic organelles in intact cells by elec-
tron microscopy. Proc. Natl. Acad. Sci. USA. 81:4838,
Kornfeld, S., and J. Mellman. 1989. The biogenesis of lyso-
somes. Annu. Rev. Cell Biol. 5:483.

Lippincott-Schwartz, J., and D.M. Fambrough. 1986. Lyso-
somal membrane dynamics: structure and interorganellar move-
ment of a major lysosomal membrane glycoprotein. J. Cell Biol.
102:1593.

Chavrier, P., R.G. Parton, H.P. Hauri, K. Simons, and M.
Zerial. 1990. Localization of low molecular weight GTP binding
proteins to exocytic and endocytic compartments, Cell. 62:317.
Bucci, C., RG. Parton, .LH. Mather, H. Stunnenberg, K.
Simons, B. Hoflack, and M. Zerial. 1992. The small GTPase
rab5 functions as a regulatory factor in the early endocytic
pathway. Cell. 70:715.

Green, S.A., K.-P. Zimmer, G. Griffiths, and I. Mellman. 1987.
Kinetics of intracellular transport and sorting of lysosomal
membrane and plasma membrane proteins. J. Cell Biol. 105:
1227.

Hammel, I., A.M. Dvorak, and S.J. Galli. 1987. Defective cy-
toplasmic granule formation. I. Abnormalities affecting tissue
mast cells and pancreatic acinar cells of beige mice. Lah Invest,
56:321.

Mizushima, W., M. Eguchi, H. Sakakibara, K. Sugita, T.
Furukawa, M. Kanagawa, T. Suda, M. Yoshida, Y. Miura, and
J. Matsui. 1990. Electron microscopic cytochemistry of pseudo-
Chediak-Higashi granules in 5 cases of AML. Jpn. J. Clin. Hema-
tology. 31:799.

‘Tkeuchi, K., H. Wood, and R'T. Swank. 1986. Lysosomal
elastase and cathespin G in beige mice. Neutrophils of beige
(Chediak-Higashi) mice selectively lack lysosomal elastase and
cathespin G. J. Exp. Med. 163:665.

Mane, S.M,, L. Marzella, D.F. Bainton, VK. Holt, Y. Cha,
J.E. Hildreth, and J.T. August. 1989. Purification and charac-
terization of human lysosomal membrane glycoproteins. Arch.
Biochem. Biophys. 268:360.

Renfrew, C.A., and A.L. Hubbard. 1991. Sequential processing
of epidermal growth factor in early and late endosomes of rat
liver. J. Biol. Chem. 266:4348.



42.

43.

44.

45.

46.

47.

Rabinowitz, S., H. Horstmann, S. Gordon, and G. Griffiths.
1992. Immunocytochemical characterization of the endocytic
and phagolysosomal compartments in peritoneal macrophages.
J. Cell Biol. 166:95.

Harding, CV,, and H.J. Geuze. 1992. Class II MHC mole-
cules are present in macrophage lysosomes and phagolysosomes
that function in the phagocytic processing of Listeria
monocytogenes for presentation to T cells. J. Cell Biol. 119:531.
Peters, P.J., J. Borst, V. Oorschot, M. Fukuda, O. Krihen-
biihl, J. Tschopp, J.-W. Slot, and H.J. Geuze. 1991. Cytotoxic
T lymphocyte granules are secretory lysosomes, containing both
perforin and granzymes. J. Exp. Med. 173:1099.

DeCourcy, K., and B. Storrie. 1991. Osmotic swelling of en-
docytic compartments induced by internalized sucrose is re-
stricted to mature lysosomes in cultured mammalian cells. Exp.
Cell Res. 192:52.

Irimajiri, K., I. Iwamoto, K. Kawanishi, K. Tsuji, S. Morita,
A. Koyama, H. Hamazaki, F. Horiuchi, A. Horiuchi, T. Ak-
iyama, et al. 1992. Studies on pseudo-Chediak-Higashi granules
formation in acute promyelocytic leukemia. Jpn. J. Clin. Hema-
tology. 33:1057.

Jones, K.L., R.M. Stewart, M. Fowler, M. Fukuda, and R.F.
Holcombe. 1992. Chediak-Higashi lymphoblastoid cell lines:
granule characteristics and expression of lysosome-associated

1856

48.

49.

50.

51.

52.

53.

54.

membrane proteins. Clin. Immunol. Immunopathol. 65:219.
Miller, A.L., R. Stein, M. Sundsmo, and R.Y. Yeh. 1986. Char-
acterization of lysosomes and lysosomal enzymes from Chediak-
Higashi syndrome cultured fibroblasts. Biochem. J. 238:589.
Dingle, J.T., PJ. Jacques, and I.H. Shaw, editors. 1979. Lyso-
somes in Applied Biology and Therapeutics. North-Holland
Publishing Co., Amsterdam, New York. Oxford. 235-284,
Carrillo-Farga, J., G. Gutierrez-Palomera, R. Ruiz-Maldonado,
A. Rondan, and S. Antuna. 1990. Giant cytoplasmic granules
in Langerhans cells of Chediak-Higashi syndrome. Am. J. Der-
matopathology. 12:81.

Bucci, C., R.G. Parton, LH. Mather, H. Stunnenberg, K.
Simons, B. Hoflack, and M. Zerial. 1992. The small GTPase
rab5 functions as a regulatory factor in the early endocytic
pathway. Cell. 70:715.

Pfeffer, S.R., and J.E. Rothman. 1987. Biosynthetic protein
transport and sorting by the endoplasmic reticulum and Golgi.
Annu. Rev. Biochem. 56:829.

Baron, R. 1989. Polarity and membrane transport in osteoclasts.
Connect. Tissue Res. 20:109.

Estensen, R.D., J.G. White, and B. Holmes. 1974. Specific
degranulation of human polymorphonuclear leukocytes. Na-
ture (Lond.). 248:347.

Mutation in Beige CHS Affects Late Endosomes and Lysosomes



