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Summary

Although "biocompatible" polymeric elastomers are generally nontoxic, nonimmunogenic, and
chemically inert, implants made of these materials may trigger acute and chronic inflammatory
responses. Early interactions between implants and inflammatory cells are probably mediated
by a layer of host proteins on the material surface. To evaluate the importance of this protein
layer, we studied acute inflammatory responses of mice to samples of polyester terephthalate film
(PET) that were implanted intraperitoneally for short periods. Material preincubated with albumin
is "passivated ;' accumulating very few adherent neutrophils or macrophages, whereas uncoated
or plasma-coated PET attracts large numbers ofphagocytes. Neither IgG adsorption nor surface
complement activation is necessary for this acute inflammation; phagocyte accumulation on uncoated
implants is normal in hypogammaglobulinemic mice and in severely hypocomplementemic mice.
Rather, spontaneous adsorption of fibrinogen appears to be critical : (a) PET coated with serum
or hypofibrinogenemic plasma attracts as few phagocytes as does albumin-coated material ; (b)
in contrast, PET preincubated with serum or hypofibrinogenemic plasma containing physiologic
amounts of fibrinogen elicits "normal" phagocyte recruitment; (c) most importantly, hypofibrino-
genemic mice do not mount an inflammatory response to implanted PET unless the material
is coated with fibrinogen or the animals are injected with fibrinogen before implantation . Thus,
spontaneous adsorption of fibrinogen appears to initiate the acute inflammatory response to an
implanted polymer, suggesting an interesting nexus between two major iatrogenic effects of
biomaterials : clotting and inflammation .

mplanted biomaterials frequently trigger inflammatory re-
sponses accompanied by an accumulation of phagocytic

cells (especially macrophages and neutrophils [PMN]) on and
adjacent to the implant surface (1-5) . These inflammatory
responses may, in turn, presage serious iatrogenic consequences,
such as the "hardening" and degradation of mammary im-
plants (6, 7), stress cracking of pacemaker leads (8-10), and
fibrous thickening surrounding many types of implants
(11-21) .
The acute and chronic inflammatory responses to these im-

plants are puzzling in view of the inert and nontoxic nature
of commonly used polymeric biomaterials. Because protein
adsorption is much more rapid than the migration of cells
to foreign surfaces, inflammatory cells most likely respond
not to the material surface itself but to a chaotic layer ofspon-
taneously adsorbed, partially "denatured" host proteins
(22-25) . In an earlier attempt to understand the processes
involved in these responses (26), we employed films of poly-
ethylene terephthalate (PET).' The knitted form of this ma-

I Abbreviations used in this paper: EPO, eosinophil peroxidase; MPO,
myeloperoxidase; NSE, nonspecific esterase ; PET, polyethylene terephthalate.

terial, Dacron®, has been used extensively in vascular grafts
and is known to provoke inflammatory responses (1, 20, 27,
28) . When untreated disks of PET film are implanted in-
traperitoneally in mice, large numbers of phagocytes (espe-
cially macrophages and PMN) are attracted to the implant
surfaces. However, as previously shown by a number ofother
investigators (e.g., 1, 29), if the material is preincubated with
albumin, the surface attracts <10% as many phagocytes .

Surprisingly, PET preincubated with human or mouse
plasma attracts large numbers ofphagocytes, despite the fact
that albumin is the major protein in plasma and the most
abundant surface protein on many biomaterials after contact
with blood (30) . These observations suggested that unknown
plasma components that spontaneously adsorb to material
surfaces might be important in the subsequent recruitment
ofinflammatory cells. We have tentatively ruled out two pos-
sibilities : surface activation of complement components and
adsorbed IgG. Untreated PET implanted in mice with either
severe combined immunodeficiency (with almost undetect-
able levels of IgG) or complement deficiency (induced by in-
jection of cobra venom factor) had near-normal recruitment
of phagocytic cells to the implant surface (26) .

However, in the course of these earlier experiments, we
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observed that material preincubated with serum attracts as
few phagocytes as does material coated with albumin. This
suggested that one or more elements present in plasma, but
absent in serum, were responsible for the proinflammatory
effects of implanted materials . For a number of reasons, we
suspected that this element might be fibrinogen, which is
quantitatively lost from the solution phase upon clotting .
We now show that adsorbed fibrinogen is the primary com-
ponent ofplasma responsible for acute inflammatory responses
(i .e., phagocyte recruitment) to implanted materials and that
severely hypofibrinogenemic animals do not mount an inflam-
matory response to an implant unless the surface is previ-
ously coated with, or has spontaneously adsorbed, exoge-
nous fibrinogen . These observations suggest an interesting
connection between inflammation and coagulation, perhaps
the two major iatrogenic effects of biomaterials .

Materials and Methods
Materials.

	

Human albumin (Albumar-5) was purchased from
Armour Pharmaceutical Co . (Kankakee, IL). Human fibrinogen
(Type I), mouse fibrinogen (Fraction I), bovine thrombin, 3-amino-
1,2,4-triazole, horseradish peroxidase, guaiacol (o-methoxyphenol),
hydrogen peroxide (30% solution), eserine (physostigmine), o-nitro-
phenyl butyrate, dimethyl sulfoxide, /3-nicotinamide adenine dinu-
cleotide, reduced form (;Q-NADH, from yeast), sodium pyruvate,
goat anti-human fibrinogen, rabbit anti-goat IgG (whole mole-
cule) with peroxidase label, o-phenylene diamine (OPD), Triton
X-100 (octyl phenoxy polyethoxyethanol) and ancrod (from venom
ofAgkistrodon rhodostoma) were obtained from Sigma Chemical Co.
(St . Louis, MO). Human 1251-fibrinogen was purchased from ICN
Chemical and Radioisotope Division (Costa Mesa, CA). Polyeth-
ylene terephthalate (PET) Mylar® film (type A, 0.005 mm thick),
was obtained from Cadillac Plastic and Chemical Company (Bir-
mingham, MI).

Preparation ofPET Disks.

	

Disks of 1.2 cm diameter were cut
from PET film . The disks were stirred for 24 h in 70% ethanol,
with frequent changes ofethanol, in order to remove dust and ster-
ilize the surface, and stored in 100% ethanol. Before use, the disks
were hydrated by immersion in sterile, pyrogen-free saline for at
least 1 h. Protein-coated plastic disks were produced by incubating
hydrated PET disks with solutions of albumin (25 mg/ml), fibrino-
gen (1 .5 mg/ml), human or murine plasma (1 :3 dilution), human
or murine serum (1 :3 dilution), or PBS (100 mM, pH 7.3, as con-
trol) at room temperature in a rotary shaker (100 rpm) for4h under
sterile conditions . Human plasma was obtained from venous blood
drawn from normal human volunteers after informed consent, and
was minimally heparinized (3 U/ml) to avoid nonspecific effects
of excess heparin on inflammatory responses. Murine plasma was
obtained from blood drawn from anesthetized mice by axial inci-
sion into citrate anticoagulant . For both routine and human serum,
nonanticoagulated blood was drawn as above and held at 4°C for
2 h (to minimize the depletion of fibronectin during fibrin clot
formation) before centrifugation .

Unless otherwise noted, all protein solutions (in physiologic con-
centrations), plasma and serum were diluted 1:3 with PBS before
addition ofmaterial . The coated disks then were rinsed with PBS
before implantation . Incubation for 4 h produces a layer ofprotein
(by calculation, roughly equivalent to a monolayer) that survives
rinsing in isotonic solutions and -60% of which is resistant to
removal by powerful detergents such as SDS (31) .

Measurementofthe Amounts ofSurface Fibrinogen.

	

The amounts

of pure fibrinogen that spontaneously adsorb to PET were deter-
mined radiometrically. Disks were incubated with a mixture of
nonisotopic and 1251-labeled human fibrinogen (final specific ac-
tivity = N4 PCi/mg) in a concentration of 15 Fcg/ml dissolved
in PBS for up to 8 h while being rotated at 50 rpm. The disks
were then thoroughly rinsed with 50 mM PBS and, in some cases,
were then incubated for an additional 1 h with 1% SDS solution
(also with rotary mixing at 50 rpm) in order to remove elutable
(nondenatured) fibrinogen (31) . The difference between the surface-
associated radioactivity on disks rinsed with PBS vs . 1% SDS was
taken as a measure of the proportion of total surface fibrinogen
that was nondenatured (23, 32).
An ELISA procedure was developed to measure the surface-bound

fibrinogen . Standards were prepared by incubating Dacrong disks
ofvarying surface area with human fibrinogen (15,ug/ml in PBS)
for 4 h, rotated at 50 rpm at room temperature . The fibrinogen-
coated disks were then removed from the protein solution, rinsed
thrice with large volumes of PBS and placed in 24-well tissue cul-
ture plates (Costar Corp., Cambridge, MA). The protein-free sur-
faces on these disks were blocked with 1 ml of 1% BSA solution
in PBS for 1 h (rotated at 50 rpm) . The specimens were removed
and rinsed with PBS 3x, placed in new 24-well tissue culture plates
and incubated with 1.0 ml of a 1/1,000 dilution ofgoat anti-human
fibrinogen in BSA for 1 h, rotated at 50 rpm. The disks were then
incubated with 1.0 ml of a 1/1,000 dilution of horseradish perox-
idase-labeled mouse anti-goat IgG (peroxidase activity 4 U/ml).
These specimens were removed from the solution with forceps and
rinsed 3x with PBS, placed in new 24-well plates, and immersed
in 1 ml ofchromogenic peroxidase substrate (o-phenylenediamine,
0.4 mg/ml, H202 , 0.012% in a buffer composed of 0.24 M citric
acid and 0.05 M Na2HPOa, pH 5.0) . After 40 min, the reaction
was stopped by addition of 100 p.l of 8 N sulfuric acid and the
product was measured at 450 nm (33) .

The results ofELISA determinations were standardized by com-
parison ofdisks ofvarying surface area incubated with nonisotopic
or a mixture ofnonisotopic and radiolabeled human fibrinogen for
4 h as described above (both at a final concentration of 15 hg/ml) .
The surface fibrinogen was analyzed by scintillation counting and
by immunoreactivity (ELISA). There was an excellent linear rela-
tionship between the amount of surface fibrinogen determined radio-
metrically and by ELISA (r = 0.998).

Implantation ofPET Disks.

	

As an in vivo model for assessing
inflammatory cell responses to biomaterials, experimental intra-
peritoneal implants of variously prepared sterile samples of PET
were performed using BALB/c mice (male, 20-g body wt) (Harlan
Sprague Dawley Inc., Indianapolis, IN). A number of earlier in-
vestigators have used intraperitoneal implants to study biomaterial-
induced tissue reactions. In this location, reactions elicited by the
polymer areclearly defined, with minimal participation of the coagu-
lation system and minimal contact with the interstitium ofnormal
tissues (15, 26, 34-36) . Since the degree of inflammatory response
to implanted biomaterials is affected by numerous factors such as
host age and time of day, precisely age-matched mice were used
in each experiment . Note that appropriate control groups were in-
cluded in each experiment and, although absolute numbers of
surface-adherent phagocytes do vary between experiments, the
proportionate differences are relatively constant .
Mice were anesthetized with ether, a -1.5-cm midabdominal

longitudinal incision was made, and 1.2-cm diameter PET disks
were implanted intraperitoneally (3 disks/mouse ; two lateral and
one central) . The incision was closed with standard 4-0 silk su-
tures. Explanation was performed at 16 h (earlier found to be the
time of maximal phagocyte accumulation [26]). The PET disks
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were carefully removed from the peritoneal cavity and washed with
PBS. The disks were then incubatedwith 0.5 ml of0.5% (vol/vol)
Triton X-100 for 1 h (to release cytosolic and granular contents
of adherent cells) . The Triton solution was then assayed for peroxi-
dase (both myeloperoxidase [MPO] and eosinophii peroxidase
[EPO]) and nonspecific esterase (NSE). In many cases, lactate de-
hydrogenase activity was also assayed as an independent estimate
of the total number of surface-adherent cells . The results (not shown)
were always consistent with the preponderance of adherent cells
being PMN and macrophages.

Measurement ofEnzyme Activities.

	

Peroxidase activities associated
with explants were determined as a measure of surface-associated
PMN and eosinophils. MPO (largely from PMNalthough mono-
cytes may have small amounts) and EPO (from eosinophils), were
measured by a guaiacol reaction (37). To distinguish MPO from
EPO, 1 mM (final concentration) 3-amino-1,2,4-triazole was used .
This preferentially inhibits EPOactivity while causing only minor
inhibition of MPO activity (38, 39). The results from numerous
experiments showed that >95% of material-associated peroxidase
activity wasMPO. Control studies on purified PMNfrom BALB/c
mice indicated that the MPO activity of mouse peripheral PMN
is about 23 nU/cell.
NSE is relatively restricted to monocytes/macrophages (40), and

the activity of this enzyme was used as a measure of the number
of adherent macrophages . The activity ofNSEwas determined by
following the rate of hydrolysis of o-nitrophenyl butyrate (41) in
the presence of eserine (10 mM, final concentration), which will
eliminate possible interference by cholinesterase (42) . Enzyme assays
on nonelicited mouse peritoneal macrophages (obtained by perito-
neal lavage) indicated that the NSE activity of mouse peritoneal
resident macrophages is -11 nU/cell.

Because these enzyme assays were used as primary indicators of
the numbers of phagocytes associated with explant surfaces, con-
trol experiments were carried out to ensure that the two parameters
correlated . Duplicate plasma-coated samples of material were in-
cubated with phagocytes (either purified PMN or resident perito-
neal macrophages). One of each set was then fixed, stained, and
adherent cells enumerated microscopically. The enzyme activity
(MPO and NSE) ofadherent phagocytes was measured on the dupli-
cate sample . The results indicated that measured enzyme activity
was a reliable indicator of surface-adherent phagocytes (r = 0.90
and 0.96; n = 8 for NSE and MPO).

Induction ofHypofbrinogenemia in Mice.

	

Mice were made pro-
foundly hypofibrinogenemicby injection ofancrod in order to test
the possible importance of fibrinogen, spontaneously adsorbed in
vivo, as a mediator ofphagocyte accumulation . Male BALB/c mice
were pretreated with four sequential injections of ancrod via tail
vein to deplete plasma fibrinogen . The first injection was with a
dose of 0.04 U in 0.1 ml saline (injection of higher initial doses
was found to be lethal) . 12 h later, a second injection of 0.2 U
was given. At 24 and 36 h, the dose was increased to 1 U in 0.1
ml of saline. 2 h after the fourth injection, blood was drawn from
some animals by axial incision in order to check fibrinogen levels
(as described below) . No fibrinogen could be detected in blood from
ancrod-treated mice whereas results on normal mice were in good
agreement with published values for mice 2-6-mo-old (1-2 mg/ml)
(43, 44) .

Measurement ofFibrinogen Concentration in Plasma.

	

Forfibrinogen
determinations on small plasma samples, we employed an assay based
on the turbidity produced when thrombin acts on fibrinogen
producing fibrin polymers that scatter light (45) . As a standard
for this assay, we employed purified human fibrinogen, diluted with
barbitone-saline buffer (0 .1 M barbital sodium in 150 mM NaCl,
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pH 7.2) in different proportions. TheOD of the fibrinogen solu-
tion was determined at 470 nm and 50 Al of calcium/thrombin
solution was admixed by inversion for 10-15 s . After 30 min, the
OD of the mixed solution again was read at 470nm . Citrated mu-
rine plasma, from wholeblood obtained byaxial incision, was diluted
1:3 (for ancrod-treated mice) or 1:6 (for normal mice) with
barbitone-saline buffer and the fibrinogen concentration was mea-
sured with the same procedure. The change in OD was directly
proportional to the fibrinogen content of the sample . When in-
dividual (pooled) samples were assayed by both this turbidometric
method and a gravimetric technique (46), nearly identical results
were obtained.

Determinations of Endotoxin Contamination. Subsamples of
Dacron® disks, both untreated and preincubated with various pro-
tein preparations, were assayed for endotoxin contamination by the
chromogenic Limulus Amebocyte Lysate (LAL) test (Whittaker
Bioproducts, Inc., Walkersville, MA). In no case was significant
surface-associated endotoxin found (i.e., no sample contained >0.01
ng endotoxin/cmz of material surface) .

Results
Divergent Inflammatory Responses to Implanted PET Disks

Coated with Serum vs. Plasma. Substantial numbers ofPMN
and macrophages were present on both uncoated PET disks
and disks preincubated with human plasma following 16 h
intraperitoneal implantation in BALB/c mice. In contrast,
PET implants preincubated with human albumin attracted
relatively few phagocytes after similar implantation (see Fig.
1) . These results indicate that plasma component(s) aside from
the predominant protein, albumin, are important in medi-
ating the attraction of phagocytes to implant surfaces . Aclue
to the possible nature of this component was provided by
the observation that PETimplants preincubated with human
serum, like material precoated with albumin, caused min-
imal accumulation of phagocytes (Fig . 1) .

In the foregoing experiments, for reasons of economy,
human plasma and serum were used to precoat PET samples.
To ensure that some heterologous foreign protein reaction
was not occurring, similar experiments were carried out using
serum and plasma from mice. The results (data not shown)
were similar to those for material precoated with human
plasma, serum, and albumin. Therefore, it appears that the
accumulation ofphagocytes on material precoated with plasma,
but not serum, is independent of the species of origin of the
plasma and serum used . The observation that material prein-
cubated with serum appears "passivated" as ifpretreated with
pure albumin suggested that one or more proteins lost in
the process of coagulation might be critical . For a number
of reasons, we suspected that fibrinogen might be of greatest
importance.

Fibrinogen-supplemented Serum and Pure Fibrinogen Restore
"Normal" Inflammatory Cell Recruitment. To more directly
assess the possible importance of surface fibrinogen in trig-
gering inflammatory responses to implanted materials, PET
disks were preincubated with humanfibrinogen (1 .5 mg/ml
in PBS), with citrated human plasma, with human serum
to which an equivalent amount of citrate buffer had been
added after clotting, and with fibrinogen-reconstituted re-



Figure 1 .

	

Phagocyte accumulation on the surfaces ofPET disks prein-
cubated with albumin, plasma, or serum and then implanted in BALB/c
mice for 16 h . (A) Peroxidase activity as an estimate of the numbers of
PMN. Values shown represent total (i.e., eosinophil and myeloperoxidase
activity ) (solid ban) and myeloperoxidase activity (assayed in the presence
of 3-amino-1,2,4-triazole to inhibit eosinophil peroxidase activity) (cross-
hatched ban) . Vertical lines denote ± 1 SD (n = 6 in all cases). (Significance
vs . human serum-coated disks ; * *p <0 .01 .) As estimated by MPO ac-
tivity, numbers of surface-associated PMN were "203,000 ± 22,000/cm2
on human plasma-coated disks, 45,000 ± 15,000/cm2 on human serum-
coated disks, and 58,000 ± 4,000/cm2 on human albumin-coated disks .
(B) NSE activity as an estimate of the numbers ofmonocyte/macrophages .
Vertical lines denote ± 1 SD (n = 6 in all cases) . (Significance vs . human
serum-coated disks : *p <0.05 .) Estimated surface macrophage numbers
were 363,000 ± 181,000 macrophages/cm2 on human plasma-coated
disks, 64,000 ± 29,000 macrophages/cm2 on human serum-coated disks,
and 64,000 ± 9,000 macrophages/em 2 on human albumin-coated disks .

citrated serum (containing 1.5 mg/ml supplemental human
fibrinogen) . All serum and plasma samples were diluted 1:3
with PBS . After 16 h implantation, it was found that, as be-
fore, plasma-coated disks attracted large numbers of PMN
and macrophages whereas serum-coated disks did not (Table
1) . Importantly, PET disks preincubated with serum samples
to which approximately physiologic amounts of fibrinogen
had been restored attracted at least as many phagocytes as
did material treated with human plasma . Furthermore, ma-
terial preincubated with purified fibrinogen accumulated even
greater numbers of adherent PMN and macrophages (Table 1) .

ImplantedMaterialPreincubated with Afibrinogenemic Plasma
Fails to Attract Phagocytic Cells . Although the major differ-
ence between plasma and serum is the presence or absence
of fibrinogen, there are several minor plasma components,
such as coagulation factors, which are activated or modified
by clotting. To control for possible effects caused by these
minor elements, plasma from an afibrinogenemic human pa-
tient (plasma fibrinogen concentration by nephelometric anal-
ysis <0.10 mg/ml) was employed . Afibrinogenemic plasma,
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afibrinogenemic plasma to which 2.7 mg/ml (final concen-
tration) human fibrinogen was added, and normal human
plasma were incubated with PET disks as described above.
There was almost no detectable fibrinogen adsorbed to PET
disks after preincubation of the disks with afibrinogenemic
plasma, although disks incubated with fibrinogen-repleted
afibrinogenemic plasma had the expected amounts of surface
fibrinogen, similar to those after incubations with normal
plasma (Table 2) .
As expected, disks preincubated with normal plasma at-

tracted a large number of adherent phagocytes . However, those
disks incubated with afibrinogenemic plasma attracted only
small numbers of phagocytes (Fig. 2) . The decrement in
inflammatory responses to disks preincubated with afibrino-
genemic plasma was almost certainly due specifically to the
lack of fibrinogen ; fibrinogen-repleted afibrinogenemic plasma
prompted a normal degree ofinflammatory response (Fig . 2) .

The Amount and State ofFibrinogen Adsorbed on PET Sur-
faces. If adsorbed fibrinogen is an important mediator of
acute inflammatory responses to implanted polymeric bio-
materials, it is necessary that significant amounts of this pro-
tein should adsorb spontaneously to PET even in the pres-
ence ofcompetitive proteins. As shown in Fig . 3, the binding
ofhuman fibrinogen to PET surfaces reaches saturation within
-30 min . More than 65% of the surface-adsorbed fibrinogen
becomes irreversibly bound (resistant to SDS elution) to the
PET surface after 4 h. The surface concentration offibrinogen
on disks incubated with varying protein sources was also es-
timated by ELISA as described under Materials and Methods .
PET disks incubated with human plasma for 4 h had large
amounts of adsorbed fibrin(ogen), approximately half as much
as disks incubated with purified fibrinogen (Table 2) . This
supports earlier conclusions that fibrinogen adsorbs readily
and in large amounts to PET surfaces (22, 30, 47) . By con-
trast, material incubated with serum or with hypofibrino-
genemic plasma had almost undetectable amounts of surface-
adsorbed fibrinogen) (Table 2). Due to the fact that implanted
disks were covered by a large number of cells, the amount
of fibrin(ogen) adsorbed to uncoated material after 16 h im-
plantation could not be measured .

Inflammatory Responses to PET Implants in Afibrinogenemic
Mice. The foregoing results supply strong, albeit indirect,
support for a central role for fibrinogen in inflammatory re-
sponses to PET However, most of these experiments were
carried out with material preincubated with various plasma,
serum or protein preparations . In contrast, the protein layer
found on biomedical implants arises from spontaneous ad-
sorption of host proteins from plasma or interstitial fluids .
We therefore carried out experiments in mice treated with
ancrod in order to directly assess the inflammatory responses
to uncoated PET samples . Intravenous infusion ofancrod into
humans and animals at appropriate doses is generally well
tolerated and results in severe hypofibrinogenemia, hypoplas-
minogenemia, elevation in fibrinogen-fibrin degradation prod-
ucts, and reduction in blood viscosity (44, 48-50) .

Injection of mice with ancrod for 2 d before implantation
caused almost total loss offibrinogen (plasma fibrinogen levels
falling from a control level of 1.25 ± 0.07 mg/ml to unde-

Inflammatory Responses to Biomaterials



Phagocyte numbers calculated on the basis of measured activities of 23 nU/cell (PMN myeloperoxidase) and 11 nU/cell (monocyte/macrophage
nonspecific esterase) .
4 Differs from serum at p <0.01 .

tectable; n = 5) . After implantation of PET disks for 16 h,
normal mice responded with a rapid increase in fibrinogen,
to levels approximately twice the baseline values (2.93 ± 0.09
mg/ml; n = 5) . In ancrod-treated animals the fibrinogen levels
increased from undetectable to 1.42 ± 0.3 mg/ml (n = 4)
at 16 h after implantation of the PET samples. (However,
for at least 3-4 h after initial implantation, fibrinogen levels
in these animals remained undetectable.)
As expected, albumin-coated disks attracted only small

numbers of PMN and macrophages in both afibrinogenemic
and normal mice (Fig . 4) . Most importantly, large numbers

All incubations carried out for 4 h at 37°C . Controls incubated with
PBS.
4 Incubated with human albumin (15 mg/ml) .
s Incubated with purified human fibrinogen (15 Ftg/ml) .
II Incubated with heparinized (3 U/ml) human plasma diluted 1:9 in
PBS.
I Incubated with human serum, heparinized (3 U/ml) after clotting,
diluted 1:9 in PBS.
" Incubated with heparinized hypofibrinogenemic plasma diluted 1:9
in PBS.
44 Incubated with heparinized hypofibrinogenemic plasma repleted with
purified human fibrinogen to 2.7 mg/ml (final concentration), diluted
1 :9 in PBS.
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Phagocyte accumulation on the surfaces ofPET disks prein-
ith normal plasma, afibrinogenemic plasma, or afibrinogenemic
constituted with physiologic concentrations of fibrinogen (final
tion 2.7 mg/ml) . (A) Peroxidase activity as an estimate of the

numbers of PMN. Values shown represent total (i .e ., eosinophil and my-
eloperoxidase activity (solid bars) and myeloperoxidase activity (assayed in
the presence of 3-amino-1,2,4-triazole to inhibit eosinophil peroxidase ac-
tivity) (cross-hatched bars) . Vertical lines denote ± 1 SD (n = 6 in all cases).
(Significance vs . human serum-coated disks: **p <0.01 .) . Estimated sur-
face concentration of PMN: 96,000 t 37,000/an2 on normal human
plasma-coated disks, 17,000 ± 16,000/cm2 on afibrinogenemic plasma-
coated disks, and 104,000 ± 34,000/2 on fibrinogen-repleted afibrino-
genemic plasma-coated disks. (B) NSE activity as an estimate of the numbers
of monocyte/macrophages . Vertical lines denote ± 1 SD. (n = 6 in all
cases) . (Significance vs . normal human plasma-coated disks : **p <0.01 .)
Estimated numbers of surface macrophages were 247,000 ± 58,000/cm2
on normal human plasma-coated disks, 66,000 ± 22,000/CM2 on afibrino-
genemic plasma-coated disks and 159,000 ± 25,000/cm2 on fibrinogen-
repleted afibrinogenemic plasma-coated disks.

Table 1 . Phagocyte Accumulation

Sample coating

on

n

the Surfaces

Peroxidase

of Variously

activity

Treated PET

PMN

x 10°lcm2

Disks after Implantation

NSE activity

for 16 h in BALB/c Mice

Monocytes/macrophages

x 10°%m2
mUIcm2 calculated mU/cmz calculated

Plasma 6 3.03 ± 0.49# 13 .2 ± 2.14 5 .99 ± 1.684 54 .5 ± 15 .3#
Serum 6 0.18 ± 0.18 0.9 ± 0.9 0.62 ± 0.17 5.6 ± 1.5
Serum + fibrinogen 6 4.07 ± 1 .40# 17 .7 ± 6.14 3 .76 ± 1 .864 34 .2 ± 16 .94
(final concentration 2.7 mg/ml)
Fibrinogen (1 .5 mg/ml) 3 5 .54 ± 1 .63$ 24 .1 ± 7.14 9 .00 ± 2.384 81 .8 ± 21 .64

Table 2. Surface-adsorbed Fibrinogen on PET Samples
>

4

Sample Number Fibrinogen a 3

1. Control" 5 0 (± 4) 2

2. Albumint 5 0 (±0) 1
3. Fibrinogens 3 183 (± 24) d

4. Plasmall 5 82 (±14) z 0
5. Seruml 5 2 (± 4)
6. Hypofibrinogenemic plasma** 5 3 (±1.9) Figure
7. Fibrinogen repleted cubated

plasma r
hypofibrinogenemic plasmatt 5 102 (± 9) concentr
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Time course of 1251-human fibrinogen (15 Ag/ml) adsorp-
tion to and elutibility from PET disks . Proportions of adsorbed elutable
albumin were determined using a 1% SDS wash as described in Materials
and Methods . Vertical lines denote ± 1 SD (n = 3 in all cases) .
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Phagocyte accumulation on the surfaces of PET disks im-
planted in control (solid bars) and ancrod-treated BALB/c (cross-hatched bars)
mice. Disks were variously preincubated with mouse fibrinogen (1 mg/ml),
albumin (25 mg/ml), or buffer (PBS) (n = 6 in all cases) . (Significance
vs . the same protein-coated implants in control mice; * *p <0.01 .) (A)
Peroxidase activity as an estimate of the number of PMN. Estimated sur-
face concentration of PMN: 100 ± 500/cm2 on albumin-coated disks in
control mice vs. 2,000 ± 2,000 PMN/cm2 on the albumin-coated disks
in ancrod-treated mice . On fibrinogen-coated disks : 46,000 ± 25,000/Cm2
in control mice vs. 49,000 ± 25,000/CM2 in ancrod-treated mice. On un-
coated disks: 84,000 ± 32,000/cm 2 in control mice vs. 12,000 ±
6,000/cm 2 in ancrod-treated mice. (B) NSE activity as an estimate of the
numbers of monocyte/macrophages. Vertical lines denote ± 1 SD. (Signi-
ficance vs. the same protein-coated implants in control mice; * * p <0.01.)
Calculated macrophage numbers on albumin-coated disks were -25,000
± 8,000/cm 2 in control mice and 15,000 ± 7,000/cm 2 in ancrod-treated
mice. On mouse fibrinogen-coated disks, the calculated macrophage
numbers were 147,000 ± 33,000/cm2 in control mice and 111,000 ±
46,000/CM 2 in ancrod-treated mice. On uncoated disks, there is a large
difference between control mice (158,000 ± 51,000 macrophages/cm2) and
ancrod-treated mice (34,000 ± 10,000 macrophages/cm 2 ) .

of implant-associated phagocytes were found only on untreated
PET implants in normal control mice; afibrinogenemic mice
had practically no response to uncoated disks. This was al-
most certainly due to an in vivo deficit in fibrinogen because
the inflammatory response ofafibrinogenemic animals to PET
disks preincubated with pure fibrinogen was normal (Fig. 4) .
The recruitment ofphagocytes to implant surfaces in ancrod-

treated mice could also be normalized by correction of the
hypofibrinogenemia . In some animals, after ancrod treatment,
2 mg ofmouse fibrinogen (1.5 mg/ml in pyrogen-free sterile
saline) or 2 mg of human serum albumin (also 1.5 mg/ml)
was injected intraperitoneally 1 h after the last ancrod injec-
tion. Uncoated PET disks were then implanted intraperi-
toneally 15 min after protein injection . As expected, uncoated
disks accumulated only small numbers of PMN and macro-
phages in albumin-repleted hypofibrinogenemic mice (PMN,
40,000 ± 33,000/cm 2 ; macrophages, 101,000 ± 136,000/
cm2) . However, phagocyte recruitment was approximately
normal in hypofibrinogenemic mice injected with sup-
plemental fibrinogen (PMN, 188,000 ± 63,000; macrophages,
354,000 ± 136,000%m2) (n = 5 in all cases) . These results
indicate that the effect of ancrod in eliminating the inflam-
matoryresponses to implanted PET is due to fibrinogen deple-
tion per se .

Discussion
Many problems associated with implanted biomaterials,

such as surface cracking on pace-maker leads, degradation of
breast implants, and fibrosis surrounding many types of im-
plants likely involve phagocyte interactions with the bio-
material surfaces (7, 8, 10-13, 20, 21, 51-54) . However, the
mechanisms by which biomaterials might trigger phagocyte
accumulation are unclear. These responses are particularly mys-
tifying in view ofthe inert and nontoxic nature of most types
of implanted polymeric elastomers.

Clearly, interactions between the implant surface and the
host must be of predominant importance, and these events
are likely initiated by surface--protein adsorption . Implant-
able biomaterials are spontaneously covered by a layer of host
proteins within seconds after contact with body fluids (55-59) .
These adsorbed proteins gradually change conformation and
become irreversibly adsorbed (24, 31, 32, 60-62) . Because
this accumulation of protein occurs so rapidly, it almost cer-
tainly precedes the arrival of cells on implant surfaces. Hence,
host cells likely interact with protein-coated material rather
than directly with the material (23, 47) . Therefore, we and
many other investigators have assumed that the nature ofthe
surface layer of protein is crucial for determining the biocom-
patibility of different biomaterials (23, 26, 47, 56, 63) .

In an effort to dissect the likely mechanism(s)of phagocyte
recruitment to implant surfaces, we have employed polyeth-
ylene terephthalate (Mylar®) as a model polymer. We chose
this material because Dacron®, the woven form of PET, has
been used for vascular prostheses for over 30 yr, and is partic-
ularly thrombogenic and pro-inflammatory (1, 20, 21, 27,
28) . Albumin, fibrinogen and IgG are detected in greatest
amounts on Dacron surfaces following incubation with whole
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blood (30, 47). However, the most abundant plasma pro-
tein, albumin, is clearly not responsible for the recruitment
of inflammatory cells to implant surfaces . Many previous
studies show that albumin coating "passivates" biomaterial
surfaces, blunting both proinflammatory and thrombogenic
responses (1, 26, 29, 64). Furthermore, we have recently found
that neither surface-bound IgG nor complement activation
is a necessary element in inflammatory responses to bio-
materials such as PET (26) .
The possible identity of the critical "proinflammatory"

plasma component was indicated by our observation that
whereas material preincubated with plasma does trigger phago-
cyte recruitment, PET incubated with serum does not, sug-
gesting that surface adsorption of fibrinogen might be an
important element in the attraction ofinflammatory cells to
implant surfaces . Indeed, PET disks coated with human
fibrinogen accumulate numerous phagocytes as do disks in-
cubated with fibrinogen-repleted serum, supporting a cen-
tral role for fibrinogen in this response. We recognize that
the "purified" fibrinogen employed (human fibrinogen, Type
I, from Sigma Chemical Co.) may contain contaminants (such
as plasmin[ogen]) that might influence responses to coated
materials. However, the results of a number of additional ex-
periments discussed below all support a central role ofsurface-
adsorbed fibrinogen in acute inflammatory responses to PET
implants .

Although the major difference between plasma and serum
is the presence or absence offibrinogen, there are several other
components which, although they only comprise a small frac-
tion of total plasma protein, might be affected by the processes
of clotting . To control for any possible effects of these minor
constituents (which include coagulation factors and fibro-
nectin), we employed plasma from an afibrinogenemic pa-
tient . Material coated with afibrinogenemic plasma failed to
attract phagocytes. Furthermore, when physiologic levels of
purified fibrinogen were added to afibrinogenemic plasma,
disks incubated in this mixture prompted normal recruitment
of phagocytes . The results indicate that fibrinogen is ofpre-
dominant importance in mediating inflammatory responses
to implanted PET
The proinflammatory effect of adsorbed fibrinogen would

appear to hold in vivo as well . Mice having almost undetect-
able amounts of plasma fibrinogen were produced by repeti-
tive injections of ancrod, a thrombinlike protease derived from
the venom of the Malayan pit viper (Agkistrodon rhodostoma)
(43, 44, 49, 65-67) . These hypofibrinogenemic mice showed
almost no phagocyte accumulation on untreated PET disks
but did mount a normal phagocyte response to fibrinogen-
coated disks . Inflammatory cell recruitment was also normal-

ized in hypofibrinogenemic mice given injections of purified
fibrinogen . It should be noted that plasma fibrinogen levels
in these animals rebounded from undetectable at the time
of implantation to near normal 16 h after implantation . How-
ever, it is likely that the composition of the adsorbed protein
layer is determined shortly after implantation and that later
adsorption of fibrinogen was minimal (as it evidently is on
material precoated with albumin) . Thus, the results of these
experiments fully support the proposition that fibrinogen,
which spontaneously adsorbs to plain Dacron® surfaces after
implantation, is a critical determinant of subsequent inflam-
matory responses.
This is, to the best of our knowledge, the first solid evi-

dence for a critical role for fibrinogen in attracting inflam-
matory cells to implanted biomaterials . In other circumstances,
the physical presence of fibrin(ogen) has long been recog-
nized as coeval ofinflammatory responses, with fibrin(ogen)
deposition typical of both acute and chronic inflammatory
processes (68-71). Similarly, large amounts of fibrin(ogen)
accumulate within or around biomaterial implants (11, 16-21,
27, 72). This surface-adsorbed fibrinogen may be a most im-
portant element in the thrombogenic and embolic events trig-
gered by material surfaces in vivo (73, 74).

Perhaps of direct pertinence to the present findings, Shinoda
and Mason (63) found that the deposition ofphagocytes and
platelets on hemodialysis membrane was far less than normal
in an "afibrinogenemic" patient being hemodialyzed . Inter-
actions between phagocytes and fibrin(ogen)-coated surfaces
may well involve specific binding sites for fibrin on macro-
phages (75-77) and for fibrinogen on PMN (68, 78-80) . How-
ever, the apparent proinflammatory effects of fibrin(ogen) may
involve indirect interactions. For example, some fibrin degra-
dation products (81-85) and fibrinopeptide B (86) are strongly
chemotactic for PMN, monocytes and fibroblasts. In ad-
dition, lower molecular weight degradation products of
fibrin(ogen) are known to promote granulocyte infiltration
and vascular permeability (82, 87).

Unfortunately, the present work provides no indication
of the state of the adsorbed fibrinogen associated with pro-
inflammatory activities . Thus, adsorbed fibrinogen may
directly trigger inflammatory responses or do so indirectly
(e.g ., through conversion to fibrin or formation of degrada-
tion products) . Nonetheless, the present work does support
the importance of spontaneous fibrinogen adsorption as a crit-
ical precedent to subsequent inflammatory cell responses to
the surfaces of implanted biomaterials. A more comprehen-
sive understanding of the ensuing sequence of events may
lead to the rational design of more compatible implantable
and blood-contact biomaterials .
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