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Summary  
We investigated whether the third component of complement (C3) is involved in the patho- 
physiology of endotox~c shock, and ~f it is involved, whether it plays a protective role or whether 
it mediates shock and multiple organ failure. In a prospective, controUed investigation, six Brittany 
spaniels that were homozygous for a genetically determined deficiency of C3 (C3 deficient, 
<0.003% of normal serum C3 levels) and six heterozygous littermates (controls, =50% of mean 
normal serum C3 level) were given 2 mg/kg of reconstituted Escherichia coli 026:B6 acetone 
powder as a source of endotoxin, intravenously. All animals were given similar fluid and prophyhctic 
antibiotic therapy, and had serial hemodynamic variables obtained. After E. coli endotoxin infusion, 
C3-deficient animals had higher peak levels of endotoxin and less of a rise m temperature than 
controls (P <0.05). During the first 4 h after E. coli endotoxin infusion, C3-deficient animals 
had significantly greater decreases in mean central venous pressure and mean pulmonary artery 
pressure than controls (P <0.02). During the first 48 h after E. coli endotoxin infusion, C3- 
deficient animals had significantly greater decreases in mean arterial pH, left ventricular ejection 
fraction, and mean pulmonary capillary wedge pressure, and greater increases in mean arterial 
lactate, arterial-alveolar O2 gradient, and transaminases (aspartate aminotransferase and alanine 
ammotransferase) than controls, (aU P <0.05). After E. cob endotoxin infusion, C3-ddiclent ammals 
compared to controls had significantly less of a decrease in mean C5 levds (P <0.01), but similar 
(P = NS) increases in circulating tumor necrosis factor levels, bronchoalveolar lavage nentrophils, 
and protein, and similar (P -- NS) decreases in blood lenkocytes and platelets. Two of stx C3- 
deficient ammals and two of six controls died. In summary, after intravenous infusion of 
E. coli endotoxm, canines with C3 deficiency have decreased endotoxin clearance and worse E. 
coli endotoxin-induced shock and organ damage. Thus, the third component of the complement 
system plays a beneficial role m the host defense against E. coli endotoxic shock. 

, • p p r o x i m a t e l y  400,000 patients develop sepsis each year 
in the United States. Of these, 50% develop septic shock 

and multiple organ damage, which is associated with a mor- 
tality rate of 50-70% (1). In the pathogenesis of sepsis, en- 
dotoxin interacts with a number of endogenous mediators 
such as complement and clotting systems, bradykinin, ara- 
chidonic acid, TNF, and a variety of other cytokines (2). Each 

Portions of this work have appeared m abstract form (1992 Chn Res 
40 153A, 1993 Chn Res 41 243; and 1993 Cnt. Care ivied. 21 $285) 

of these mediators has the potential to participate in the patho- 
physiology of endotoxic shock and organ damage. However, 
it is unknown what the relative contribution of each is to 
the pathogenesis of endotoxic shock and whether that con- 
tribution is beneficial or detrimental to the host. 

Endotoxin is a potent activator of the complement system 
via either the classical or alternative pathways (3-5), can 
generate phlogistic cleavage products of C3 (C3a and C3b) 
and C5 (C5a), and can assemble the membrane attack com- 
plex (C5b-9) (6). In turn, these activated components of com- 
plement have the potential to opsomze particles for phago- 
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cytic ingestion (6), stimulate human mononudear ceUs to 
secrete TNF and IL-1 (7, 8), promote neutrophil chemotaxis, 
aggregation, degranulation, and generation of superoxide 
anions radicals (9-12), and increase vascular permeability (13, 
14). In addition, a number of studies have demonstrated that 
the complement system is activated in patients with gram- 
negative sepsis, and that the degree of activation is related 
to the severity of shock and death (15-18). Thus, there is 
a great deal of evidence that complement may participate in 
endotoxic shock and multiple organ failure. 

However, studies in experimental animals have yielded 
conflicting data as to whether the complement system con- 
tributes to the pathophysidogy ofendotoxic shock and mul- 
tiple organ failure (19-30). These studies have generally been 
performed in animals that have been pharmacologically 
depleted of complement using cobra venom factor (CoVF) t 
(24-27, 29, 31), in animals that have a genetically determined 
deficiency of a complement component (20-23), or in animals 
that have been treated with antibody against phlogistic deavage 
products of individual complement components (28, 30). In 
some studies, the complement system has been shown to pro- 
tect the host from the lethal effects of endotoxin (20-22). 
In others, it has been shown to mediate some of the hemo- 
dynamic and hematologic consequences of endotoxin chal- 
lenge (23, 24, 28, 30, 31). In still others, it has been shown 
to play little, if any, role at all (20, 25-27). The conflicting 
results may be the consequence of the different methods used 
to interfere with the complement system, the different com- 
ponents that are depleted or deficient, the different species 
studied, and/or the different parameters of endotoxin shock 
and multiple organ failure that have been examined. In addi- 
tion, in those studies in which animals have been depleted 
of C3 by injection of CoVF, the results may be confounded 
by the fact that CoVF-induced activation and depletion of 
C3 and C5-9 is incomplete and transient and may itself mimic 
the effects of endotoxin (19, 23, 25). 

The third component of complement plays a critical role 
in the action of the complement system. Not only do the 
cleavage products of C3 (C3a and C3b) have direct inflam- 
matory and defensive functions, but one of them (C3b) is 
also a component of the enzymes that activate C5-C9 through 
the classical and alternative pathways. Therefore, C3 is crit- 
ical in the generation of the inflammatory and defensive reac- 
tions of the comphment system. 

The current studies were performed in dogs with a genet- 
icaUy determined complete deficiency of C3 (32). Homozy- 
gous C3-deficient animals have <0.003% of normal amount 
of C3 and markedly decreased serum opsonic, chemotactic, 
and hemolytic activities (33). Furthermore, in animals of this 
size, it is technically possible to monitor serial hemodynamic, 
cardiovascular, pulmonary, hepatic, and renal functions, and 
administer fluid therapy, as is done in humans subjects. Thus, 

1 Abbreviations used in this paper: A-a Oz, alveolar-arterial r gradient; 
ALT, ahnine aminotransferase; AST, aspartate arninotransfarase; BAL, 
bronchoalveohr lavage; CoVF, cobra venom factor; CVP, central venous 
pressure; ESVI, end-systolic volume index; LVEF, left ventricular ejection 
fraction; MAP, mean arterial pressure. 

the C3-deficient dog offers a unique opportunity to deter- 
mine whether C3 plays a significant role, in vivo, in the patho- 
genesis of endotoxin-induced shock and organ failure, and 
if so, whether this role is bendicial or detrimental. 

Materials and Methods 

Experimental Subjects 

Six adult C3-ddident (homozygotes) Brittany spanids with a 
genetically determined complete ddidency of C3 (32, 33) and six 
littermate controls (heterozygotes) were used in this investigation. 
Heterozygous animals have a normal complement system function 
and are clinically asymptomatic. Because heterozygotes come from 
the same line-bred colony and are genetically closely related to 
homozygotes, they were used as controls. Animals were studied 
in pairs composed of one C3-deflcient animal and one control. Sex, 
weight, and age were closely matched. 

Endowxin Preparation 
Escherichia coli acetone powder, strain ATCC 12795, serotype 

number 026:B6 (Sigma Chemical Co., St. Louis, MO) was uti- 
lized as the source of endotoxin and is referred to as E, coli endo- 
toxin (34). The product was provided as a powder, without any 
viable cells. Using sterile techniques and pyrogen-free instruments 
and ghssware, the E. coil endotc~dn powder was reconstituted with 
0.9% saline 30 min before intravenous administration. 

Experimental Protocol 
Fig. 1 shows the treatments gi~n and evaluations obtained during 

this study. Hemodynamic and laboratory evaluations were performed 
in awake animals. On each study day listed in Fig. 1, using local 
anesthesia (lidocaine 1%), animals had an 8 Fr introducer sheath 
percutaneonsly placed into the external jugular vein, and a 20-Ga 
single hmen catheter into the femoral vein, which were removed 
each day after completion of hboratory and hemodyaamic studies. 
Ceftriaxone (Roche, Nutley, NJ), 100 mg/kg i.v., was given 
prophylactically each day in which venous or arterial lines were 
placed, and for five consecutive days after endotoxin infusion. A]] 
blood cultures from the times specified in Fig. 1 were negative for 
bacterial pathogens in C3-deficient animals and controls. Ringer's 
solution (10 ml/kg/h body weight [bwI) was given continuously 
for 8 h after endotoxin infusion. Animals had unrestricted access 
to food and water throughout the study except for 12 h before 
endotoxin infusion. 

Endotoxin Infusion. 2 mg/kg ofE. coli acetone powder as source 
of endotoxin was administered intravenously to each dog in a total 
volume of I00 ml of saline over 30 rain. The 2-mg/kg dose was 
used because, in previous experiments with normal canines, this 
dose produced the cardiovascular, pulmonary, and hematologic ab- 
normalities of endotoxic shock with minimal mortality (34). It 
was necessary to use a nonhthal dose of endotoxin in order to pre- 
serve the valuable colony of C3-ddlcient Brittany spaniels. 

Hemod~mic Measurements. Values were obtained from fem- 
oral arterial and balloon flotation thermodilution pulmonary ar- 
terial catheters using previously described techniques (35) and in- 
dnded mean arterial pressure (MAP, mm Hg), heart rate (HK/min) 
central venous pressure (CVP, mm Hg), pulmonary capillary wedge 
pressure (PCWP, mm Hg), mean pulmonary arterial pressure (mm 
Hg), and cardiac output (ml/min). To determine left ventricular 
ejection fraction (LVEF), we performed radionuclide-gated blood 
pool scans using conventional techniques (35). Hemodynarnic data 
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were indexed to body weight in kilograms. The following values 
were calculated according to standard formulas: cardiac index, stroke 
volume index (SVI), left ventricular stroke work index, systemic 
vascular resistance index (SVILI), oxygen extraction ratio (EK), and 
alveolar-arterial oxygen gradient (A-a O2, kPa). End-diastolic 
volume index (EDVI) and end-systolic volume index (ESVI, ml/kg) 
were calculated from catheter measurements and simultaneously 
obtained radionuclide scans using the formulas EDVI = SVI/EF 
and ESVI = EDVI - SVI. After collection of the first 
hemodynamic evaluation, two fluid challenges of Kinger's solu- 
tion, one of 15 ml/kg and another of 45 ml/kg, were given over 
30 rain, and temperature and all hemodynamic studies were repeated 
after each fluid challenge, except ejection fraction was repeated only 
after the second fluid challenge because of time constraints. In ad- 
dition, arterial pH, arterial and mixed venous partial pressures of 
oxygen (pO2, kpa), and carbon dioxide (pCO2, kpa) were mea- 
sured at 37~ with a blood gas system (model 288; Radiometer, 
Medfield, MA), and blood lactate levels were measured using a 
glucose-lactate analyzer (YSI, model 2300 STAT, Yellow Springs 
Instrument Co., YeLlow Springs, OH). 

Bronchoscofy and Bronchoalueolar Lamge (BAL). On days - 7, 1, 
2, and 10, after collection of all hemodynamic values (3 h), the 
animals were anesthetized. After anesthesia was established with 
ketamine (0.5 mg/kg bw), and muscle relaxation with succinyl- 
choline (1 mg/kg bw), animals were intubated and bronchoscopy 
and BAL were performed using previously described techniques 
(36). On day 0, a BAL was not performed to minimize the poten- 
tial effects of general anesthesia on hemodynamics during the first 
48 h after E. coli endotoxin infusion. During bronchoscopy, animals 
were mechanically ventilated to have a minute volume of 0.35 
liter/kg/min with a fractional inspired oxygen concentration of 
0.40. After BAL (,,~30-min duration), animals were allowed to re- 
cover from anesthesia and extubated. Subsequent BALs in each an- 
imal were performed alternating right and left lungs. 

Laboratory Measurements. Levels of C5 were measured by a func- 
tional hemolytic assay (37). Total and differential blood white cell 
count (109/liter), hemoglobin, and platelet c o u n t  (109/liter) were 
measured on an automatic analyzer (model STK-S; Coulter Corp., 
Hialeah, FL; Metpath Laboratory, Rockvilh, MD). Partial throm- 
boplastin time, prothrombin time, flbrinogen (g/liter), and fibrin 
split products were measured using a fibrometer (BBL, Baltimore, 
MD; MetPath Laboratory). Serum sodium, potassium, chloride, 
total carbon dioxide, calcium, phosphorus, glucose, blood urea 
nitrogen (retool/liter), creatinine (/~mol/liter), uric acid, alanine 
aminotransferase (ALT, U/liter), aspartate aminotransferase (AST, 
U/liter), 3' glutamyl transpeptidase, alkaline phosphatase, lactate 
dehydrogenase (U/liter), total bilirubin, triglycerides, and choles- 
terol were measured by an automated chemistry analyzer (model 
AU 500; Olympus, Irving, TX; MetPath Laboratory). Endotoxin 
concentration (EU/nd) was determined from heparinized plasma, 
which was diluted, heat treated, and then assayed using a mod- 
ification of the chromogenic Limulus amebocyte lysate assay (Whit- 
taker M.A. Bioproducts, Walkersviile, ME)) (38). Serum TNF level 
(ng/ml) was measured by a cytotoxicity assay using previously de- 
scribed methods and employing WEHI-164 cells (American Type 
Culture Collection, Rockville, MD) (39). BAL fluid total and 
differential cell counts (109/liter) were obtained using an electronic 
cell counter (7_.B1; Coulter Corp.), and BAL protein concentration 
(/tg/ml) was measured using the BCA protein assay technique 
(Pierce, Rockford, IL) (40). 

Statistical Methods 
Hemodynamic data were analyzed using a four-way analysis of 
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variance (ANOVA) (41). The four factors included group (C3- 
deficient animals and controls), dog nested within group, time, 
and fluid. In addition to these four main effects, all two- and three- 
way interactions with group, time, and fluid were included in the 
model. The group-time interaction was used to assess the similarity 
of the hemodynamic time course in the two groups, and this term 
was statistically decomposed to detect significance at various time 
points. The analysis revealed that interactions involving fluid were 
nonsignificant, thus figures show hemodynamic data averaged over 
fluid loadings. Laboratory studies, including C5, TNF, and BALs, 
were analyzed with a three-way ANOVA using group, dog, and 
time effects. Baseline differences were examined with one-way 
ANOVA. Since there were no significant differences in baseline 
values among treatment groups, the data are presented as changes 
from a common origin. 

Endotoxin data were analyzed by determining the peak endo- 
toxin response in each dog, and then calculating the difference be- 
tween C3-deficient and controls done on simihr days. One of these 
differences was excluded as an outlying value (P < 0.001), and the 
remaining differences were analyzed using a one-sample Wilcoxon 
test (42). 

Animal Care 
This protocol was approved by the Animal Care and Use Com- 

mittee of the Clinical Center of the National Institutes of Health 
and Johns Hopkins University School of Medicine. ALl efforts were 
undertaken to minimize animal pain and suffering. 

Results  

Clinical Manifestations and Survival 
After E. coli endotoxin infusion, all animals had similar 

signs of endotoxemia, appearing weak, lethargic, and anorexic. 
During the first 48 h after E. coli endotoxin infusion, C3- 
deficient animals had significantly less of a rise in tempera- 
rare than controls (Fig. 2). Two out of six C3-deficient animals 
and two out of six controls died (Fig. 2). 

HEM HEM HEM HEM HEM 
LAB LAB LAB LAB LAB 
BAL BAL BAL BAL 
VOL VOL VOL VOL VOL 

[ ]  I Antibiotic (Ab) I [ ]  
I I I I I / /  I 

-168 0 24 48 96 240 
Hours Before and After E. coli Endotoxin Infusion 
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I I.AB LAB LAB LAB LAB LAB I 

VOL I 
I ~ I I / /  i / /  t t/ iI 

-0.5 0 0.5 1 2 4 8 24 
t t Hours 

Begin End infusion I E. coil Endotoxin 

Figure 1. Sequence of evahadons and therapies during this study. (HEM) 
Hemodynamic evaluation, including radionuc]ide heart scan, and measure- 
ments obtained from pulmonary (thermodilution) and femoral arterial 
catheters; (LAB) laboratory evaluation including C5, endotoxin and TNF 
levels, routine chemistries, quantitative blood cultures, complete blood 
counts, and coagulation studies; (R/IL) bronchoscopy and bronchoalveolar 
lavage; (VOL) volume infusion of 15 ml/kg and 45 ml/kg of Ringer's 
solution. At -168, 8, 24, 48, and 240 h, hemodynamic evaluation was 
obtained before and after each of the two volume infusions. 
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Figure 2. Serial (mean + SEM) changes in temperature in C3-defident 
animals and controls. In parentheses are shown number of survivors at 
each time point. (*)P = 0.049, comparing C3-deficient animals and con- 
trols at comparable time points. 
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Figure 3. Serial (mean + SEM) endotoxin concentrations. P = 0,05 
comparing peak endotoxin levels in C3-deficient animals and controls. 
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Figure 4. Serial (mean • SEM) 
acute changes in hemodynamic values. 
(*)P = 0.01, (**)P = 0.02, comparing 
C3-deficient animals and controls at 
comparable time points. 
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Endotoxemia Levels 

C3-deficient animals had higher mean peak levels of endo- 
toxin compared with controls (P = 0.05, Fig. 3). 

Cardiopulmonary and Metabolic Variables 
Early Response to E. coli Endotoxin. For the first 4 h after 

E. coti endotoxin infusion, both groups had similar significant 
decreases in mean MAP. However, C3-deficient animals had 
significantly greater decreases in mean CVP and mean pul- 
monary artery pressure, and greater decreases in mean PCWP 
(P = 0.07) than controls (Fig. 4). C3-defident animals had 
significantly less of an increase in pOz after 2 h (1.2 _+ 0.7 
vs 3.1 _+ 0.4 kPa [mean _+ SEM], P = 0.03), and after 4 h 
(0.9 + 0.5 vs 2.7 _+ 0.4 kPa, P = 0.03), and less of a de- 
crease in mean pCO2 after 4 h ( -0 .9  __ 0.1 vs - 1.7 _+ 0.3 
kPa, P = 0.04) compared with controls. During the first 
4 h, all other serial hemodynamic values (data not shown) 
outlined in Materials and Methods were similar between the 
two groups (P = NS). 

Late Response to E. coli Endotoxin. During the first 48 h 
after E. coli endotoxin infusion, C3-deficient animals had 
significantly greater increases in mean arterial lactate, and 
greater decreases in mean arterial pH than controls (Fig. 5). 
During the first 48 h, C3-deficient animals also had signi- 
ficantly greater increases in mean A-a O2 gradient, and 
greater decreases in mean LVEF and PCWP than controls 
(Fig. 6). For the first 48 h, the other serial hemodynamic 
values outlined in Materials and Methods were similar in C3- 
deficient and control groups (P = NS), except C3-deficient 
animals had significantly greater increases in ESVI (2.0 _+ 
0.5 vs 0.4 _+ 0.3 ml/kg -1 [mean _+ SEMI, P = 0.009), less 
of a decrease in mean pCO2 ( -0 .5  _+ 0.1 vs -0 .9  _+ 0.1 
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Figure 5. Serial (mean • SEM) changes in arterial lactate and pH. 
(*)P = 0.03, ("*)P <0.008, comparing C3-deficient animals and controls 
at comparable time points. 

kPa, P = 0.03), and less of a decrease in mean pO2 at 24 h 
(-1.1 • 0.7 vs 0.8 _+ 0.8 kPa, P = 0.03). In survivors, by 
day 10, all hemodynamic variables returned to mean baseline 
values (P = NS), except C3-defident animals still had a 
significantly (P <0.05) lower mean CVP (data not shown), 
and temperature (Fig. 2) compared with controls. 

BAL. During the 48 h after E. coli endotoxin infusion, 
C3-defident animals and controls had similar (P >0.68) 
significant increases in mean percent and total number ofneu- 
trophils in BAL (P <0.006, Table 1). Also during this time 
period, C3-defident animals and controls alike had increases 
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Figure 6. Serial (mean • SEM) changes in A-a O2 gradient, ejection 
fraction, and PCWP. ( ')P - 0.04, (*')P = 0.009, comparing C3-defident 
animals and controls at comparable time points. 
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Table 1. Serial Geometric Mean BAL Cells and Protein before and after E. coli Endotoxin Infusion 

Total cells (104/ml) Neutrophils Neutorphils (llY/ml) Protein (/~g/100h) 

Time C3 deficient Control C3 deficient Control C3 deficient Control C3 deficient Control 

h % 
-168 9 g 1.8 11 ~ 1.5 3 .x 2 3 _~ 1 0.01 +x 7.8 0.02 ..x 5.9 11 _~ 1.3 20 x 1.1 

24 17 +x 1.2 11 .~ 1.3 17 .x 6 30 ..x 11 2.0 x 1.9 2.0 ._x. 2.2 14 _.x 1.7 17 _~ 2.1 
48 10 g 1.1 20 ~ 1.7 33 _~ 11 36 .._x 12 2.0 y, 2.3 4.0 ._x. 3.4 30 x._. 1.8 30 x 1.5 

in BAL fluid protein that did not reach statistical significance 
(both P = 0.065, Table 1). The other serial laboratory values 
determined in BAL fluid outlined in Materials and Methods 
were also similar in C3-deficient animals and controls through- 
out (P = NS). 

Hepatic, Renal, and Hematologic Changes 
During the 48 h after E. coli endotoxin infusion, C3-deficient 

animals had greater increases in mean AST and ALT com- 
pared with controls (Table 2). Although mean creatinine values 
were within the normal range (71-177/~mol/liter, MetPath 
Laboratory) throughout the experiment, controls had a 
significant decrease in mean creatinine at 24 h, which was 
not seen in C3-deficient animals (data not shown, P = 0.02). 
After E. coli endotoxin infusion, C3-deficient animals and 
controls alike had early (0.5, 1, 2, and 4 h) significant decreases 
(both P <0.0001, Table 3) and late (24 and 48 h) significant 
increases (both P <0.02) in white blood cell counts. After 
E. coli endotoxin infusion, C3-deficient animals and controls 
alike had significant decreases early (0.5 h, both 19 <0.003, 
Table 3) and late (24 and 48 h, both P <0.009, data not 
shown) in platelet count. At 2 and 4 h after E. coil endotoxin 
infusion, C3-deficient animals and controls alike, had signi- 
ficant increases (both, P <0.04) in prothrombin time and par- 
tial thromboplastin time, but no significant changes (P = 
NS) in fibrin split products throughout (data not shown). 
C3-deficient animals had greater decreases in (mean _+ SEM) 
fibrinogen at 0.5 and I h (P = 0.03) after E. coli endotoxin 
infusion compared to controls. In survivors, by day 10, all 

laboratory variables returned to mean baseline values (data 
not shown, P = NS). The other serial mean routine chemis- 
tries and complete blood count values were similar (data not 
shown) in C3-deficient animals and controls (P = NS). 

Complement and TNF Levels 

At 1 and 4 h after E. coli endotoxin infusion, C3-deficient 
animals had significantly less of a decrease in mean C5 levels 
(P -- 0.01) than controls (Table 3). At 48 h, C3-deficient 
animals had a significantly greater increase in mean C5 levels 
(P = 0.002) than controls (Table 4). At 0.5, 1, and 2 h after 
E. coli endotoxin, C3-ddicient animals and controls, had similar 
(P = NS) significant increases in circulating TNF levels (both 
P = 0.0001, Fig. 7). 

Discussion 

After E. coli endotoxin challenge, dogs with a genetically 
determined deficiency of C3 had higher levels of endotox- 
emia and developed more severe cardiovascular and pulmo- 
nary dysfunction, hepatic injury, and lactic acidosis than did 
their littermate controls. Thus, the results of this study dem- 
onstrate that C3 plays a significant role in protecting the host 
against E. coli-endotoxin-induced shock and organ damage. 

After intravenous challenge with E. coil endotoxin, C3- 
deficient animals had a greater degree of endotoxemia than 
did control animals. Presumably, the lack of C3 led to ineffec- 
tive clearance of the endotoxin from the bloodstream because 
of defective C3b-mediated opsonization and phagocytosis of 

Table 2. Serial Geometric Mean Transaminases before and after E. coli Endotoxin Infusion 

AST 

Time C3 deficient Control C3 deficient 

ALT 

Control 

h U/liter 
- 1 6 8  42.3 x 1.16 55.2 x 2.62 41.6 x 1.37 62.4 +x 2.95 

24 242.4 _~ 1.48" 93.6 _~ 1.56 240.8 _~ 1.46" 79.4 +x 1.23 

48 56.5 g 1.24 45.3 _~ 1.21 150.5 g 1.44" 69.9 ..x 1.22 

* P <0.04. P value compares C3 deficient and controls at comparable time points. 
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Table 3. Serial Geometric Mean White Blood Cell and Platelet Counts before and after E. coli Endotoxin Infusion 

White Blood Cell (10Vliter) Platelets (109/liter) 

Time C3 deficient Control (23 deficient Control 

h 
-0.5 10.8 .~ 1.10 13.2 x 1.10 365 +x 1.12 265 g 1.37 

0.5 3.2 x 1.21 3.1 _~ 1.15 196 ~ 1.16 167 .~ 1.20 
1 3.2 __~ 1.07 3.3 ~ 1.16 243 .x. 1.26 153 ~ 1.28 

2 4.9 x 1.16 3.4 ~ 1.13 238 ~ 1.11 197 .x. 1.24 
4 4.9 ~ 1.23 6.5 ~ 1.22 228 ~. 1.14 225 ~. 1.25 

the endotoxin. The greater degree of endotoxemia was as- 
sociated with a more pronounced acute (within hours) drop 
in intravascular filling pressures as indicated by lower CVP, 
MAP, and PCWP, findings consistent with a diffuse vascular 
leak. In C3-deficient animals, this worse vascular leak may 
have led to decreased tissue perfusion, more severe lactic aci- 
dosis, and multiple organ failure, i.e., more pronounced cardiac 
(decreased LVEF fraction), pulmonary (increased A-a O2 
gradient), and hepatic damage (elevated serum transaminases) 
than in their littermate controls. 

To preserve this valuable colony of C3-deficient canines, 
animals were challenged with a dose orE. coli endotoxin that 
was previously shown to produce physiologic changes but 
not lead to death in normal canines (34). With regard to sur- 
vival, previous studies of small animals with genetically de- 
termined complement deficiencies have established the pro- 
tective role of C4 (22) and of later components of the 
complement system, C5 and C6 (20, 2!), in endotoxin-induced 
lethality. Thus, these studies and the present investigation 
strongly suggest that an intact complement system is neces- 
sary to prevent endotoxin-induced shock, organ failure, and 
death. 

Table  4. Serial Mean (%) Changes from Baseline in C5 Levels after 
E. coli Endotoxin Infusion 

C5" 

Time C3 deficient Control 

h 

1 88 • 5 76 • 14t 
4 95 • 26 77 • 22t 

24 90 • 7 99 • 28 

48 218 • 385 105 • 41 

* Percent baseline value. 
t P - 0.01. 
$ P - 0.002. P values compare C3 deficient and control at comparable 
time points. 

The mechanism by which C3-deficient animals developed 
worse shock and organ damage is unknown. It is conceiv- 
able that sustained elevated levels of endotoxin led to greater 
release of potentially har ra~  endogenous mediators. Of  note, 
levels of TNF, a key mediator of septic and endotoxic shock. 
were similar despite significantly different endotoxin levels 
between C3-deficient animals and controls. Although cir- 
culating TNF levels may not reflect local or total production 
of this cytokine, these data suggest that C3-beneficial effects 
are through mechanisms other than decreases in TNF release 
into or decreases in TNF dearance from the systemic circula- 
tion. Endotoxin also promotes release of prostaglandins, lip- 
oxygenate products, and bradykinin. Consequently, one could 
postulate that prolonged exposure to high endotoxin levels 
induced overproduction of these other potentially toxic medi- 
ators, leading to more severe organ damage. Alternatively, 
lack of complement activation could possibly cause some pro- 
tective mediators not to be released or to be released in smaller 
quantities. 

Interestingly, C3-deficient animals had less of a febrile re- 

~ - - - - ~  Control 

Z / /  

I-" 

0 , 

; ' / - 4  '. ' # '  # '  " / '  ,r , -16 / .5 0 0 5 1 2 4 8 24 
Hours Before and After E. coli Endotoxin Infusion 

Figure 7. Serial (mean • SEM) TNF concentration, comparing C3- 
deficient animals and controls. At 0.5, 1, and 2 h after E. coli endotoxin, 
C3-deficient a-imals and controls alike, had similar (P - NS) significant 
increases in circulating TNF levels (both P - 0.0001). 

575 Quezado et al. 



sponse to endotoxin challenge compared with controls. The 
degree of febrile response to E. coli endotoxin in heterozy- 
gous controls, but not C3-deficient animals, was similar to 
normal beagles given endotoxin (43). In vitro studies have 
shown that C5a and C5a des arg induce secretion of IL-1, 
a recognized endogenous pyrogen, by human mononuclear 
phagocyte (7, 8). It is possible, therefore that the lack of a 
febrile response to endotoxin by C3-deficient animals is related 
to decreased production of IL-1 and/or other endogenous 
pyrogens. However, C5a also stimulates secretion of TNF 
from human mononudear cells in vitro (8), but in this study, 
serial TNF levels were similar in C3-deficient animals and 
controls. Nonetheless, although the mechanism of the de- 
crease febrile response to E. coli endotoxin in C3-deficient 
animals is unknown, this finding suggests that C3 promotes 
the febrile response to endotoxin. 

The role of the complement system in endotoxin- 
induced coagulopathy is not fully defined. In canines, (24) 
CoVF-induced complement deficiency ameliorates endotoxin- 
induced disseminated intravascular coagulation. However, these 
findings were not confirmed in rabbits with a genetically de- 
termined C6 deficiency (25). In the present investigation, after 
E. coli endotoxin infusion, C3-deficient animals and controls 
alike developed abnormalities suggestive of disseminated in- 
travascular coagulation including elevations of prothrombin 
and partial thromboplastin times, and decreases in platelet 
count, but without increases in fibrin degradation product. 
The cause of the greater decrease in fibrinogen levels in C3- 
deficient animals in the first hour after E. coli endotoxin infu- 
sion is unknown. Nevertheless, these findings in total sug- 
gest that C3 does not appear to play an important role in 
endotoxin-induced coagulopathy. 

The influx of nentrophils into the lungs in C3-deficient 
animals and littermate controls was remarkably similar, sug- 
gesting that C3 is not essential for neutrophil migration. Con- 
trary to in vitro and in vivo studies that have suggested that 
complement activation plays a role in the lung injury associated 
with sepsis, the results of this study demonstrate that C3- 
deficient animals, with less activation of complement (higher 
C5 levels), had worse lung injury, as manifested by higher 
A-a gradients (despite lower cardiac filling pressures). Increased 
leakage of protein into the alveolar space after E. coli endo- 
toxin infusion (which approached statistical significance) was 
similar in C3-deficient animals and controls. It is possible 
that other potentially more sensitive measures of lung func- 
tion (compliance) and injury (histology, wet/dry lung ratio), 
not obtained in this investigation, might have further eluci- 

dated the mechanism of worse pulmonary injury in C3- 
deficient animals. Neverthdess, in this study, C3 actually pro- 
tects against endotoxin-induced lung injury, and nentrophil 
recruitment to the lung does not require C3. 

A number of studies in patients have shown that there is 
an association between the degree of complement activation 
and the severity of endotoxic shock and mortality (15, 18, 
44). The results of the present study suggest that the degree 
of complement activation in humans is not necessarily cans- 
ally related to the development of shock and lethality (15, 
18). In this study, control animals with more complement 
activation had less, not more, organ injury (heart, lung, and 
liver) than C3-deficient animals. Thus, in patients with septic 
shock, greater complement activation may represent only a 
marker of more severe endotoxemia and/or disease. 

It is important to recognize that this study demonstrates 
the net effect of C3 in E. coil endotoxic shock. It is still pos- 
sible that the activation of C3 in E. coli endotoxin shock is 
both beneficial, by playing an important role in the dearance 
of endotoxin, and detrimental, by participating in the acti- 
vation of C5-C9 and generating their inflammatory effects. 
In support of this are studies in primates with gram-negative 
bacteremia (28) and rats with endotox~nia (30) demonstrating 
that treatment of these animals with anti-C5a antibody 
decreases mortality and attenuates adult respiratory distress 
syndrome. Thus, it is possible that interfering with the acti- 
vation of C5-C9, but leaving certain functions of C3 intact, 
would be beneficial in septic shock. It is also important to 
recognize that, because in this study, we used E. coli endo- 
toxin reconstituted from an acetone powder as the source of 
endotoxin, it is possible that components of acetone-treated 
bacteria other than endotoxin may have played a role in the 
protection against shock and organ injury afforded by C3. 

This study raises important questions about potential ther- 
apies for the treatment of septic shock which are aimed at 
inhibiting and neutralizing the host inflammatory response 
(45). Although data from a variety of studies suggest that 
a number of endogenous mediators may play harmful roles 
in the pathophysiology of septic shock (15--18), it is clear from 
this and other studies (20-22) that these inflammatory medi- 
ators also play a pivotal role in host defense. In human septic 
shock, new antiinflammatory agents may likely be beneficial 
by inhibiting the harmful effects of these host mediators. How- 
ever, blockade of certain components of the inflammatory 
cascade such as the complement system could also result in 
less optimal host defense and worsen outcome (46). 
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