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Seminary 
Antibody neutralization studies have established interferon qr (IFN-3') as a critical mediator of 
endotoxic shock. The advent of IFN-3, receptor negative (IFN3,R-/-)  mutant mice has enabled 
a more direct assessment of the role of IFN-'y in endotoxin (lipopolysaccharide [LPS]-induced 
shock. We report that IFN3'R-/ -  mice have an increased resistance to LPS-induced toxicity, 
this resistance manifesting well before the synthesis and release of LPS-induced IFN-% LPS- 
induced lymphopenia, thrombocytopenia, and weight loss seen in wild-type mice were attenuated 
in IFN3,R-/-  mice. IFN3,R-/-  mice tolerated 100-1,000 times more LPS than the minimum 
lethal dose for wild-type mice in a D-galactosamine (D-GalN)/LPS model. Serum tumor necrosis 
factor (TNF) levels were 10-fold reduced in mutant mice given LPS or LPS/D-GalN. Bone marrow 
and splenic macrophages from IFN'yR- / -  mice had a four- to sixfold decreased LPS-binding 
capacity which correlated with similar reduction in CD14. Serum from mutant mice reduced 
macrophage LPS binding by a further 50%, although LPS binding protein was only 10% reduced. 
The expression of TNF receptor I (p55) and II (p75) was identical between wild-type and mutant 
mice. Thus, depressed TNF synthesis, diminished expression of CD14, and low plasma LPS- 
binding capacity, in addition to blocked IFN-3' signaling in the mutant mice, likely to combine 
to manifest in the resistant phenotype of IFN'yR- / -  mice to endotoxin. 

T he gram-negative bacterial wall constituent, endotoxin 
(LPS)., is the major active agent in the pathogenesis of 

septic shock (1). A shocklike state can be induced by a single 
injection of LPS into animals. This toxic syndrome, initiated 
after the entrance of LPS into the circulation, is mediated 
by macrophage-derived inflammatory cytokines. TNF-ot ap- 
pears to play a central role in the pathogenesis, as indicated 
by the inhibition of LPS-induced toxicity, by neutralizing 
anti-TNF-ot antibodies (2, 3) by and the deletion of the TNF- 
type I receptor (4, 5). 

IFN-'y exerts antiviral and immunostimulatory effects 
through macrophage and NK cell stimulation, and upregu- 
lates the expression of MHC class II antigens. IFN-y is pro- 
duced by activated T lymphocytes and NK cells and exerts 
its biologic activity through binding a unique cell surface 
receptor (6, 7). In previous investigations, it was shown that 
the administration of IFN-~" or neutralizing antibodies to 
IFN-3' modified the lethal outcome in several forms of endo- 
toxic shock and gram-negative bacterial infections (8-17), 
clearly implicating its importance at the time of its synthesis 
in the pathogenesis of endotoxic shock. 

The recent generation of IFN~/R-deficient mice (18, 19) 
has allowed improved definition of the in vivo influence of 
IFN-'y on TNF production and endotoxic shock. We report 
that the absence of functional IFN-'y signaling in IFN'ylk-/- 
mice markedly reduces LPS-induced toxicity. Key observa- 
tions contributing to this LPS resistance were lowered serum 
TNF levels and diminished expression of LPS receptors on 
macrophages/monocytes. 

Materials and Methods 
Animals. 7-10-wk-old 129 SV wild-type and IFN'yR-/- mice 

bred in our animal facility (Institute of Toxicology of the Swiss 
Federal Institute of Technology) were used. Experimental groups 
consisted of 5-10 mice. The generation of these mice was recently 
described (18). 

Reagents. LPS from Escherichia coli (serotype Ol11:B4) and 
FITC-conjugated LPS (serotype 0111:B4) were purchased from 
Sigma Chemical Co. (St. Louis, MO) and resuspended in pyrogen- 
free sterile saline. Rat anti-mouse monocyte-macrophage IgG 
(F4/80) was obtained from the American Type Culture Collection 
(Rockville, MD). Rat anti-mouse MAC-1 was purchased from 
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BMA Biomedicals (Augst, Switzerland). Goat anti-rat IgG con- 
jugated to PE was from Southern Biotechnology Associates (Bir- 
mingham, AL). Rabbit anti-mouse TNFR I (p55) and II (p75) 
was the generous gift of Genentech (South San Francisco, CA). 
Rabbit anti-murine CD14 antibody was produced in the labora- 
tory of Dr. Didier Heumann. D-galactosamine hydrochloride (D- 
GalN) 1 (Carl Roth GmbH & Co., Karlsruhe, Germany) was dis- 
solved in saline immediately before use. 

Determination of Serum TNF and LPS Binding Protein. Blood 
samples were obtained by retroorbital venipuncture. Serum con- 
centrations of TNF were estimated by a cytotoxicity assay with 
WEHI-164 clone 13 cells as previously described (20). Results were 
expressed in nanograms per milliliter in reference to the cytotoxic 
activity of standard murine TNF-cr LPS binding protein (LPB) 
was determined by RIA as described (21). Standard murine TNF-oe 
was obtained from Dr. W. Lesslauer (Hoffmann-La Roche AG, 
Basel, Switzerland). 

Experimental Protocol. Mice were injected intraperitoneally with 
either LPS alone (1, 10, 30, 100, 500, and 1,000/~g/mouse) or LPS 
(0.1, 1, or 10/zg) in combination with D-GalN (20 mg) in a saline 
solution of 200 #1 per dose. Blood was collected into heparinized 
tubes on the day before LPS administration for baseline values and 
at 1, 6, and 24 h after LPS challenge from animals anesthetized 
with methoxyflurane (Metofane; Pitman-Moore, Mundelein, IL). 
Blood plasma was separated immediately by centrifugation at 
1,000 g for 10 min and was frozen at -20~ for batch processing. 
Preliminary experiments showed TNF to peak at 1 h when com- 
pared with 30 min, 2 h, and 4 h. Thereafter, all TNF measure- 
ments were performed on control and 1-h plasma. Body weight, 
clinical signs, and mortality were recorded at regular intervals. 

Hematology and Clinical Chemistry. Heparinized blood was 
diluted (Cell Sheath SE-90L; Digitana, Switzerland) immediately 
after bleeding to minimize platelet aggregation, and standard hemo- 
grams were performed on a hematology analyzer (Sysmex E-2500; 
Digitana, Switzerland). Blood smears stained with Diff-Quik | 
(Dade, D~idingen, Switzerland) were read in parallel. Plasma 
aminotransferases were measured on a Cobas Fara Chemistry Ana- 
lyzer (Hoffmann-La Roche) using kits from Boehringer Mannheim 
(Mannheim, Germany). 

Flow Cytometric Analysis. Bone marrow cells from five wild type 
and five I F N y R - / -  mice were obtained by flushing the femoral 
marrow into PBS/0.5% heparin, pelleting at 300 g, and washing 
twice in PBS/1% BSA (PBS) at 4~ Spleen cells were isolated 
by passage through a size 80 mesh screen (Bellco Biotechnology, 
Vineland, NJ) and washing twice in PBS at 300 g. Rat anti-mouse 
F4-80 and CD11b IgG, and rabbit anti-mouse CD14 IgG were 
applied for 45 min, washed three times in PBS, and detected with 
goat anti-rat and goat anti-rabbit PE- and FITC-conjugated Ig 
(30 rain), respectively, followed by two washes in PBS and resuspen- 
sion for fluorescence analysis. LPS-FITC (1 and 10 #g/ml) was in- 
cubated with spleen and bone marrow cells in PBS in the pre- 
sence of 10% pooled (eight animals) wild-type plasma, pooled 
I F N ' y R - / -  murine plasma, or saline for 1 h at 4~ followed 
by three washes in PBS and resuspension immediately before mea- 
surement. CD14 dependence of LPS-FITC binding was establishing 
using rabbit antiserum neutralizing to CD14. This antisera was 
able to completely prevent LPS-FITC binding as assessed by FACS | 
analysis. Immunofluorescence analysis was performed on a FACScan | 

1 Abbreviations used in this paper: D-GaIN, D-galactosamine hydrochloride; 
LPB, LPS binding protein. 

(Becton Dickinson & Co., Mountain View, CA) using LYSIS II 
software. Clear LPS-FITC binding of cells was restricted to F4-80, 
MAC-1 gated cells (macrophages). 

Histology. Liver, kidneys, spleen, and lung were fixed in 4% 
buffered formaldehyde, cut at 5/zm, stained with hematoxylin and 
eosin, and evaluated microscopically. 

Statistics. TNF levels, relative fluorescence, hematology values, 
and weights were compared using the nonparametric Wilcoxon's 
signed ranks tests. Mortality data were interpreted with the one- 
sided Fisher's exact test. P values <0.05 were considered statisti- 
cally significant. Data are presented as mean _+ standard error. 

Results and Discussion 

Abundant evidence for the pathogenic roles of  TNF  and 
IFN-3, in endotoxic shock and gram-negative infections has 
been obtained primarily through demonstration of protec- 
tive effects after antibody neutralization of these cytokines 
(2-5, 8-17). The advent of mice deficient in their response 
to single cytokines has enabled the closer examination of poten- 
tial toxic interactions between these cytokines. This latter 
approach has unequivocally identified T NF  as a central medi- 
ator of endotoxic shock (4, 5). We present evidence confirming 
that IFN-3/is a key regulator of LPS toxicity. Although IFN-'y 
protein and m R N A  peak levels occur only 4-6 h after LPS 
administration (13, 22, 23) we demonstrate mitigated tox- 
icity already at 1 h after injection (reduced weight loss and 
thrombocytopenia) with marked differences at 6 h, suggesting 
the presence of important IFN-3~-mediated or primed sig- 
naling events early in the development of the toxic state. We 
therefore examined parameters likely to be of early patho- 
genic importance in order to elucidate the marked resistance 
of the I F N 3 ~ R - / -  mice to endotoxin. 

Resistance to Endotoxic Shock of l F N T R - / -  Mice. Wild- 
type mice receiving only 10/zg LPS appeared distressed and 
had watery diarrhea within 6 h of LPS injection, whereas 
I F N 3 ~ R - / -  mice tolerated up to 100 #g  without  demon- 
strating clinical changes. At LPS doses ~>500 /~g dose- 
dependent differences are lost between I F N ' y R - / -  and 
IFN3~R+/+ mice (data not shown), as is also the case for 
T N F R I  (P55) deficient mice and their wild-type counter- 
parts (4). Correlating with clinical appearance was a weight 
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Figure 1. Body weight loss after LPS injection. LPS (1-100/xg/mouse) 
was injected intraperitoneally into wild type (open bar) or IFN3'R-/- 
mice (crosshatched bars). Body weights were recorded before and 24 h after 
injection. Data are presented as mean percent of control body weight (100%) 
over 24 h. Three to five mice were used per group, mean 4- SE given. 
(*p < 0.02). 
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Figure 2. Hematological alterations after 
LPS administration. Leukocyte (A) and throm- 
bocyte (B) counts at 1, 6, and 24 h after LPS 
injection (0, 30, and 100 #g/mouse). (A) Total 
white blood cells (1,000/#1) in wild-type (A) 
and IFN?R- / -  mice (0) after LPS or saline 
injection. All treated mice became leukopenic. 
For differential leukocyte evaluation see Table 
1. Partial recovery by IFN3,R-/- mice can be 
seen at 24 h (*P <0.02). Mean -+ SE given. 
(B) Platelet counts (1,000/#1) in wild-type (A) 
and IFN3,R-/- mice (0) after LPS and sa- 
line injection. Mild thrombocytopenia is already 
evident at 1 h. Recovery of platelet counts oc- 
curred in LPS-treated mutant mice by 24 h 
(*p <0.05). Mean _+ SE given. 

loss, already apparent at 1 h in the 100-#g wild-type group 
(data not shown), which was marked at 24 h (Fig. 1). A se- 
vere weight loss (10% of body weight) was registered at 24 h 
in wild-type mice receiving the two highest LPS doses 
(p <0.02 wild-type versus mutant mice). Body weight loss 
was referable to severe dehydration due to diarrhea. 

Mice from all groups treated with LPS became leukopenic 
to a similar degree of severity within 1 h of LPS injection 
(Fig. 2 A). The leukopenia observed at 6 h comprised a se- 
vere absolute lymphopenia, monocytopenia, disappearance of 
eosinophils from peripheral blood, and an absolute neutrophilia 
(Table 1). This leukocyte pattern was independent of dose 
(data not shown). Neutrophila was more pronounced and 
leukocytosis less severe in negative mice (p <0.05) (Table 1). 
Hematologic alterations were similar in mice treated with 
LPS alone or with LPS and o-GaiN (data not shown). Marked 
toxic change with basophilic coloration, fine vaculation and 
DShle bodies, and a left shift with stages to metamyelocytes 
was evident in neutrophils of mutant  and normal mice. The 
recovery of total leukocyte counts at 24 h was significantly 
more rapid in I F N ' y R - / -  mice than in wild-type mice 
(t9 <0.02) with a clear trend apparent at 6 h (Fig. 2 A). 

Thrombocytopenia was already evident at 1 h, with levels 
dropping progressively for 24 h in wild-type mice (p <0.05), 
whereas most I F N ' y R - / -  mice reached nadir at 6 h with 
mild recovery of platelet number being observed at 24 h (Fig. 
2 B). Thus, in the absence of a functional IFN 'yR  system, 
hematologic and clinical signs of LPS toxicity are mitigated. 
The higher neutrophil count in LPS-treated I F N ' y R - / -  mice 
probably reflects reduced extravasation of neutrophils in re- 
sponse to reduced production of chemokines (IL-8-1ike pep- 
tides). T N F  levels are reduced and IFN-'y is nonsignaling in 
I F N 3 ' R - / -  mice; both are critical signals for the induc- 
tion of chemokine synthesis and secretion in extravascular 
tissues (24). 

I F N T R - / -  Mice Are Resistant to Endotoxic Shock and 
Hepatocellular Necrosis in the D-GalN Model. Wild-type mice 
administered >t0.1 #g  LPS in combination with o-GaiN suc- 
cumbed to acute liver failure 6-24 h after injection. In sharp 
contrast, 10 #g  LPS with  D-GaIN was lethal for only 25% 
of I F N ' y K - / -  mice (Table 2). Thus, 100-1,000 times more 
LPS was required to produce an equivalent outcome in 
I F N ' y R - / -  mice. The degree of protection observed in the 
T N F R  I-deficient mice with the LPS/D-GalN model (4, 5) 

Table 1. Differential Leukocyte Counts in LPS-treated IFNTR-  / - and IFNTR +/+ Mice 

Mouse Group WBC PMN M L E 

I F N ' y R - / -  Untreated* 12.5 _+ 2.0 0.7 + 0.2 0.4 _+ 0.1 11.1 _+ 1.7 0.3 + 0.1 
I F N ' y R + / +  Untreated* 13.9 + 1.3 0.8 + 0.1 0.4 + 0.2 12.4 +_ 0.8 0.3 _+ 0.1 
I F N 3 ' R - / -  1 #g LPS~ 7.1 _+ 0.4s 3.4 _+ 0.1 II 0.02 + 0.01 3.7 _+ 0.41 0 
I F N 3 ' K + / +  1 #g LPS* 5.7 _+ 0.6 S 2.3 _+ 0.3 II 0.03 _+ 0.01 3.2 _+ 0.41 0 

Values are mean + SE of the mean and represent 1,000 cells/#l blood. 
* Untreated mice received 20 mg D-GaIN in saline only. 
* LPS administered with 20 mg D-GalN; blood taken at t = 6 h. 
Wilcoxon's ranked sum test, comparison between + / +  and - / -  animals: 
S p <0.05 
II p <0.05 
I / ~  = 0.13. 
E, eosinophils; L, lymphocytes; M, monocytes; PMN, neutrophils; WBC, white blood cells. 
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Table 2. Mortality in IFNTR - / -  and IFNTR + / + Mice 
after LPS/D-Gal Administration 

I F N T R - / -  I F N T R + / +  
D-G~N LPS Dead/group Dead/group 

mg ~g/mouse 

20 0 0/5 0/5 
20 0.01 0/8 0/8 
20 0.1 0/8* 7/8 
20 1 0/8* 8/8 
20 10 2/8* 8/8 

0 10 0/4 0/4 

Mice received indicated dosages of D-GalN, E. coli LPS (0111:B4) in- 
traperitoneally in saline. All deaths indicated occurred within 12 h of in- 
jection. Surviving animals were observed for 1 wk. Experiment was 
repeated three times with consistent outcome (typical experiment given). 
" Fisher's exact test (one sided) p <0.02, demonstrating statistical differ- 
ence in overall survival rate between IFND'P. - / - and IFNyR. + / + mice 
groups. 

is similar to that of  the I F N D / R - / -  mice in this study. 100- 
fold enhancement of  sensitivity to LPS injection achieved 
through chronic bacille Calmette-Gu&in (BCG) infection was 
also recently used to demonstrated protection from lethality 
in I F N D / R - / -  mice (25). Alanine (ALT) and aspartate (AST) 
aminotransferases, enzyme markers of  hepatocellular necrosis, 
were elevated in all wild-type mice after 6 h of  LPS treat- 
ment,  an effect significantly reduced in I F N D ' R - / -  mice 
(Table 3). The elevation of ALT and AST seen in staphylococcal 
enterotoxin (SEB)-treated I F N ' r R + / +  mice was completely 
suppressed in I F N D ~ R - / -  mice (Table 3), suggesting that 
T cell activation-induced systemic toxicity is an event medi- 

ated at least in part through the I F N y R ,  as well as partly 
through the T N F R I ,  since similar protection was also ob- 
served in SEB-treated T N F R I  deficient mice (5). Markedly 
elevated aminotransferases in wild-type animals were associated 
with a destruction of hepatocytes, characterized by widespread 
pyknosis and karyorrhexis of hepatocyte nuclei, and cellular 
fragmentation (Fig. 3 A). Surviving IFND, R - / -  mice demon- 
strated only mild microvacuolar centrilobular degeneration 
and some cell dropout (Fig. 3 B). Since liver failure was 
markedly attenuated in I F N D ~ R - / -  mice, IFNyR-receptor-  
dependent events are clearly important for the generation of 
the acute liver necrosis in LPS/D-GalN toxicity. 

LPS-induced Serum T N F  Levels in I F N T R - / -  Mice Are 
Reduced. LPS administered together with D-GaIN induced 
a significant, dose-dependent synthesis and release of TNF 
in all animals, which was 10-fold less in IFND~R - / -  mice 
(Fig. 4 A). This clear difference was restricted to doses of 
LPS ~<30 #g  per mouse. Lack of clear dose-responsive tox- 
icity at high LPS levels was also observed in T N F R I  mice 
(4). Similar T N F  levels were obtained in mice injected with 
LPS alone (Fig. 4 B). Since serum T N F  was not detectable 
4 h after injection in either wild-type or I F N D / R - / -  mice, 
delayed synthesis can be excluded. After chronic BCG infec- 
tion and subsequent LPS sensitization, LPS treatment (25 
#g  per mouse) was recently shown to result in synthesis of 
TNF-cx and IL-lo~, 100- and 12-fold lower in I F N D ' R - / -  
mice, respectively (25). The observation that neutralization 
of IFN-3/ in  mice immediately before infection with E. coli 
reduced mortality wi thout  decreasing TNF levels, but that 
administering of IFN-3~ enhanced both mortality and TNF, 
suggests that the mechanism of TNF inhibition in I F N D / R - / -  
mice is perhaps different than that documented for antibody 
neutralization, and at least in models using live bacteria, IFN-3/ 
alone rather than T N F  and IFN-3/is critical in determining 

Table 3. Transaminase Serum Levels: LPS and SEB-treated I F N T R - / -  and IFN y +/+ Mice 

AST 

D-GalN Group IFN'yR - / - IFNyR + / + 

ALT 

IFNyR - / - IFN'yR + / + 

m g /k  g k~ g /mouse 
20 0 143 _ 9 
20 0.01 LPS 144 _+ 17 
20 0.1 LPS 209 _+ 50 
20 1 LPS 217 _+ 33 
20 10 LPS 153 _+ 110 
20 100 SEB 149 + 8 

0 100 SEB 68 _+ 12 

131 _+ 37 78 _+ 13 68 + 15 
118 + 16 50 _+ 6 46 + 29 
280 _+ 75* 96 + 32 222 + 167' 
863 _+ 288* 68 _+ 18 1,817 + 402* 
593 _+ 197' 282 _+ 78 2,040 + 309* 
316 _+ 46 S 60 + 16 143 + 23s 
166 _+ 20 39 _+ 7 39 _+ 21 

All AST ALT results represent mean values _+ SE from five to eight animals. Experiment was repeated three times with consistent outcome (typical 
experiment given, same as Table 2). Normal range (_+2 SD) AST = 54-170 U/liter, Normal range ALT = 32-114 U/liter. 
Wilcoxon's signed ranks test, comparison between I F N y R - / -  and IFND~R+ / + mice of each group: 
* 1o < 0 . 0 1 .  

* p <0.04. 
Sp = 0.09. 
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Figure 3. Liver necrosis in the LPS/D-GalN model. (.4) Necrosis, pyknosis, and karyorrhexis of hepatocytes in wild-type mouse given 1 #g LPS 
and 20 mg/kg D-GaIN. Death observed at 7 h. (6 h AST, 1,435 U/liter; ALT, 3,233 U/liter.) (B) IFN'yR-/-  mouse given same dose with normal 
morphology (euthanized at 7 h, 6 h AST, 119 U/liter; ALT 113 U/liter) (formalin fixed, hematoxylin-eosin stained), x 200. 

mortali ty (16, 17). The deficiency status of  the I F N 3 , R - / -  
mice would interrupt any homeostatic mechanisms depen- 
dent on IFN-3'  more thoroughly than short-term antibody 
neutralization, and likely resulted in the loss of priming mech- 
anisms necessary for the normal production of T N F  in this 
study. Previous investigations have shown that LPS-stimulated 
macrophages produce increased amounts of TNF when treated 
concomitantly with IFN-% which is regulated at the the level 
of  T N F  gene transcription and possibly of  m R N A  stability 
(26-29). IFN-'y reportedly enhances the expression of T N F R  

on several cell types by three- to fivefold (30-32). Since T N F  
induces its own synthesis in macrophages (33), low expres- 
sion of T N F R  could have potentially contributed to deficient 
T N F  synthesis in I F N ' y R - / -  mice, however flow cytometric 
analyses of  TNFILI  and II (Table 4) showed a remarkably con- 
sistent level of  receptor expression between mutant  and wild- 
type mice. The  possibility that reduced T N F  production in 
I F N 3 ' K - / -  mice was referable to decreased numbers of fixed 
macrophages was addressed by performing immunohistochem- 

A B 300~- 

1 
10 1 0.1 0 1 

LPS (pg) with 20 mg/kg D-GAL (1 h) LPS (pg) alone (lh) 

Figure 4. Serum TNF concentration 1 h after LPS and D-GalN (.4) 
or LPS (/3) injection. Wild-type mice (crosshatched bars) demonstrating 
markedly higher TNF levels in LPS/D-GalN model (.4) and LPS alone 
(B) than IFN3'R-/-  mice (open Mrs). D-GalN (alone)-treated mice pro- 
duced no TNF. Mean + SE. 

Table 4. Expression of  T N F R  and CD14 in Monocytes/ 
Macrophages* of I F N y R  + / + and IFNTR - / - Mice 

IFN'yR + / + IFN'yR - / - 
Receptor Cell source Mean FU Mean FU 

TNFRI Bone marrow 13.2 _+ 1.2' 12.2 + 1.0 
TNFRII  Bone marrow 8.5 + 0.6 7.5 _+ 0.9 

CD14 PBMC 12.4s 4.3 

CD14 Peritoneum 71.5 11.6 
CD14 Bone marrow 74.1 9.3 

* Monocytes/macrophages gated for with F4-80, and CDllb. 
* Data expressed in mean fluorescence units (five mice per group) with 
background fluorescence subtracted. Standard error is given. 
S Where means are not given data represent a typical result from a se- 
ries of at least three consistent independent experiments. 
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Figure 5. LPS receptor expression on macrophages. 
(A) Mean fluorescence (LPS-FITC binding) of bone 
marrow and splenic macrophages of wild-type mice 
(crosshatched bars) is markedly higher than that of 
IFN3,R-/- mice (open bars), n = five mice, *p <0.05. 
LPS-FITC binding was only detectable in F-480 posi- 
tive macrophages. Binding was carried out in the pres- 
ence of 10% wild-type plasma in PBS/1% BSA for 
60 rain (see Materials and Methods). (/3) Mean fluores- 
cence intensity of macrophages (wild-type cells) 
demonstrating >50% reduction in LPS-FITC binding 
in the presence of 10% pooled (IFNq'R-/-) plasma 
(~), compared with 10% pooled IFNyR+/+ plasma 
(c). Cells incubated without plasma (A) demonstrate 
marked reduction in fluorescence intensity. Binding 
could be completely inhibited with antisera to mouse 
CD 14 (data not shown). 

ical staining for F4-80 antigen-positive cells in spleen and liver, 
which demonstrated identical distribution, morphology, and 
numbers of macrophages in mutant and wild-type mice (data 
not shown). The dependence of LPS-induced effector func- 
tions of macrophages on IFN-% which thus contributes to 
the toxicity of LPS, has been hypothesized (33). The dra- 
matic reduction of LPS-induced synthesis and release of TNF 
into the serum of I F N 3 , R - / -  mice confirms the hypothe- 
sized role of IFN-y for TNF synthesis. 

Impaired Macrophage Recognition of LPS by IFN'yR-/-  
Mice. Since TNF levels were higher in wild-type mice, and 
given that TNF appears much earlier (1 h) than IFN- 3, (4-6 
h) in an endotoxic shock response (13, 22, 23), it appeared 
likely that monocyte-macrophages of wild-type mice were 
more sensitive to LPS than their mutant counterparts, par- 
ticularly since equivalent numbers of monocytes are present 
in wild-type and I F N y R - / -  mice (18). We examined the 
binding of LPS-FITC to spleen and bone marrow macrophages 
in the presence and absence of plasma pooled from untreated 
wild-type mice, in light of the recent reports that LPB en- 
hances the binding of LPS to the murine CD14 receptor (34, 
35). Wild-type macrophages possessed a four- to sixfold higher 
binding capacity for LPS-FITC than macrophages from 
I F N y R - / -  mice (Fig. 5 A, p <0.05). Consistent with this 
result was a four-to sevenfold higher CD14 expression (Table 
4). Macrophages demonstrated LPS-FITC binding that was 
markedly enhanced by the presence of plasma (Fig. 5 B), and 
inhibitable by anti-CD14 antisera (data not shown). These 
results suggest an apparent in vivo upregulation of the CD14 
receptor by the low levels of IFN-3, presumably present nor- 

mally in mice, which contrasts in vitro with data showing 
that human IFN-3, is able to markedly downregulate the ex- 
pression of human monocyte CD14, particularly in the pres- 
ence of LPS (36, 37). This downregulation is likely a high 
dose-dependent effect that, after the systemic release of IFN-3' 
in the presence of LPS, contributes to the turning off of 
LPS-mediated events. 

Plasma-mediated enhancement of LPS-FITC binding was 
more than 50% reduced in macrophages preincubated with 
pooled plasma from I F N y R - / -  mice (Fig. 5 B), suggesting 
that LPB is also reduced in these mice. RIA for LPB from 
a serum pool of eight positive mice, however, yielded 2.2 
_+ 0.2 #g/ml, and that of negative mice, 2.0 + 0.3 #g/ml, 
which does not explain the observed reduction of LPS-FITC 
binding. This may suggest the presence of additional factors 
in murine plasma capable of promoting LPS-binding to mac- 
rophages. LPS-FITC binding was restricted to F4-80 posi- 
tive macrophages, which also expressed MAC-1 (CD11b). 
Downregulation of CD14, LPB function, and the mecha- 
nism of reduced TNF synthesis in I F N ' y R - / -  mice are 
presently under investigation. 

In conclusion, we report that the toxicity of LPS is 
significantly reduced in IFNq, R - / -  mice, which are able 
to withstand the deleterious effects of 100-1,000 times more 
LPS in the D-GaIN sensitization model than wild-type mice. 
The combination of defects present in IFNq, R - / -  mice, in- 
cluding reduced TNF synthesis, impaired LPS recognition 
due to diminished CD14 expression and plasma-facilitated 
receptor binding, and blocked IFN-3' signaling, act in con- 
cert to seriously impair LPS-induced toxicity. 
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