H₂-Dependent Mixotrophic Growth of N₂-Fixing Azotobacter vinelandii[†]

TIT-YEE WONG AND ROBERT J. MAIER*

Department of Biology and McCollum-Pratt Institute, The Johns Hopkins University, Baltimore, Maryland 21218

Received 11 March 1985/Accepted 30 March 1985

Azotobacter vinelandii can grow with a variety of organic carbon sources and fix N_2 without the need for added H_2 . However, due to an active H_2 -oxidizing system, H_2 -dependent mixotrophic growth in an N-free medium was demonstrated when mannose was provided as the carbon source. There was no appreciable growth with either H_2 or mannose alone. Both the growth rate and the cell yield were dependent on the concentrations of both substrates, H_2 and mannose. Cultures growing mixotrophically with H_2 and mannose consumed approximately 4.8 mmol of O_2 and produced 4.6 mmol of O_2 per mmol of mannose consumed. In the absence of O_2 was produced, less O_2 was consumed, and cell growth was negligible. The rate of acetylene reduction in mixotrophic cultures was comparable to the rate in cultures grown in N-free sucrose medium. The rate of O_2 mannose uptake of cultures with O_2 was greater than with argon, whereas O_2 was unaffected by the addition of O_2 therefore, the role of O_2 in mixotrophic metabolism may be to provide energy for mannose uptake. A. vinelandii is not an autotroph, as attempts to grow the organism chemoautotrophically with O_2 or to detect ribulose bisphosphate carboxylase activity were unsuccessful.

Azotobacter vinelandii is an obligate aerobic common soil bacterium "capable of fixing nitrogen in a nitrogen-free medium with an organic carbon source" (1). Due to its rapid growth and high N₂ fixation rate, A. vinelandii is commonly used to study the physiology and biochemistry of N₂ fixation. Even though A. vinelandii is capable of oxidizing a wide variety of organic substrates, growth of A. vinelandii in most natural environments is thought to be severely limited by organic carbon (8). In addition to the production of NH₄⁺, nitrogenase evolves H_2 . An enzyme that apparently aids in the efficiency of the N_2 fixation process is hydrogenase. When fixing N₂, Azotobacter hydrogenase oxidizes the nitrogenase-evolved H₂ at high rates, and the electrons from H₂ are carried through an electron transport chain to O₂, yielding H₂O as the final product. H₂ oxidation is thought to serve primarily two beneficial purposes for N₂-fixing Azotobacter species (21, 27). These are to provide ATP, which could then be used in the nitrogenase reaction, and to augment respiratory protection by removal of O₂, thereby preventing damage to the O2-labile nitrogenase.

Due to an active H_2 oxidation system, some N_2 -fixing bacteria, such as *Rhizobium japonicum* (11), *Azospirillum* spp. (22), and *Derxia gummosa* (16), are capable of growing chemoautotrophically with H_2 and CO_2 . However, *Azotobacter* species are not autotrophic, as attempts to grow *A. vinelandii* and *Azotobacter chroococcum* this way have been unsuccessful (16; unpublished data). Nevertheless, we thought that H_2 might, in energy-limited conditions, supply sufficient energy for growth of this heterotrophic bacterium. In this report, we demonstrate growth and N_2 fixation of *A. vinelandii* that require both an inorganic energy source (H_2) and an organic carbon source. This type of growth is characteristic of mixotrophy (4, 19).

* Corresponding author.

(A preliminary account of this work has been presented [Abstr. Annu. Meet. Am. Soc. Microbiol. 1985, K32, p. 177].)

MATERIALS AND METHODS

Screening carbon sources for ability to support H2dependent growth. A. vinelandii OP was grown in nitrogenfree Burk (7) liquid medium containing 2% sucrose. A drop of mid-log-phase cells (approximately 2×10^7 cells) was spread evenly onto a carbon-free Burk agar plate. A Taxo carbohydrate disk (BBL Microbiology Systems, Cockeysville, Md.) was placed onto the agar plate for the following carbon sources (see Table 1): adonitol, arabinose, glucose, dulcitol, galactose, inositol, inulin, lactose, levulose, maltose, mannitol, mannose, melibiose, raffinose, rhamnose, salicin, sorbitol, sucrose, trehalose, and xylose. A sterile blank disk was also included as a control. Sterile saturated solutions of the other carbon sources used (see Table 1) were prepared. A sterile disk was saturated with the solution and placed onto the plate. The plates were then transferred to an anaerobic vented jar (product no. 60608; BBL). An amount equal to about 20% of the jar volume of either H₂ or Ar was injected into the container. The plates were incubated at 30°C for at least 3 days, and the plates were removed and checked for growth. For liquid growth, side-armed flasks (volume, 180 ml) containing 20 ml of N-free Burk medium with the indicated organic compound were autoclaved for 15 min. An aliquot (0.05 ml) of early-log-phase cells grown on Burk medium with 2% sucrose was then inoculated into each flask. The flasks were tightly stoppered with sterile rubber stoppers, and 50 ml of H₂ or Ar gas that had been filtered through a sterile membrane filter (pore size, 0.22 µm; Millipore Corp., Bedford, Mass.) was injected into the flasks. Excess pressure inside the flasks was then released by injecting a sterile needle through the stopper for 2 to 5 s. The flasks were then placed in a water bath shaker (30°C) at 250 rpm.

[†] Contribution number 1283 from the Department of Biology and McCollum-Pratt Institute.

TABLE 1. Growth of A. vinelandii in the presence of hydrogen or argon^a

H ₂ Ar	Carbon source		Growth of culture under:		
Adonitol - - - D(+)Arabinose + + + + + + - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	Caroon source	H ₂	Ar		
Note	Acetate	+	+		
Benzoate D(+)Cellobiose D(+)Cellobiose D(+)Cellobiose D(+)Galactose D(+)Galactose Methylglucoside Methylglucoside Myo-Inositol Itaconic acid D-D(-)Levulose D-Mannitol Phenol Propionate D(+)Raffinose D-Deoxyribose Salicin Sucrose Xylose D(+)Mannose D(+)Mannose D(+)Mannose D(+)Mannose D(+)Mannose D(+)Cellobiose D(+)Mannose D(+)Mannose D(+)Cellobiose			_		
Benzoate $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$ $+$	D(+)Arabinose	+/	+/-		
i-Erythritol + + α-L(-)Fucose - - D(+)Galactose + + Methylglucoside - - myo-Inositol - - Itaconic acid - - β-D(-)Levulose + + b-Mannitol + + Phenol + + Propionate + + D(+)Raffinose + + 2-Deoxyribose - - Salicin - - Sucrose + + Xylose - - D(+)Mannose + + Aconitate + + Aconitate + + Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + <td>Benzoate</td> <td>+</td> <td>+</td>	Benzoate	+	+		
α-L(-)Fucose - - - D(+)Galactose + + + Methylglucoside - - - myo-Inositol - - - Itaconic acid - - - B-D(-)Levulose + + + p-Mannitol + + + Phenol + + + Propionate + + + L-Naffinose + + + 2-Deoxyribose - - - Sucrose + + + Xylose - - - D(+)Mannose + + + Aconitate + + + Azelaic acid - - - Azelaic acid - - - Azelaic acid - - - B-D(-)Fructose + + + D(+)Glucose + + + B-D(-)Fructose - - -	D(+)Cellobiose	_	_		
D(+)Galactose Methylglucoside myo-Inositol Itaconic acid β-D(-)Levulose D-Mannitol Propionate Propionate D(+)Raffinose 2-Deoxyribose Salicin Sucrose 4 + + + + + + + + + + + + + + + + + +	i-Erythritol	+	+		
Methylglucoside - - myo-Inositol - - Itaconic acid - - β-D(-)Levulose + + D-Mannitol + + Phenol + + Propionate + + D(+)Raffinose + + 2-Deoxyribose - - Salicin - - Sucrose + + Xylose - - D(+)Mannose + - Aconitate + + Adipic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	α -L($-$)Fucose	_	_		
myo-Inositol - - Itaconic acid - - β-D(-)Levulose + + p-Mannitol + + Propionate + + p(+)Raffinose + + 2-Deoxyribose - - Salicin - - Sucrose + + Xylose - - D(+)Mannose + + Aconitate + + Azelaic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	D(+)Galactose	+	+		
Itaconic acid - - - -	Methylglucoside	_	_		
β-D(-)Levulose + + D-Mannitol + + Phenol + + Propionate + + D(+)Raffinose + + 2-Deoxyribose - - Salicin - - Sucrose + + Xylose - - D(+)Mannose + + Aconitate + + Azelaic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	myo-Inositol	_	_		
D-Mannitol + + + + + + + + + + + + + + + + + + +	Itaconic acid	_	_		
D-Mannitol + + + + + + + + + + + + + + + + + + +	β-D(-)Levulose	+	+		
Propionate + + D(+)Raffinose + + 2-Deoxyribose - - Salicin - - Sucrose + + Xylose - - D(+)Mannose + - Aconitate + + Adipic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + A-Lactose - - Maltose + +		+	+		
D(+)Raffinose + + + + + + + + + + + + + + + + + + +	Phenol	+	+		
D(+)Raffinose + + + + + + + + + + + + + + + + + + +	Propionate	+	+		
2-Deoxyribose Salicin Sucrose + + + + + + + + + + + + + + + + + + +		+	+		
Salicin Sucrose Sucro		_	_		
Xylose - - D(+)Mannose + - Aconitate + + Adipic acid - - Azelaic acid - - m-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +		_	_		
D(+)Mannose + - Aconitate + + Adipic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	Sucrose	+	+		
Aconitate + + Adipic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	Xylose	_	-		
Aconitate + + Adipic acid - - Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	D(+)Mannose	+			
Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +		+	+		
Azelaic acid - - n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	Adipic acid	_	_		
n-Butyrate + + Dulcitol - - Ethanol + + β-D(-)Fructose + + D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +		_	_		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		+	+		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		_	-		
D(+)Glucose + + + + + + Glutamate + + + + + + Hulin + + + + + + Hulin α-Lactose		+	+		
D(+)Glucose + + Glutamate + + Inulin + + α-Lactose - - Maltose + +	β-p(-)Fructose	+	+		
Glutamate + + Inulin + + α-Lactose - - Maltose + +		+	+		
Inulin + + α-Lactose - - Maltose + +		+	+		
Maltose + +		+	+		
Maltose + +	α-Lactose	_	_		
		+	+		
		+	+		
Pimelate		_	_		
		+	+		
D(-)Ribose		<u>-</u>	_		
		+	+		
~ D 111111111111			+		
2 20:0::0:			+/-		

 $[^]a$ Procedures are described in the text. Symbols: +, growth; -, no growth; +/-, very little growth.

Optical density at 540 mm was monitored; 0.1 optical density unit was equivalent to approximately 2.2×10^7 viable cells per ml. All growth experiments were performed in this closed gas system; therefore, concentrations of gases such as H_2 and O_2 decreased during the course of these experiments. All carbon sources were obtained from Sigma Chemical Co., St. Louis, Mo., with the exception of glucose and acetate, which were obtained from J. T. Baker Chemical Co., Phillipsburg, N.J.

Sugar uptake experiments. D-[U- 14 C]mannose and D-[U- 14 C]sucrose were purchased from Amersham Corp., Arlington Heights, Ill., and had specific activities of 300 and 552 mCi/mmol, respectively. A. vinelandii cells were grown in Burk medium with 2% mannose plus H_2 for 24 h. The cells were harvested and then washed three times with 50 mM phosphate buffer (pH 7.5). The cells were then suspended in carbon-free Burk medium to about 2×10^8 cells per ml. The culture was then incubated at 30°C for approximately 2 h to deplete the endogenous substrate. A 2-ml portion of the substrate-depleted sample was then transferred to a 15-ml

bottle, which was then tightly stoppered with a sleeve-type rubber stopper. Three milliliters of either H₂ or Ar was then injected into the bottle. A 30-µl volume of [14C]mannose solution (0.5 μCi) was injected along with cold mannose into the sample to give a final mannose concentration of 150 µM. At the times indicated (see Fig. 3), 0.1 ml of the sample was withdrawn from the bottle and then diluted into 4 ml of ice-cold phosphate buffer. A 2-ml portion of this diluted sample was filtered through a membrane filter (pore size, 0.22 µm; GSWP 024 00; Millipore), and the filter was washed twice with 10 ml of ice-cold phosphate buffer. The filters were then placed in 5 ml of Aquasol-2 (New England Nuclear Corp., Boston, Mass.), and radioactivity was counted in a Packard 3375 liquid scintillation spectrometer. Counting efficiency was 0.55. For [14C] sucrose uptake experiments, the same procedure as described above for mannose was used, except that the cells were grown in 2% sucrose instead of mannose before harvest. Control experiments on boiled cells demonstrated that there was no mannose or sucrose uptake in nonviable cells. Radioactivity counts in these experiments were less than 80 cpm, whereas similar experiments with viable cells gave counts of over 1,000 cpm after 5 min.

Other assays. Whole-cell N₂ fixation by A. vinelandii was performed as described by Bishop et al. (2). Gas chromatography conditions for monitoring C₂H₄ production were as described previously (9). Carbon dioxide production was determined by measuring thermal conductivity with a Perkin Elmer Sigma 3B gas chromatograph. A column (2 m by 2 mm [inner diameter]) with Porapak N (80-100 mesh) was used. The carrier flow rate was 20 ml of helium per min, the detector and injector temperatures were 175°C, and the oven temperature was 50°C. For measuring the CO₂ produced during the 9-h incubation period (see Table 3), the culture was acidified with trichloroacetic acid, to ensure elimination of dissolved CO₂, before removal of the gas sample.

RESULTS

Forty carbon sources were tested for their ability to support growth of A. vinelandii on N-free agar plates in a closed gas system with either H_2 or Ar added at a partial pressure of 20%. The results are shown in Table 1. With the carbon sources that supported some growth, added H_2 did not facilitate growth. However, growth of A. vinelandii was observed on the mannose-containing plates in an atmosphere containing H_2 (Table 1), whereas no growth was observed when argon was substituted for H_2 .

The effect of added H_2 on the growth rate of A. vinelandii in carbon-containing N-free media was subsequently tested.

TABLE 2. Doubling time of A. vinelandii grown with different carbon sources with either H₂ or Ar added^a

Substrate	Doubling time (h) for culture grown under		
	H ₂	Ar	
Acetate	4.0	3.3	
Glucose	2.8	3.0	
Sucrose	3.0	3.0	
Mannose	3.8	>14.0	
Xylose	NG^b	NG	
Trehalose	NG	NG	

a Procedures are described in the text.

^b NG, No growth.

530 WONG AND MAIER J. BACTERIOL.

The cell doubling times on mannose and other carbon sources were compared (Table 2). The addition of H_2 did not stimulate the growth rate in any of the carbon substrates tested, with the exception of mannose. Therefore, H_2 -dependent mixotrophic growth was dependent on the use of mannose as a carbon source. The doubling time of A. vinelandii in mannose decreased from more than 14 h (without H_2) to 3.8 h (with H_2). This difference in growth rate due to added H_2 was observed only when cells were fixing N_2 . In the presence of NH_4^+ (0.05% NH_4 Cl in the medium) doubling times were 4.8 h (with H_2) and 4.5 h (without H_2).

We studied the effects of the H₂ concentration on the growth rate in mannose-containing medium. Figure 1 shows the growth curves of N₂-fixing A. vinelandii in 2% mannose plus various amounts of H₂. Both the growth rate and the cell yield increased with increasing amounts of H₂. Maximum growth was achieved by the addition of 25% partial pressure H₂. Further addition of H₂ above 25% partial pressure did not increase growth rate or yield. Figure 2 shows the dependence of cell growth on the carbon source mannose, in the presence of saturating (25% partial pressure) H₂. In this experiment, H₂ was added after 24 h of incubation with mannose (Fig. 2, arrow) to show the dependence of growth on the added H₂; there was no appreciable growth before H₂ addition (Fig. 2). The results show a concentration dependence effect on mannose for both growth rate and yield. Maximum growth occurred at 2% mannose concentration;

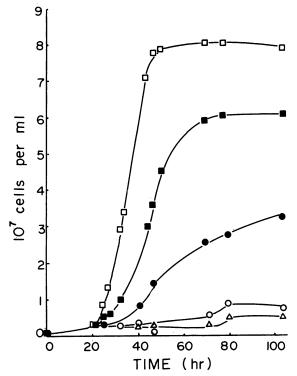


FIG. 1. Growth curves of N_2 -fixing A. vinelandii in 2% mannose and various concentrations of H_2 . H_2 was injected into the 150-ml stoppered flask 18 h after inoculation, and the cells were incubated and growth was monitored as described in the text. Cultures were grown under 50 ml of H_2 (\square), 30 ml of H_2 plus 20 ml of Ar (\blacksquare), 10 ml of H_2 plus 40 ml of Ar (\blacksquare), 5 ml of H_2 plus 45 ml of Ar (\square), or 50 ml of Ar (\triangle).

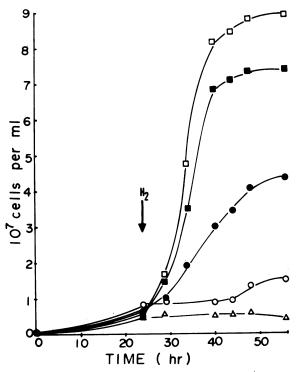


FIG. 2. Growth curves of N_2 -fixing A, vinelandii with added H_2 plus 2% mannose (\square), 1% mannose (\square), 0.5% mannose (\bigcirc), 0.125% mannose (\bigcirc), or no mannose (\triangle). Arrow shows the time at which H_2 (final 25% partial pressure) was added. Other conditions were as described in the legend to Fig. 1.

higher concentrations (3 and 6% [wt/vol]) were also tested (data not shown).

To confirm H_2 - and mannose-dependent mixotrophic metabolism in A. vinelandii, we measured cell yield, CO_2 production, mannose consumption, and oxygen consumption in cultures with H_2 or argon added (Table 3). The cultures with added H_2 exhibited high rates of H_2 uptake

TABLE 3. Cell yield, CO₂ production, and mannose and O₂ consumption during mixotrophic growth of A. vinelandii^a

Experiment no.	Addition	Total CO ₂ production (mmol)	Mannose consump- tion (mmol)	Oxygen consump- tion (mmol)	Cell yield (viable cell number [10 ⁷])
1	H ₂	0.63	0.147	0.67	4.4
2	H_2	0.83	0.168	0.86	6.0
3	Ar	0.32	0.07	0.29	< 0.5
4	Ar	0.40	0.05	0.35	< 0.5

"The H_2 consumption rate for experiments 1 and 2 at the time of harvest was approximately 2.4 μ mol of H_2 per h per 10^8 cells. All four cultures (10 ml of medium in a 180-ml flask) were initially inoculated with 2×10^6 cells and then incubated in a closed-flask system as described in the text. Gas samples (0.2 ml) were removed at the time of inoculation of each flask and again (9 h later) when cell yield was determined; the total amount of O_2 consumed or CO_2 produced was then calculated. Carbon dioxide was determined by gas chromatography as described in the text. Oxygen was determined polarographically as described previously (15). Mannose (the only organic carbon source in the medium) was also determined initially and at 9 h on 0.5-ml liquid samples after cells were removed by centrifugation. Mannose was quantitated by the phenol sulfuric acid method for hexose determination as described previously (12). Appropriate standards of CO_2 , O_2 , and mannose were made which included concentrations both above and below the concentrations of the experimental samples.

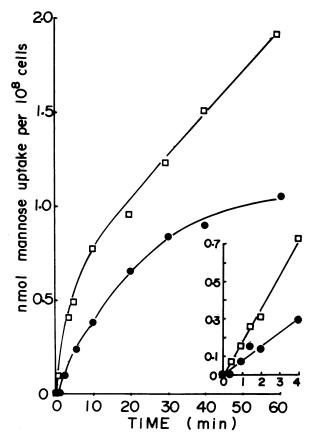


FIG. 3. [¹⁴C]mannose uptake of A. vinelandii with added H₂ (□) or Ar (●). Cultures were incubated with [¹⁴C]mannose for the indicated time with either H₂ or Ar, the cultures were rapidly filtered and washed on the filter, and radioactivity was determined as described in the text. The radioactivity count for the zero time culture (the sample of cells removed immediately after inoculation into the [¹⁴C]mannose solution) was subtracted from all the other counts before the data were processed. Each point is the average of two independent determinations. (Inset) a similar experiment performed over a 4-min total time period.

activity (see the legend to Table 3) and grew from an inoculum of 2×10^6 cells to over 4×10^7 cells (Table 3, experiments 1 and 2). In contrast, the cultures without H_2 grew very little (to less than 5×10^6 cells). The cultures incubated with H_2 also consumed mannose, used an average of 4.8 mmol of O_2 , and produced 4.6 mmol of O_2 per mmol of mannose used for the two experiments with O_2 production and O_2 production via sugar metabolism by aerobic bacteria (10, 20).

The cultures incubated with Ar rather than H₂ still used mannose, produced some CO₂, and respired oxygen (Table 3, experiments 3 and 4). Therefore, these cultures are capable of some mannose-dependent metabolism, yet this must not be sufficient for growth. Even though no growth was observed in this condition, the fact that substrate was used and O₂ was consumed is still consistent with current views on maintenance metabolism requirements of bacteria (23). The lack of growth with mannose plus argon is not inconsistent with previous work on mannose metabolism in A. vinelandii; previous researchers have noticed that N₂-fixing A. vinelandii utilizes mannose for the production of acid, yet the cells are not capable of growth (24). Apparently, they did not test the effect of adding H₂.

To study the roles of mannose and H₂ in mixotrophic growth, we performed sugar uptake experiments. We compared the accumulated ¹⁴C from mannose over a 60-min period in cells supplied with H₂ versus that in cells supplied with Ar (Fig. 3). The amount of ¹⁴C accumulated in cells was greater in the presence of H₂ than without H₂. CO₂ measurements ruled out the possibility that mannose merely accumulated unchanged in the cells during transport studies. Little CO₂ production was observed until the substrate mannose was added, and CO₂ production was twofold greater in the presence of H₂ compared with that observed in the presence of argon; this indicates that the mannose transported is actually metabolized. Since sugars are rapidly metabolized after they enter cells, it is important to determine sugar uptake in the first few minutes. This gives a more accurate determination of the real uptake rate of the labeled sugar. The uptake rates of [14C]mannose over a 4-min period in cultures grown with and without H₂ are also shown in Fig. 3 (inset). The uptake rate with H₂ provided was greater than that without H₂; after 4 min, the cells with H₂ accumulated more than two times as much 14C-sugar as did cells without H_2 . The results (Fig. 3) suggest that one role of H_2 may be to provide energy for mannose uptake. Also, the results demonstrate that the probable role of mannose is indeed as an intracellular carbon substrate for cells, rather than another role, such as providing a suitable osmotic environment for H₂-dependent growth. As a control, we also determined the effect of H₂ and Ar on [14C]sucrose uptake. In this case, there was no difference in ¹⁴C accumulation in cells with and without H_2 provided (data not shown).

Even though A. vinelandii took up mannose, it is important to rule out CO₂ as a major carbon source under H₂-dependent growth conditions. Attempts to detect appreciable whole-cell CO₂ fixation or ribulose bisphosphate carboxylase activity in permeabilized cells in H₂ plus mannose growth conditions were unsuccessful. Likewise, many attempts to grow A. vinelandii chemoautotrophically with H₂ were unsuccessful.

The rate of acetylene reduction by cells growing exponentially in mannose plus H_2 was 412 nmol of C_2H_4 produced per h per 10^8 cells. This value is comparable to the rates of N_2 fixation for this bacterium in N-free medium reported by others (3, 17). It is also comparable to the N_2 fixation rate we have observed in N-free sucrose medium (up to 550 nmol of C_2H_4 per h per 10^8 cells). Therefore, A. vinelandii growing mixotrophically presumably has no difficulty producing the energy and reductant needed for N_2 fixation.

DISCUSSION

Mixotrophy is the term used to describe the ability of an organism to use inorganic and organic compounds concomitantly as energy sources or carbon sources or both (4). We have demonstrated that the heterotrophic N₂-fixing bacterium A. vinelandii can grow mixotrophically. This type of growth in A. vinelandii was dependent on H₂ as the inorganic energy source and mannose as the organic carbon substrate. Most of the thiobacilli, hydrogen bacteria, nitrifying bacteria, and iron-oxidizing bacteria use the Calvin cycle to fix CO₂ and are chemolithoautotrophic. Mixotrophic growth is thought to be common among these chemolithoautotrophic bacteria (13, 18, 19). However, mixotrophy has been demonstrated in only a few heterotrophic bacteria. The anaerobe Desulfovibrio sp. can use either H₂ or organic compounds as the energy source and couples the electrons through cytochrome-dependent, energy-conserving reactions. Al532 WONG AND MAIER J. BACTERIOL.

though *Desulfovibrio* sp. can use H₂ as an energy source, it is not autotrophic, as it lacks the enzymes unique to autotrophy, namely phosphoribulokinase and ribulose diphosphate carboxylase. The mixotrophic mode of metabolism we describe for *A. vinelandii* is probably closest to the aerobic chemolithotrophic heterotroph metabolism of *Thiobacillus perometabolis* (14). This bacterium grows solely on organic compounds, but it can also oxidize sulfur compounds for energy generation. Also, some iron-oxidizing bacteria have been described that couple the oxidation of iron to organic substrate utilization (5, 6). Like *A. vinelandii*, these bacteria are heterotrophs; they do not fix CO₂ via the Calvin cycle.

Even though there are only these few reports of mixotrophy among heterotrophs, it has been considered that mixotrophy, even among nonautotrophic bacteria, may actually be widespread in natural environments (4, 13, 25). Since A. vinelandii is a common soil bacterium and H_2 is available in soil, mixotrophic growth of this heterotrophic bacterium may occur in nature. The metabolic flexibility of A. vinelandii may be of survival significance to the organism during competition in natural environments.

The basis for the requirement for H_2 to obtain growth on mannose is not known. However, since cells were able to grow on mannose plus NH_4^+ (non- N_2 -fixing conditions), H_2 is required only when cells are fixing N_2 . We suggest that the added energy demand for N_2 fixation requires the additional energy source, namely H_2 . It may be important that under N_2 -fixing conditions, the activity of hydrogenase markedly increases (compared with cells grown with NH_4^+), facilitating input of energy from H_2 . Another possible role for H_2 is suggested by sugar transport studies. These studies showed that added H_2 can help support mannose uptake by A. vinelandii. Therefore, the role of H_2 probably includes not only production of ATP for N_2 fixation but also energy for mannose uptake.

A. vinelandii can grow in a variety of organic carbon sources and fix N₂ without the need for added H₂. However, H₂-dependent mixotrophic growth in N-free media by this organism was dependent on the use of mannose. Mannose must be a poor energy source for A. vinelandii; no growth was observed in mannose alone (without H₂). We have found a specific condition under which hydrogenase, with its associated electron transport pathway (26), can supply enough energy to permit N₂ fixation and growth in the presence of a poor carbon substrate. It is very important to rule out the possibility that A. vinelandii is an autotroph. Our attempts as well as attempts by others (16) to grow A. vinelandii autotrophically with H₂ have not been successful. Also, we have been unable to detect appreciable CO₂ fixation or the key CO₂-fixing enzyme, ribulose bisphosphate carboxylase, in cultures grown in H₂.

ACKNOWLEDGMENTS

This work was supported in part by grant 84-CRCR-1-1406 from the U.S. Department of Agriculture competitive research grants program.

LITERATURE CITED

- Becking, J. H. 1974. Family II. Azotobacteraceae Pribram 1933, 5, p. 253. In R. E. Buchanan and N. E. Gibbons (ed.), Bergey's manual of determinative bacteriology, 8th ed. The Williams & Wilkins Co., Baltimore.
- Bishop, P. E., D. M. L. Jarlenski, and D. R. Hetherington. 1980.
 Evidence for an alternative nitrogen fixation system in

- Azotobacter vinelandii. Proc. Natl. Acad. Sci. U.S.A. 77:7342-7346.
- Bishop, P. E., D. M. L. Jarlenski, and D. R. Hetherington. 1982. Expression of an alternative nitrogen fixation system in Azotobacter vinelandii. J. Bacteriol. 150:1244-1251.
- Bowien, B., and H. S. Schlegel. 1981. Physiology and biochemistry of aerobic hydrogen-oxidizing bacteria. Annu. Rev. Microbiol. 35:405-452.
- Brierley, C. C., J. A. Brierley, P. R. Norris, and D. P. Kelly. 1980. Metal-tolerant microorganisms of hot acid environments. Soc. Appl. Bacteriol. Tech. Ser. 15:39-51.
- Brierley, J. A., P. R. Norris, D. P. Kelly, and N. W. de Roux. 1978. Characteristics of a moderately thermophilic and acidophilic iron-oxidizing *Thiobacillus*. Eur. J. Appl. Microbiol. Biotechnol. 5:291-299.
- Burk, D. 1930. The influence of oxygen gas upon the organic catalysis of nitrogen fixation by *Azotobacter*. J. Phys. Chem. 34:1195-1209.
- 8. Gordon, J. K. 1981. Introduction to the nitrogen fixing prokaryotes, p. 781-794. In M. Starr, H. Stolp, H. G. Truper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, a handbook on the habitats, isolation, and identification of bacteria, vol. 1. Springer-Verlag, New York.
- Graham, L. A., L. W. Stults, and R. J. Maier. 1984. Nitrogenase-hydrogenase relationships in *Rhizobium japonicum*. Arch. Microbiol. 140:243-246.
- Gunsalus, I., and C. W. Shuster. 1961. Energy-yielding metabolism in bacteria, p. 1-58. In I. C. Gunsalus and R. Y. Stanier (ed.), The bacteria: a treatise on structure and function, vol. 2. Academic Press, Inc., N.Y.
- Hanus, F. J., R. J. Maier, and H. J. Evans. 1979. Autotrophic growth of H₂-uptake positive strains of *Rhizobium japonicum* in an atmosphere supplied with hydrogen. Proc. Natl. Acad. Sci. U.S.A. 76:1788-1792.
- Keleti, G., and W. H. Lederer. 1974. Handbook of micromethods for the biological sciences. Van Nostrand Rienhold Co., New York.
- Kelly, D. P. 1981. Introduction to the chemolithotrophic bacteria, p. 997-1004. *In M. P. Starr*, H. Stolp, H. Truper, A. Balows, and H. G. Schlegel (ed.), The prokaryotes, a handbook on the habitats, isolation, and identification of bacteria, Vol. 1. Springer-Verlag, N.Y.
- London, J., and S. C. Rittenberg. 1967. Thiobacillus perometabolis nov. sp., a non autotrophic Thiobacillus. Arch. Mikrobiol. 59:218-225.
- Maier, R. J., and D. M. Merberg. 1982. Rhizobium japonicum mutants that are hypersensitive to repression of H₂ uptake of oxygen. J. Bacteriol. 150:161-167.
- Pedrosa, F. O., J. Dobereiner, and M. G. Yates. 1980. H₂-dependent growth and autotrophic carbon dioxide fixation in *Derxia*. J. Gen. Microbiol. 119:547-551.
- Riddle, G. D., J. G. Simonson, B. J. Hales, and H. D. Braymer. 1982. Nitrogen fixation system of tungsten-resistant mutants of Azotobacter vinelandii. 152:72-80.
- 18. Rittenberg, S. C. 1969. The roles of exogenous organic matter in the physiology of chemolithotrophic bacteria. Adv. Microb. Physiol. 3:159-196.
- Rittenberg, S. C. 1972. The obligate autotroph—the demise of a concept. Antonie Leeuwenhoek J. Microbiol. Serol. 38:457-478.
- Roberts, R. B., P. H. Abelson, D. B. Cowie, E. T. Bolton, and R. J. Brittin. 1957. Studies of biosynthesis in *Escherichia coli*. Carnegie Institute of Washington Publication no. 607.
- Robson, R. L., and J. R. Postgate. 1980. Oxygen and hydrogen in biological nitrogen fixation. Annu. Rev. Microbiol. 34:183-207.
- 22. Sampaio, M.-J. A. M., E. M. R. de Silva, J. Dobereiner, M. G. Yates, and F. O. Pedrosa. 1981. Autotrophy and methylotrophy in *Derxia gummosa*, *Azospirillum brasilense* and *A. lipoferum*, p. 444. *In* A. H. Gibson and W. E. Newton (ed.), Current perspectives in nitrogen fixation. Elsevier/North-Holland Publishing Co., New York.
- 23. Tempest, D. W., and O. M. Neijsset. 1984. The status of YATP

- and maintenance energy as biologically inerpretable phenomena. Annu. Rev. Microbiol. 38:459-486.
- 24. Thompson, J. P., and V. D. Skerman. 1979. Azotobacteraceae: the taxonomy and ecology of the aerobic nitrogen-fixing bacteria. Academic Press, Inc., New York.
- 25. Whittenbury, R., and D. P. Kelly. 1977. Autotrophy: a conceptual phoenix. Symp. Soc. Gen. Microbiol. 27:121-149.
- 26. Wong, T. Y., and R. J. Maier. 1984. Hydrogen-oxidizing elec-
- tron transport components in nitrogen-fixing Azotobacter vinelandii. J. Bacteriol. 159:348-352.
- 27. Yates, M. G., and C. C. Walker. 1980. Hydrogenase activity and hydrogen evolution by nitrogenase in nitrogen-fixing Azotobacter chroococcum, p. 95-110. In W. E. Newton and W. H. Orme-Johnson (ed.), Nitrogen fixation, vol. 1. Free-living systems and chemical models. University Park Press, Baltimore.