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Summary 
The properties and outcome of an immune response are best predicted by the lymphokine phenotype 
of the responding T cells. Cytokines produced by CD4 + T helper type 1 (Thl) T cells mediate 
delayed type hypersensitivity (DTH) and inflammatory responses, whereas cytokines produced 
by Th2 T cells mediate helper T cell functions for antibody production. To determine whether 
induction of Th2-1ike cells would modulate an inflammatory response, interleukin 4 (IL-4) was 
administered to animals with experimental allergic encephalomyelitis (EAE), a prototypic 
autoimmune disease produced by Thl-like T cells specific for myelin basic protein (MBP). IL-4 
treatment resulted in amelioration of clinical disease, the induction of MBP-specific Th2 cells, 
diminished demyelination, and inhibition of the synthesis of inflammatory cytokines in the central 
nervous system (CNS). Modulation of an immune response from one dominated by excessive 
activity of Thl-like T ceils to one dominated by the protective cytokines produced by Th2-1ike 
T cells may have applicability to the therapy of certain human autoimmune diseases. 

I mmune deviation was originally defined as the induction 
of a T cell-dependent antibody response in the absence 

of delayed type hypersensitivity (DTH) (1, 2). More recent 
studies have demonstrated that in a normal immune response, 
CD4 + T lymphocytes differentiate into effector populations 
that produce restricted sets of cytokines and perform specific 
functions (3-5). These populations are polarized into Thl 
lymphocytes, which play a major role in DTH responses by 
secreting IL-2 and IFN-3', and Th2 lymphocytes, which are 
involved in antibody-mediated responses by secreting IL-4, 
IL-5, and IL-10. Thus, immune deviation would be charac- 
teristic of a response where Th2 cells predominate. Autoim- 
mune diseases can be similarly subdivided into those medi- 
ated by Thl-like cells with primarily inflammatory 
manifestations and those mediated by Th2-1ike cells whose 
manifestations are secondary to autoantibody containing im- 
mune complexes (6). As the Thl and Th2 subpopulations 
interact and crossregulate each other (7-9), one approach to 
the immunotherapy of inflammatory autoimmune disease 
might involve the antigen-specific deviation of an immune 
response dominated by a Thl type response to a Th2 type 
response. 

The in vitro requirements for the induction of IL-4-pro- 

ducing Th2-1ike ceils are now well established. It appears that 
IL-4 itself may play the most dominant role in the differenti- 
ation of naive T cells toward a Th2-1ike phenotype (10). Using 
superantigens as a model antigen, we have recently demon- 
strated that administration of IL-4 during the period of T 
cell activation primes T cells in vivo for IL-4 production in 
a strictly antigen-specific fashion (11). If this mechanism is 
also valid for T ceils activated by autoantigens, administra- 
tion of IL-4 during the course of an inflammatory autoim- 
mune disease could prime developing autoreactive T cells for 
IL-4 production and may prevent the tissue damaging effects 
of autoreactive Thl ceils. 

Experimental allergic encephalomyelitis (EAE) is an auto- 
immune disease characterized by relapsing paralysis and cen- 
tral nervous system (CNS) inflammation and demyelination, 
features reminiscent of the human disease, multiple sclerosis 
(12). In experimental animals, EAE can be induced in sus- 
ceptible strains by the adoptive transfer of myelin basic pro- 
tein (MBP)-specific CD4 + Thl-like lines, but not Th2 lines 
(13, 14). Here we have studied the effects of IL-4 treatment 
in mice in which EAE was induced by the transfer of short- 
term cultured, highly pathogenic MBP-primed T cells. The 
treatment resulted in induction of MBP-reactive Th2-1ike 
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cells, considerable amelioration of EAE, reduced demyelina- 
tion, and reduced inf lammatory cytokine gene expression 
in the CNS.  

Materials and Methods 

Mice. Female SJL mice were purchased from The Jackson Lab- 
oratory (Bar Harbor, ME). All mice used were between 8 and 12 wk 
of age. Experiments were done under an approved protocol in ac- 
cordance with the animal use guidelines of the National Institutes 
of Health. 

Antibodies, Cytokines, and Reagents. MBP was purified from 
guinea pig spinal cords as previously described (15). The purified 
murine rIL-4 had a biologic activity of 2 x 106 U//~g. Purified 
rat anti-mouse IL-4 (mAb 11Bll) was the generous gift of Dr. W. 
E. Paul (National Institute of Allergy and Infectious Diseases 
[NIAID], Bethesda, MD). 

Adoptive Transfer of EAE. Donor SJL/J mice were primed at 
the flanks and shoulders of 400 #g of guinea pig MBP in complete 
Freund's adjuvant as described (16). 10 d later, draining lymph node 
cells were harvested and 8 x 106 cells were stimulated in 2 ml 
with MBP (25 #g/m1) for 4 d. CeLls (3 x 107 in 0.2 ml PBS) were 
immediately injected intravenously into syngeneic, naive recipients. 
Mice received an injection of encephalitogenic T cells on day 0, 
and either PBS or Ib4 (1 #g every 8 h) on days 0-11 or 6-11. Mice 
were monitored daily and a mean clinical score was assigned for 
each group using the following scale (17): 0, no abnormality; 1, 
a limp tail; 2, moderate hind limb weakness; 3, severe hind limb 
weakness; 4, complete hind limb paralysis; 5, quadriplegia or 
premoribund state. 

In experiments modifying the encephalitogenicity of MBP- 
specific T cells in vitro, anti-IL-4 (mAb 11Bll [18, 19], 10/~g/ml) 
or IL-4 (1,000 U/m1) were present during antigenic stimulation. 
After two antigen stimulations, cells were resuspended in PBS (3 x 
107 cells/0.2 ml) and injected into naive SJL recipients. 

Histopathology. On day 25 post transfer, mice were perfused 
with PO4 buffered 2.5% glutaraldehyde. CNS tissue was removed 
and thin slices were prepared of all levels of the neuraxis as de- 
scribed (16). 1-/ira sections of tissue stained with toluidine blue 
were examined by light microscopy in a blinded fashion. Inflam- 
mation was graded as follows: -, no inflammatory cells; _% a few 
positive cells; +, organization of inflammatory infiltrates around 
blood vessels; + +, extensive perivascular cuffing with extension 

Table 1. Modification of Encephalitogenicity by In Vitro 
Stimulation of MBP-specific Lymph Node Cells in the Presence 
of lL-4 or Anti-IL-4 

In vitro 
treatment Incidence Mean onset Mortality 

day 
None 5/5 7 0 
Anti-IL-4 5/5 5 3 
IL-4 0/5 - - 

Lymph node cells from MBP-primed mice were cultured in vitro in the 
presence of MBP and media, anti-IL-4, or IL-4 for two cycles of antigen 
stimulation (total 18 d of culture). Recovered cells were then injected 
into naive SJL recipients and mice were monitored daily for clinical signs 
of EAE (17). 

into the adjacent subarachnoid space; + + +, extensive perivascular 
cuffing with increasing subarachnoid inflammation. Demyelination 
was scored according to the following scale: -, no demyelination; 
_+, a few, scattered, naked axons; +, small groups of naked axons; 
+ +, large groups of naked axons; + + +, confluent loci of demy- 
elination. 

Lymphokine Assays. 25 d (experiments 1 and 2) or 32 d (ex- 
periment 3) after cell transfer, the animals were killed and CD4 § 
T cells were purified as described (20). CD4 + T cells (3 x 105) 
were cultured in the presence of irradiated T cell-depleted spleen 
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Figure 1. Amelioration of EAE by IL-4 treatment. MBP-specific LNC 
were transferred into naive SJL/J mice which subsequently received either 
IL-4 (1 #g every 8 h) from days 0-11 or 6-11 or PBS intraperitoneally. 
Mean clinical scores represent groups of five mice from days 0-22 and three 
mice thereafter (A), groups of five mice from days 0-25 and four mice 
thereafter (B), or groups of six mice from days 0-10 and two mice there- 
after (C). The decrease in number of mice was due to sampling for histology, 
CNS gene expression, and peripheral lymphocyte cytokine production. 
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Hgure 2. Pathologic analysis of the CNS of control and IL-4-treated 
mice. (.4) PBS administration days 0-11, 32 d post transfer; L6 spinal cord; 
dorsal columns. A diffusely demyelinated lesion (demyelinated axons seen 
at arrows) is overlaid by infiltrates of lymphocytes and macrophages in the 
subarachnoid space. Toluidine blue stained, 1 micrometer epoxy section; 
original magnification x875. (B) IL-4 administration days 0-11, 32 d post 
transfer; L6 spinal cord, dorsal columns. A few infiltrating hematogenous 
cells (arrows) can be seen in the subarachnoid space whereas the underlying 
white matter has a normal appearance; original magnification x875. 

cells (2 x 1@) from normal SJL/J mice in the presence or absence 
of MBP (50/~g/ml). After 48 h, supernatants were removed and 
assayed by bioassay for IL-2 and IL4 and by ELISA for IFN-7 (18, 
19). Results are expressed as units per milliliter of each cytokine. 

CNS Gene Expression. The CNS was removed and R.NA ex- 
tracted using RNAzol (Cinna/Biotecs, Friendswood, TX). RNA 
was purified and the coupled reverse transcriptase (RT)-PCR per- 
formed as described (21). Briefly, RNA samples (3.0/A of 0.5/zg/ml) 
were reverse transcribed with Superscript RT (BRL, gockville, MD) 
and cytokine-specific primers were used to amplify selected cytokines. 
For each gene product, the optimum number of cycles (achieving 
a detectable concentration well below saturating conditions) was 
determined experimentally. To verify that equal amounts of RNA 
were added in each ILT-PCR. reaction, primers for HPkT were 
used in each experiment. Values for specific cytokines were nor- 
realized to hypoxanthine phosphoribosyl transferase (HPRT) values. 
Amplified PCR products were detected by Southern blot analysis 
and the resulting signal quantitated with a Phosphorimager (Mo- 
lecular Dynamics, Sunnyvale, CA). 

Results and Discussion 
Since is has been previously shown that IL-4 itself is a crit- 

ical factor required for the generation of Th2-1ike cells in vitro 
and in vivo (11, 18, 19), T cells from MBP-sensitized mice 
were activated in vitro with MBP in the presence or absence 
of IL-4. Very aggressive encephalitogenic T cells were pro- 
duced when T cells were cultured with MBP in the presence 
of anti-IL-4, whereas T cells activated with MBP in the pres- 
ence of IL-4 had markedly reduced encephalitogenicity 
(Table 1). 

As MBP-reactive T cells lost their encephalitogenicity after 
in vitro priming with IL-4 and MBP (Table 1), we examined 
the ability of IL-4 to modify disease and lymphokine pheno- 
type of MBP-reactive CD4 + T cells in vivo. SJL/J mice 
were treated with either PBS or IL-4 (1 /zg every 8 h for 
11 d) immediately after the adoptive transfer of encephalito- 
genic T cells. Administration of IL-4 from days 0-11 post 
transfer resulted in a dramatic reduction of clinical disease; 
after cessation of IL-4 therapy, the treated animals appeared 
to be protected from severe disease for up to 35 d following 
cell transfer (Fig. 1). Since IL-4 has been well characterized 
as a cytokine with marked inhibitory effects on macrophage 
activation and cytokine production (22, 23), it is possible that 
its therapeutic effects were secondary to the downregulation 
of cytokine production by resident or recruited inflamma- 
tory cells in the CNS. However, administration of IL-4 during 
the period of establishment of CNS inflammation (days 6-11 
after transfer) in one experiment only delayed disease onset 
(Fig. 1 B), while in another had modest effects on disease 
severity (Fig. 1 C). Thus, direct suppression of the produc- 
tion of inflammatory cytokines such as IL-1 and TNF-ot by 
exogenous IL-4 during establishment of CNS inflammation 
appears to be a minor component of its therapeutic action. 

Histopathologic evaluation of the CNS of IL-4-treated mice 
vs. PBS-treated controls demonstrated a marked reduction 
of demyelination throughout the CNS in the IL-4-treated 
animals, yet only modest differences in levels, of inflamma- 
tion throughout the neuraxis (Fig. 2 and Table 2). This sug- 
gested that inflammatory cells were able to gain access to the 
CNS parenchyma, but that the factors necessary for the de- 
velopment of demyelination and paralysis were reduced. The 
interaction of the integrin, c~431 (very late antigen type 4 
[VLA-4]), with its counter-receptor vascular cell adhesion 
molecule type 1 (VCAM-1) on endothelial cells appears to 
be necessary for the entry of the MBP-specific T ceils into 
the CNS as the encephalitogenicity of T cell clones corre- 
lates with ot4/~1 expression and mAbs to ot431 can inhibit 
the induction of EAE (14, 24, 25). It is unlikely that IL-4 
inhibits the entry of MBP-specific T cells into the CNS as 
IL-4 has been shown to augment the expression of VCAM-1 
on endothelial ceils (26, 27) and therefore might be expected 
to facilitate the entry of T cells to the CNS. 

To determine if IL-4 treatment enhanced the development 
of MBP-specific Th2-1ike cells in vivo, freshly isolated, pe- 
ripheral CD4 + T cells were stimulated in vitro with MBP 
and the levels of production of various cytokines examined. 
T cells from paralyzed animals that had received either PBS 
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T a b l e  2. Pathologic Analysis of Mice Receiving IL-4 or PBS 

Trea tmen t  

PBS IL-4 PBS IL-4 

Locat ion Inf lammat ion Demyel ina t ion  

Exper iment  1 

Exper iment  2 

Ce reb rum + + / +  + + / + + +  + / -  + 

Cervical cord + + + + + - 

Thoracic  cord + - + + - 

U p p e r  lumbar  cord + - + + / +  - 

Ce reb rum + / -  + + + - + 

Cervical cord + - + + / +  + + - 

Thoracic cord + + - - 

U p p e r  lumbar  cord + / + + / + - - 

Summary of pathologic analysis of CNS of  mice receiving IL-4 or PBS (Experiment 1, 32 d post transfer; Experiment 2, 25 d post transfer). 
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Figure 3. MBP-specific IL-2, IFN-% 
and I1:4 production by peripheral 
CD4 + T cells from mice receiving ei- 
ther PBS (days 0-11), 1I.-4 (days 6-11), 
or 1I.-4 (days 0-11). 
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Figure 4. Cytokine gene expression in the CNS. Relative levels of 
cytokine gene expression in the CNS were determined at day 25 post transfer. 
Cytokine gene expression was normalized to HPRT and then compared 
with the gene expression in the PBS-treated animals. 

or IL-4 (days 6-11) produced IL-2 and IFN-% but little or 
no IL-4, whereas T cells from IL-4-treated, healthy animals 
showed a marked increase in IL-4 production upon antigenic 
stimulation (Fig. 3). It is interesting to note that T cells from 
IL-4-treated animals produced amounts of IL-2 and IFN-'y 
equivalent to or greater than those produced by T cells from 
the PBS-treated controls suggesting that the induction of 
MBP-specific Th2 cytokines was not accompanied by a down- 
regulation of MBP-specific Thl  cells. 

Gene expression of TNF-o~ and IL-2 in the target organ, 
the CNS, was decreased severalfold only in animals treated 
with IL-4 from days 0-11 (Fig. 4), but levels of IFN-3/were 
similar to those seen in controls. The levels of IL-4 mRNA 

in CNS tissues were variable and unrelated to the experimental 
protocol or clinical course. However, one should be cautious 
in the interpretation of these data because of differences in 
the magnitude and cell types of the inflammatory infiltrates. 

Collectively these data indicate that the therapeutic effects 
of IL-4 on EAE (Fig. 1) strongly correlated with the induc- 
tion or enhancement of MBP-specific Th2-1ike cells in the 
treated animals (Fig. 3). Previous approaches to the therapy 
of EAE have shown that disease can be prevented by inhibi- 
tion of T cell receptor-target cell interactions (28), by induc- 
tion of oral tolerance (29), by inhibition of entry of cells into 
the CNS (14, 24, 25), or by neutralization of inflammatory 
cytokines (16, 30-33). Our data are consistent with a model 
where production of IL-4 or other Th2 cytokines (e.g., IL- 
10) modulates disease activity by antagonizing the effects of 
pathogenic Thl cytokines, such as IFN-% thereby inhibiting 
the production of inflammatory mediators such as TNF-tx 
by CNS macrophages or glial cells (Fig. 4). Very similar mech- 
anisms may be operative in "infectious" transplantation toler- 
ance (34), in the suppression of Thl  cells in chronic infec- 
tious diseases such as leprosy (35), and in the maintenance 
of peripheral tolerance in a transgenic model of autoimmune 
diabetes (36). 

It is likely that autoantigen-specific T cells which are not 
yet committed to the Thl  and Th2 pathway are constantly 
being exported from the thymus during the course of a chronic 
autoimmune disease. The ability to generate Th2 populations 
that can ameliorate disease even in the presence of pathogenic 
Thl cells raises the possibility that strategies designed to aug- 
ment Th2 activity may have therapeutic ef~cacy in many au- 
toimmune diseases mediated by Thl cells, including multiple 
sclerosis. 
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