Skip to main content
The Journal of Experimental Medicine logoLink to The Journal of Experimental Medicine
. 1994 Dec 1;180(6):2297–2308. doi: 10.1084/jem.180.6.2297

Hypoxia/reoxygenation-mediated induction of astrocyte interleukin 6: a paracrine mechanism potentially enhancing neuron survival

PMCID: PMC2191781  PMID: 7964502

Abstract

To elucidate mechanisms underlying neuroprotective properties of astrocytes in brain ischemia, production of neurotrophic mediators was studied in astrocytes exposed to hypoxia/reoxygenation (H/R). Rat astrocytes subjected to H/R released increased amounts of interleukin (IL) 6 in a time-dependent manner, whereas levels of tumor necrosis factor and IL-1 remained undetectable. IL-6 transcripts were induced in hypoxia and the early phase of reoxygenation, whereas synthesis and release of IL-6 antigen/activity occurred during reoxygenation. Elevated levels of IL-6 mRNA were due, at least in part, to increased transcription, as shown by nuclear runoff analysis. The mechanism stimulating synthesis and release of IL-6 antigen by astrocytes was probably production of reactive oxygen intermediates (ROIs), which occurred within 15-20 minutes after placing hypoxia cultures back into normoxia, as the inhibitor diphenyl iodonium inhibited the burst of ROIs and subsequent IL-6 generation (blockade of nitric oxide formation had no effect on ROI generation or IL-6 production). Enhanced IL-6 generation was also observed in human astrocytoma cultures exposed to H/R. Survival of differentiated PC12 cells exposed to H/R was potentiated by conditioned medium from H/R astrocytes, an effect blocked by neutralizing anti-IL-6 antibody. In a gerbil model of brain ischemia, IL-6 activity was lower in the hippocampus, an area sensitive to ischemia, compared with IL-6 activity in the cortex, an area more resistant to ischemia. IL-6 antigen, demonstrated immunohistochemically, was increased in astrocytes from ischemic regions of gerbil brain. These data suggest that H/R enhances transcription of IL-6, resulting in increased translation and release of IL-6 antigen after the burst of ROI generated early during reoxygenation. Release of IL-6 from astrocytes could exert a paracrine neurotrophic effect in brain ischemia.

Full Text

The Full Text of this article is available as a PDF (2.1 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arthur F. E., Shivers R. R., Bowman P. D. Astrocyte-mediated induction of tight junctions in brain capillary endothelium: an efficient in vitro model. Brain Res. 1987 Nov;433(1):155–159. doi: 10.1016/0165-3806(87)90075-7. [DOI] [PubMed] [Google Scholar]
  2. Banker G. A. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science. 1980 Aug 15;209(4458):809–810. doi: 10.1126/science.7403847. [DOI] [PubMed] [Google Scholar]
  3. Benveniste E. N. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol. 1992 Jul;263(1 Pt 1):C1–16. doi: 10.1152/ajpcell.1992.263.1.C1. [DOI] [PubMed] [Google Scholar]
  4. Chomczynski P., Sacchi N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem. 1987 Apr;162(1):156–159. doi: 10.1006/abio.1987.9999. [DOI] [PubMed] [Google Scholar]
  5. Chung I. Y., Norris J. G., Benveniste E. N. Differential tumor necrosis factor alpha expression by astrocytes from experimental allergic encephalomyelitis-susceptible and -resistant rat strains. J Exp Med. 1991 Apr 1;173(4):801–811. doi: 10.1084/jem.173.4.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colletti L. M., Remick D. G., Burtch G. D., Kunkel S. L., Strieter R. M., Campbell D. A., Jr Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest. 1990 Jun;85(6):1936–1943. doi: 10.1172/JCI114656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Cross A. R., Jones O. T. The effect of the inhibitor diphenylene iodonium on the superoxide-generating system of neutrophils. Specific labelling of a component polypeptide of the oxidase. Biochem J. 1986 Jul 1;237(1):111–116. doi: 10.1042/bj2370111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Curnutte J. T., Kuver R., Scott P. J. Activation of neutrophil NADPH oxidase in a cell-free system. Partial purification of components and characterization of the activation process. J Biol Chem. 1987 Apr 25;262(12):5563–5569. [PubMed] [Google Scholar]
  9. Fontana A., Fierz W., Wekerle H. Astrocytes present myelin basic protein to encephalitogenic T-cell lines. Nature. 1984 Jan 19;307(5948):273–276. doi: 10.1038/307273a0. [DOI] [PubMed] [Google Scholar]
  10. Frei K., Malipiero U. V., Leist T. P., Zinkernagel R. M., Schwab M. E., Fontana A. On the cellular source and function of interleukin 6 produced in the central nervous system in viral diseases. Eur J Immunol. 1989 Apr;19(4):689–694. doi: 10.1002/eji.1830190418. [DOI] [PubMed] [Google Scholar]
  11. Frei K., Siepl C., Groscurth P., Bodmer S., Schwerdel C., Fontana A. Antigen presentation and tumor cytotoxicity by interferon-gamma-treated microglial cells. Eur J Immunol. 1987 Sep;17(9):1271–1278. doi: 10.1002/eji.1830170909. [DOI] [PubMed] [Google Scholar]
  12. Frohman E. M., Frohman T. C., Dustin M. L., Vayuvegula B., Choi B., Gupta A., van den Noort S., Gupta S. The induction of intercellular adhesion molecule 1 (ICAM-1) expression on human fetal astrocytes by interferon-gamma, tumor necrosis factor alpha, lymphotoxin, and interleukin-1: relevance to intracerebral antigen presentation. J Neuroimmunol. 1989 Jul;23(2):117–124. doi: 10.1016/0165-5728(89)90030-1. [DOI] [PubMed] [Google Scholar]
  13. Galea E., Feinstein D. L., Reis D. J. Induction of calcium-independent nitric oxide synthase activity in primary rat glial cultures. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10945–10949. doi: 10.1073/pnas.89.22.10945. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hama T., Miyamoto M., Tsukui H., Nishio C., Hatanaka H. Interleukin-6 as a neurotrophic factor for promoting the survival of cultured basal forebrain cholinergic neurons from postnatal rats. Neurosci Lett. 1989 Oct 9;104(3):340–344. doi: 10.1016/0304-3940(89)90600-9. [DOI] [PubMed] [Google Scholar]
  15. Hatakeyama T., Matsumoto M., Brengman J. M., Yanagihara T. Immunohistochemical investigation of ischemic and postischemic damage after bilateral carotid occlusion in gerbils. Stroke. 1988 Dec;19(12):1526–1534. doi: 10.1161/01.str.19.12.1526. [DOI] [PubMed] [Google Scholar]
  16. Henn F. A., Haljamäe H., Hamberger A. Glial cell function: active control of extracellular K + concentration. Brain Res. 1972 Aug 25;43(2):437–443. doi: 10.1016/0006-8993(72)90399-x. [DOI] [PubMed] [Google Scholar]
  17. Jackson R. J., Standart N. Do the poly(A) tail and 3' untranslated region control mRNA translation? Cell. 1990 Jul 13;62(1):15–24. doi: 10.1016/0092-8674(90)90235-7. [DOI] [PubMed] [Google Scholar]
  18. Janeczko K. The proliferative response of S-100 protein-positive glial cells to injury in the neonatal rat brain. Brain Res. 1991 Nov 8;564(1):86–90. doi: 10.1016/0006-8993(91)91355-5. [DOI] [PubMed] [Google Scholar]
  19. Kitagawa K., Matsumoto M., Oda T., Niinobe M., Hata R., Handa N., Fukunaga R., Isaka Y., Kimura K., Maeda H. Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience. 1990;35(3):551–558. doi: 10.1016/0306-4522(90)90328-2. [DOI] [PubMed] [Google Scholar]
  20. Koga S., Ogawa S., Kuwabara K., Brett J., Leavy J. A., Ryan J., Koga Y., Plocinski J., Benjamin W., Burns D. K. Synthesis and release of interleukin 1 by reoxygenated human mononuclear phagocytes. J Clin Invest. 1992 Sep;90(3):1007–1015. doi: 10.1172/JCI115913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Korsching S. The neurotrophic factor concept: a reexamination. J Neurosci. 1993 Jul;13(7):2739–2748. doi: 10.1523/JNEUROSCI.13-07-02739.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kourembanas S., Hannan R. L., Faller D. V. Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest. 1990 Aug;86(2):670–674. doi: 10.1172/JCI114759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kull F. C., Jr, Besterman J. M. Drug-induced alterations of tumor necrosis factor-mediated cytotoxicity: discrimination of early versus late stage action. J Cell Biochem. 1990 Jan;42(1):1–12. doi: 10.1002/jcb.240420102. [DOI] [PubMed] [Google Scholar]
  24. Kushima Y., Hatanaka H. Culture of neuronal cells from postnatal rat brain: application to the study of neurotrophic factors. Prog Neuropsychopharmacol Biol Psychiatry. 1992 Sep;16(5):617–633. doi: 10.1016/0278-5846(92)90019-b. [DOI] [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  27. Madri J. A., Pratt B. M., Tucker A. M. Phenotypic modulation of endothelial cells by transforming growth factor-beta depends upon the composition and organization of the extracellular matrix. J Cell Biol. 1988 Apr;106(4):1375–1384. doi: 10.1083/jcb.106.4.1375. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Matsuura Y., Tatsumi M., Enami K., Morikawa S., Yamazaki S., Kohase M. Biological function of recombinant IL-6 expressed in a baculovirus system. Lymphokine Cytokine Res. 1991 Jun;10(3):201–205. [PubMed] [Google Scholar]
  29. McCarthy K. D., de Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol. 1980 Jun;85(3):890–902. doi: 10.1083/jcb.85.3.890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. McCord J. M. Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med. 1985 Jan 17;312(3):159–163. doi: 10.1056/NEJM198501173120305. [DOI] [PubMed] [Google Scholar]
  31. Minami M., Kuraishi Y., Satoh M. Effects of kainic acid on messenger RNA levels of IL-1 beta, IL-6, TNF alpha and LIF in the rat brain. Biochem Biophys Res Commun. 1991 Apr 30;176(2):593–598. doi: 10.1016/s0006-291x(05)80225-6. [DOI] [PubMed] [Google Scholar]
  32. Monner D. A. An assay for growth of mouse bone marrow cells in microtiter liquid culture using the tetrazolium salt MTT, and its application to studies of myelopoiesis. Immunol Lett. 1988 Dec;19(4):261–268. doi: 10.1016/0165-2478(88)90152-6. [DOI] [PubMed] [Google Scholar]
  33. Müller H. W., Seifert W. A neurotrophic factor (NTF) released from primary glial cultures supports survival and fiber outgrowth of cultured hippocampal neurons. J Neurosci Res. 1982;8(2-3):195–204. doi: 10.1002/jnr.490080209. [DOI] [PubMed] [Google Scholar]
  34. Nakafuku M., Satoh T., Kaziro Y. Differentiation factors, including nerve growth factor, fibroblast growth factor, and interleukin-6, induce an accumulation of an active Ras.GTP complex in rat pheochromocytoma PC12 cells. J Biol Chem. 1992 Sep 25;267(27):19448–19454. [PubMed] [Google Scholar]
  35. Nakai S., Mizuno K., Kaneta M., Hirai Y. A simple, sensitive bioassay for the detection of interleukin-1 using human melanoma A375 cell line. Biochem Biophys Res Commun. 1988 Aug 15;154(3):1189–1196. doi: 10.1016/0006-291x(88)90266-5. [DOI] [PubMed] [Google Scholar]
  36. Nitta T., Steinman L., Sato K. [An analysis of lymphokine gene expression within astrocytoma]. No Shinkei Geka. 1992 Jul;20(7):763–768. [PubMed] [Google Scholar]
  37. Ogawa S., Clauss M., Kuwabara K., Shreeniwas R., Butura C., Koga S., Stern D. Hypoxia induces endothelial cell synthesis of membrane-associated proteins. Proc Natl Acad Sci U S A. 1991 Nov 1;88(21):9897–9901. doi: 10.1073/pnas.88.21.9897. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Ogawa S., Gerlach H., Esposito C., Pasagian-Macaulay A., Brett J., Stern D. Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium. Increased monolayer permeability and induction of procoagulant properties. J Clin Invest. 1990 Apr;85(4):1090–1098. doi: 10.1172/JCI114540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Pechan P. A., Chowdhury K., Seifert W. Free radicals induce gene expression of NGF and bFGF in rat astrocyte culture. Neuroreport. 1992 Jun;3(6):469–472. doi: 10.1097/00001756-199206000-00003. [DOI] [PubMed] [Google Scholar]
  40. Petito C. K., Morgello S., Felix J. C., Lesser M. L. The two patterns of reactive astrocytosis in postischemic rat brain. J Cereb Blood Flow Metab. 1990 Nov;10(6):850–859. doi: 10.1038/jcbfm.1990.141. [DOI] [PubMed] [Google Scholar]
  41. Rymsa B., Wang J. F., de Groot H. O2-. release by activated Kupffer cells upon hypoxia-reoxygenation. Am J Physiol. 1991 Oct;261(4 Pt 1):G602–G607. doi: 10.1152/ajpgi.1991.261.4.G602. [DOI] [PubMed] [Google Scholar]
  42. Satoh T., Nakamura S., Taga T., Matsuda T., Hirano T., Kishimoto T., Kaziro Y. Induction of neuronal differentiation in PC12 cells by B-cell stimulatory factor 2/interleukin 6. Mol Cell Biol. 1988 Aug;8(8):3546–3549. doi: 10.1128/mcb.8.8.3546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Schreck R., Rieber P., Baeuerle P. A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J. 1991 Aug;10(8):2247–2258. doi: 10.1002/j.1460-2075.1991.tb07761.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Shreeniwas R., Koga S., Karakurum M., Pinsky D., Kaiser E., Brett J., Wolitzky B. A., Norton C., Plocinski J., Benjamin W. Hypoxia-mediated induction of endothelial cell interleukin-1 alpha. An autocrine mechanism promoting expression of leukocyte adhesion molecules on the vessel surface. J Clin Invest. 1992 Dec;90(6):2333–2339. doi: 10.1172/JCI116122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Stuehr D. J., Fasehun O. A., Kwon N. S., Gross S. S., Gonzalez J. A., Levi R., Nathan C. F. Inhibition of macrophage and endothelial cell nitric oxide synthase by diphenyleneiodonium and its analogs. FASEB J. 1991 Jan;5(1):98–103. doi: 10.1096/fasebj.5.1.1703974. [DOI] [PubMed] [Google Scholar]
  46. Toulmond S., Vige X., Fage D., Benavides J. Local infusion of interleukin-6 attenuates the neurotoxic effects of NMDA on rat striatal cholinergic neurons. Neurosci Lett. 1992 Sep 14;144(1-2):49–52. doi: 10.1016/0304-3940(92)90713-h. [DOI] [PubMed] [Google Scholar]
  47. Youker K., Smith C. W., Anderson D. C., Miller D., Michael L. H., Rossen R. D., Entman M. L. Neutrophil adherence to isolated adult cardiac myocytes. Induction by cardiac lymph collected during ischemia and reperfusion. J Clin Invest. 1992 Feb;89(2):602–609. doi: 10.1172/JCI115626. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Experimental Medicine are provided here courtesy of The Rockefeller University Press

RESOURCES