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Summary 
In vivo experiments were performed to determine whether the cross-linking of membrane im- 
munoglobulin (mlg) D on mature B cells, in the absence of T cell help, leads to B cell death. 
Mice were injected with either a monoclonal antibody (mAb) that cross-links mlgD effectively 
or a mAb that binds to mlgD avidly but cross-links it to a limited extent, and effects on B 
cell number and B cell Ia, mlgM, and mlgD expression were observed. In most experiments, 
mice were pretreated with anti-interleukin 7 mAb to prevent the generation of new bone marrow 
B cells, and with anti-CD4 mAb to prevent the generation of T cell help. In some experiments, 
mice also received anti-Fc3,RII mAb to prevent cross-linking of mlgD with Fc'yRII, and cobra 
venom factor to prevent possible mlg-complement receptor interactions and complement-mediated 
killing of B cells. The results of these studies demonstrate that (a) even limited cross-linking 
of mlgD on mature B cells can lead to B cell death; (b) increased cross-linking of mlgD leads 
to increased B cell death; (c) the loss of B cells is first detected 2 d after anti-IgD mAb injection 
and increases during the subsequent 3 d; (d) sustained modulation of mlgD may be necessary 
to cause B cell death; (e) mlgM a~ but not mlgM bri~h' B cells are lost in mice injected with anti- 
IgD mAbs; and (f) T cell help prevents or minimizes B cell death. 

T he two-signal theory of B lymphocyte activation predicted 
that an interaction between antigen and B cell mem- 

brane immunoglobulin (mlg) 1 would trigger a B cell- ac- 
tivating event that would lead, in the presence of additional 
signals, to clonal expansion and antibody production, but, 
in the absence of additional signals, to death (1). Since this 
theory was proposed, the cross-linking orB cell mlg has been 
shown to costimulate B cell proliferation and differentiation 
in the presence of such stimuli as T cell-produced cytokines 
(2, 3) and T cell membrane costimulatory molecules (4, 5), 
while the cross-linking of mlg on newly generated B cells 
has been shown to lead to B cell unresponsiveness and death 
(6-8). The ultimate effects of mlg cross-linking on mature 
B cells, in the absence of additional stimuli, have, however, 
been less well defined. Cross-linking of mlg, in the absence 
of T cell help, stimulates enhanced B cell expression of receptors 
involved in proliferation and cellular interactions (9-11) and, 
under some conditions, can stimulate DNA synthesis, al- 

1 Abbreviations used in this paper: GerMS, affinity-purified goat anti-mouse 
IgD antibody; HEL, hen egg lysozyme; HNA, HBSS supplemented with 
10% newborn bovine serum and 0.2% sodium azide; mlg, membrane 
immunoglobulin. 

though clonal expansion and antibody secretion are not in- 
duced (12-16). It is not known, however, whether these ac- 
tivated B cells eventually return to a resting state, survive 
but become anergic, or die. This issue has been difficult to 
resolve in vitro, where unstimulated B cells have a short life 
span and start to undergo apoptosis within 24 h (17). Study 
of the effects of mlg cross-linking on B cell life span has also 
been difficult, in part because of a long-standing controversy 
about whether resting B cells live for a long or short time 
in vivo (18-22). Recent experiments that have either labeled 
dividing B cells and B cell precursors in vivo (21) or used 
antibodies to IL-7 to prevent the in vivo generation of new 
B cells (22) have provided compelling evidence that most ma- 
ture B cells have a life span that is measurable in weeks, rather 
than days. This conclusion has made it reasonable to ques- 
tion whether the cross-linking of B cell mlg, in the absence 
of additional signals, shortens that life span. To investigate 
this, we have injected mice with anti-IgD antibodies, including 
two rat IgG2a anti-IgD mAbs that bind to IgD with similar 
avidity but differ considerably in their abilities to cross-link 
mlgD and activate B cells in a T cell-independent fashion 
(23). In most of these experiments, the generation of new 
B cells was blocked by pretreating mice with anti-IL-7 mAb 
(22), and the generation of T cell help was blocked by pre- 
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treating mice with anti-CD4 mAb (24). In addition, in some 
experiments, potential complement-mediated killing of B cells 
and potential inhibitory interactions between mlg and Fc'yRII 
were blocked by treating mice with cobra venom factor (25) 
and anti-FcyRII mAb (26), respectively. The results of these 
experiments demonstrate that anti-IgD antibody treatment 
under these conditions causes B cells to die over a 2- to 7-d 
period, defines differences in the susceptibility of different 
B cell populations to the lethal effects of anti-IgD mAbs, 
and shows that T cell help can prevent cell death. 

Materials and Methods 
Mice. Female BALB/c mice were purchased from the Small 

Animals Division of the National Cancer Institute (Frederick, MD) 
and were used at age 8-14 wk. 

Immunological Reagents. The following antibodies were prepared 
as previously described: m25, a mouse IgG1 mAb that neutralizes 
both human and mouse IL-7 (22), a gift of Dr. Kenneth Grabstein 
(Immunex Research Corp., Seattle, WA); GK1.5, a rat IgG2b mAb 
that kills CD4 + T cells and blocks helper T cell function (24); 
11-26, a rat IgG2a mAb that binds mouse IgD avidly but cross- 
links it poorly (23); HB66, also known as LO-MD-6, a rat IgG2a 
mAb that effectively cross-links mouse IgD (23, 27); FF1-4DS, 
a mouse IgG2a of the b allotype that binds to an epitope of mouse 
IgD of the a allotype that is not blocked by HB66 (23); DS-1, a 
mouse IgG1 of the b allotype that binds to mouse IgM of the a 
allotype (28); MKD6, a mouse IgG2a alloantibody specific for Iad 
(29); 6B2, a rat IgG2a specific for mouse B220 (CD45R), the B cell 
form of CD45 (30); 24G2, a rat IgG2b that binds to mouse FcyRII 
and blocks its ability to bind IgG (26); J1.2, a rat IgG2b mAb specific 
for the hapten NP (3-nitro-4-hydroxyphenylacetyl) (a gift of Dr. 
John Abrams, DNAX Research Institute, Palo Alto, CA), and 
GotM6, an affinity purified goat antibody to mouse IgD (31). Some 
of these antibodies were labeled with FITC (32) or biotin-N- 
hydroxysuccinimide (33). Antibodies were also labeled with the 
fluorochrome Cy5 (Research Organics, Inc., Cleveland, OH) ac- 
cording to the directions provided by the manufacturer. Lyophi- 
lized cobra venom factor was purchased from Diamedix Corp. 
(Miami, FL) and reconstituted according to the manufacturer's in- 
structions. Reconstituted cobra venom factor was aliquoted and 
stored at -70~  until used. 

Immunofluorescence Staining. Single-cell suspensions of spleen, 
peripheral lymph node, or bone marrow were depleted of erythro- 
cytes, suspended at 10-20 x 106 ceUs/ml in HBSS with 10% new- 
born bovine serum and 0.2% sodium azide (HNA). 100/A of cells 
was stained for 30 min on ice with 1 #g each of a FITC-labeled 
antibody, a biotin-labeled antibody, and, in some experiments, a 
CyS-labeled antibody. Cells were washed three times with HNA 
and then exposed to streptavidin-l~,-phycoerythrin (GIBCO BRL, 
Gaithersburg, MD) for 30 min on ice. All staining was done in 
the presence of 10/xg/ml of unlabeled anti-FcyRII mAb (24G2) 
to block the binding of IgG staining reagents to Fc3'RII. After 
washing twice more with HNA, cells were washed once with 
HBSS/0.2% sodium azide, then fixed in PBS/2% paraformalde- 
hyde. Cells were analyzed with a FACScan | (Becton Dickinson 
& Co., Mountain View, CA) and FACScan | software. Light scatter 
gates were set to exclude most cells that had died before fixation, 
as well as nonlymphoid cells, except that light scatter gates for anal- 
ysis of bone marrow cells were set to include all living nucleated 
cells. Spleen cells that had been stained with a single fluorochrome- 
labeled antibody were used to determine the settings used to com- 
pensate for overlap between FITC and PE emission spectra. Data 

were analyzed to determine percentages of specifically stained cells 
and the mean and/or median fluorescence intensities of specifically 
stained cells. Spleen cells from mice injected with HB~6 1 d before 
killing were used to define the fluorescence channel that separates 
IgM dull from IgM b~ight spleen cells, since this treatment increases 
the phenotypic difference between these two populations (see 
below). In one experiment, cells stained with FITC-, R-PE-, and 
CyS-labeled reagents were analyzed by flow cytometry with an 
Epics V (Coulter Corp., Hialeah, FL), and R-PE fluorescence histo- 
grams of Cy5+FITC aull and Cy5+FITC brish' cells were prepared. 

Celt Counts. Cells were counted with a counter (Coulter Corp.) 
that was set to exclude dead cells. Total spleen cell number was 
multiplied by the percentages of IgM bright or IgM dua spleen cells 
to calculate numbers of IgM b~sh' or IgM aun spleen cells. 

Treatment Protocol. Unless otherwise noted, mice were treated 
with immunological reagents according to the following schedule: 
3 mg of m25 anti-IL-7 mAb was injected intraperitoneally 3 d/wk, 
starting 2 wk before injection of anti-IgD antibody and contin- 
uing for the duration of the experiment; 1 mg ofGK1.5 anti-CD4 
mAb was injected intravenously once a week, starting 2 wk before 
injection of anti-IgD antibody and continuing for the duration of 
the experiment; 2 U of cobra venom factor was injected intrave- 
nously twice daily for 2 d and I d before the injection of anti-IgD 
antibody, then once every other day, starting the day after injec- 
tion of anti-IgD antibody and continuing for the duration of the 
experiment; and 1 mg of 24G2 anti-Fc'yRII mAb was injected in- 
travenously along with or shortly before the injection of anti-IgD 
antibody. In some experiments, mice were injected intravenously 
with I mg oflgD (TEPC-1017 or TEPC-1033 [31]) 5 and 6 d after 
injection of anti-IgD antibody to neutralize remaining anti-IgD 
antibody (34), and then killed 1 d after the second dose of IgD. 

Results 

Treatment with Anti-IL-7 mA b Blocks the Development of New 
B Lymphocytes. Our procedure for evaluating the in vivo 
effects of mlgD cross-linking on B cell survival depended, 
in many experiments, on blocking the production of new 
B cells that might replace B cells that die. For this reason, 
studies were initially performed to confirm the effectiveness 
of the technique used to prevent B cell production in these 
experiments. BALB/c mice were injected intraperitoneaUy with 
3 mg of m25 anti-IL-7 mAb three times a week for 2 wk. 
Mice were then killed, their spleen and bone marrow cells 
stained for mlgM and B220, and dual parameter flow micro- 
fluorimetry was used to determine percentages of bone marrow 
and spleen cells that expressed B220 and/or mlgM. Anti-IL-7 
mAb treatment decreased the percentage of bone marrow cells 
that had the pre-B cell phenotype (B220+IgM -) by "~85% 
and the number of immature B cells (B220auUlgM +) (22, 35) 
to a barely detectable level (Fig. 1). The percentage of bone 
marrow B lymphocytes that had a more mature phenotype 
(B220bnshqgM +) was much less affected by anti-IL-7 mAb 
treatment (Fig. 1), and the number of  splenic B ceils was 
not significantly affected (data not shown). These observa- 
tions confirmed the demonstration by Grabstein et al. (22) 
that depletion of IL-7 prevents B cell generation and that ma- 
ture B cells have a relatively long in vivo life span, and vali- 
dated the use of anti-IL-7 mAb-treated mice as a closed system 
in which B cell loss would not be compensated for by the 
generation of new, bone marrow-derived, B cells. 
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Figure 1. Treatment of mice with anti-IL-7 mAb prevents the genera- 
tion of new bone marrow B cells. BALB/c mice (three/group) were left 
untreated or were injected intraperitoneally with 3 mg of neutralizing anti- 
IL-7 mAb (m25) three times a week for 2 wk, Mice were killed 2 wk 
after the initial injection, and bone marrow cell suspensions were prepared. 
Pools of bone marrow cells from the three mice in each group were stained 
with FITC-antI-B220 and biotin-and-IgM mAbs, followed by streptavidin- 
R-PE. Stained cells were analyzed with a FACScan | with light scatter 
gates set to include all living nucleated cells, and percentages of pre-B cells 
(B220+IgM-), immature B calls (B220d~algM+), and mature B cells 
(B220b~ightlgM * ) were  determined, 

In Vivo Treatment with Anti-IgD mAbs Causes Increased Ia 
Expression by Both IgM à I~ and IgMb'~ ~' Spleen Cells and De- 
creased mlgM Expression by lgM d"zl Spleen Cells. To deter- 
mine the initial effects on splenic B cell populations of in- 
jecting mice with anti-IgD mAbs, spleen cells were obtained 
from anti-IL-7 mAb-treated mice that had been injected I d 
before killing with either 11-26 (a rat IgG2a mAb that binds 
IgD avidly but ineffectively cross-links IgD) or HB86 (a rat 
IgG2a mAb that cross-links mIgD effectively) (23). Mice were 
also treated with anti-CD4 mAb (to prevent T cell help), 
and, in some experiments, with anti-Fc3,RII mab (to block 
interactions between antibody-bound mlgD and the B cell 
Pc3' receptor that might negatively signal B cells [36, 37]) 
and cobra venom factor (to prevent the possibility of  com- 
plement-mediated killing of  B cells and interactions between 
mlgD and B cell complement receptors) (38, 39). Spleen cells 
from treated and control mice were counted, then stained 
for mlgM and either B220 or Ia a, and analyzed by flow 
microfluorimetry. Treatment with either anti-IgD mAb had 
no effect on IgM expression by IgMbng h' B cells but con- 
siderably decreased mlgM expression by IgM a~u B cells (Fig. 
2, left; note the considerable shift to the left of the modal 
population of  IgM a~)l cells from mice that received anti-IgD 
mAb). In three separate experiments, Ia expression on Ig- 
M d~ spleen cells was considerably upregulated by injection 
of HB~6 but only slightly upregulated in most experiments 
by injection of 11-26 (Fig. 3). In contrast, both anti-IgD mAbs 
considerably and equally increased Ia expression by the Ig- 
M bright splenic B cells. Total numbers of splenic mlgMbrig h' 
or mlgM a~ll spleen cells were not consistently affected 1 d 
after injection of anti-IgD mAb (Fig. 3 and see Fig. 6), regard- 
less of whether mice were pretreated with anti-IL-7 mAb and 
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Figure 2. Effects of anti-IgD mAbs on splenic 8 cell number and IgM 
expression 1 and 7 d after injection. BALB/c mice (three/group) were treated 
with anti-CD4 mAb, anti-Fc"/RII mAb, and cobra venom factor (left) or 
with the same reagents plus anti-Ib7 mAb (right) according to the schedule 
described in Materials and Methods. Mice received no additional treat- 
ment (top, "Untreated") or a single intravenous injection of 11-26 (middle) 
or HB~6 (bottom). Mice were killed 1 d after anti-IgD mAb injection (left) 
or were injected intravenously, with I nag of an IgD mAb 5 and 6 d after 
antMgD mAb injection and then killed 7 d after anti-lgD mAb injection. 
Spleen cell suspensions were prepared and stained with FITC-anti-B220 
plus biotin-anti-IgM mAbs, and then analyzed with a FACScan | for IgM- 
associated fluorescence on B220-expressing cells. Representative fluores- 
cence histograms generated by the analysis of 104 spleen cells from in- 
dividual mice are shown. Full scale on the ordinate is 16 cells/channel for 
panels on the left and 32 cells/channel for panels on the fight. 

whether they received anti-Fc7IklI mAb and cobra venom 
factor. 

Anti-IgD mAb Treatment Causes the Selective Loss of lgM d"tt 
Spleen Cells over a 5- to 7.d Period. To determine if the in 
vivo interaction of splenic B cells with poor or effective cross- 
linkers of IgD for >1 d would cause a loss of B cells from 
the spleen, mice that were injected with anti-lL-7, anti-CD4, 
and anti-Fc3'RII mAbs, with or without  cobra venom factor, 
received no further treatment or were injected with 11-26 
or HB~6. 5 and 6 d after anti-IgD antibody injection, mice 
were injected with IgD (TEPC-1017 or TEPC-1033) to neu- 
tralize remaining anti-IgD antibody. Mice were killed 1 d 
after the second dose of IgD, and numbers of IgM a~lL and 
IgMbng ht spleen cells were determined. The number of Ig- 
M d~ spleen cells decreased by the seventh day after anti-IgD 
mAb injection by a factor of three to five in HB86-injected 
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Figure 3. Effects of anti-lgD mAbs on 
IgMb~is h* and IgM d~u spleen cell number and Ia 
expression 1 d after injection. In three separate 
experiments, BALB/c mice (three/group) were 
pretreated with anti-CD4 mAb and anti-IL-7 
mAb (left and middle) or with anti-CD4 mAb, 
anti-Fc~RII mAb, and cobra venom factor (~ight), 
according to the schedule described in Materials 
and Methods. Mice received no further treatment 
or were injected intravenously with 100 #g of 
11-26 or HB/t6, then killed 1 d later. Spleen cell 
suspensions prepared from individual mice were 
counted and stained with FITC-anti-B220 and 
biotin-anti-IgM mAbs, followed by streptavidin- 
R-PE, or with FITC-anti-la d and biotin-anti- 
IgM mAbs followed by streptavidin-R-PE. Cells 
were analyzed with a FACScan | for percentage 
of B220+lgMb~g ht and lgM d~H cells, and for la 
median fluorescence intensity (MFI) of IgMbng ht 
and IgM d~ll Ia + cells. Means and standard errors 
are shown. 

mice, compared with mice that did not receive anti-IgD mAb 
(Fig. 2, right, and Fig. 4). The number of  IgM ann spleen cells 
also consistently decreased in 11-26-injected mice, but the 
decrease was less than twofold. Similar results were obtained 
with mice that received anti-FcyRII mAb but not cobra venom 
factor, or neither anti-Fc'yKII mAb nor cobra venom factor 
(compare upper, middle, and lower panels in Fig. 4). In con- 
trast to their effects on IgM duu B cells, neither anti-IgD mAb 
caused a reproducible decrease in the splenic IgMb~g at B cell 
population (Figs. 2 and 4). 

To determine if the persistence of IgMb~g h~ spleen cells in 
anti-IgD mAb-t rea ted  mice might  reflect decreased m l g D  
expression by m l g M ~  ht spleen cells compared with mlgM au~ 
spleen cells, spleen cells from mice treated with anti-IL-7, anti- 
CD4,  and anti-Fc3,RII mAbs, plus cobra venom factor, were 
stained with FITC-ant i - IgM mAb, Cy5-anti-B220 mAb, and 
biot in-ant i - IgD mAb (FF1-4D5), followed by streptavidin- 
R-PE. Stained cells were fixed and analyzed for IgD-associated 
fluorescence on B220+IgM a~ll and B220+IgMbng ht cells. 
While IgM a~ spleen cells were almost uniformly mlgDbng ht, 
IgMbng ht spleen cells contained a majority IgDb~g ht popula- 
tion and a minori ty IgD a~ll population (Fig. 5). Inasmuch 
as the entire population of  IgMbag h' spleen cells is maintained 
in anti-IgD mAb-t rea ted  mice, this result indicates that re- 
sistance to the B cell-depleting effect of  anti-IgD mAb treat- 
ment  is not simply a result of  decreased m l g D  expression. 

To determine the kinetics of  B cell loss in response to in- 
jection of  anti-IgD mAb, mice were treated with  anti-ILo7, 
anti-CD4, and anti-Fc'yRII mAbs, as well as cobra venom 
factor, and killed before or 1-5 d after injection of HBt~6. 
Numbers  of  IgM a~ll and IgMb~ig ht spleen cells were deter- 
mined by cell counting and flow microfluorimetric analysis 
after staining for m l g M  and B220. No significant loss of  
IgMb~g h~ spleen cells was detected during the course of  the 
experiment, and no loss of IgM d~t spleen cells was detected 
during the first 24 h after HBt~6 injection (Fig. 6). The number 
of  IgM d~n spleen cells, however, decreased significantly by 
2 d after HBt~6 injection and continued to decrease, at a rela- 
tively constant rate, during the next 3 d. 
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Selective depletion of [gM dull B cells in mice treated with 
anti-lgD mAbs. In three separate experiments, BALB/c mice (three/group) 
were pretreated with anti-CD4 and anti-IL7 mAbs (top) anti-CD4, anti- 
Ib7, and anti-Fc'yRII mAbs (middle), or the same mAbs plus cobra venom 
factor (bottom). Mice received no further treatment or were injected intra- 
venously with 100 #g of 11-26 or HB66, and, 5 and 6 d later, 1 mg of 
IgD. Mice were killed 7 d after anti-IgD mAb injection. Spleen cells sus- 
pensions were prepared from individual mice, counted, and stained with 
FITC-anti-B220 and biotin-anti-lgM mAbs, followed by streptavidin-R.- 
PE. Stained cells were analyzed with a FACScan | to determine percen- 
tages of B220 +IgMhng ht and IgM dull cells. Means and standard errors are 
shown. 
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Figure 5. mlgD expression by IgM d~u and IgMbng ht B cells. A BALB/c 
mouse was treated with anti-lb7, anti-CD4, and anti-Fc3,RII mAbs plus 
cobra venom factor according to the schedule described in Materials and 
Methods. After 3 wk of treatment, spleen cells were stained with FITC-anti- 
IgM, biotin-anti-IgD, and CyS-anti-B220 mAbs followed by streptavidin- 
R-PE (solid line) or with the same reagents except for biotin-anti-lgD (dashed 
line) and analyzed by flow microfluorimetry with a Coulter Epics V 
fluorescence-activated cell sorter. IgD (R-PE) fluorescence profiles of 
B220+mlgM d~ll and B220+mlgMbng ht cells are shown. Similar results 
were seen with spleen calls from two additional similarly treated mice. 

Anti-IgD mAb Treatment Selectively Causes the Loss of 
mlgM dull Pe@heral Lymph Node Cells. The selective loss of 
IgM a~ll cells from the spleen might represent selective de- 
struction of these cells, selective migration of these cells to 
another organ, or loss of both IgM a"u and IgMbns ht spleen 
cells that is accompanied by acquisition of increased mlgM 
by some IgM an" cells. To distinguish among these possibili- 
ties, we examined the effects of anti-IgD mAb injection on 
IgM a~" and IgMb~is ~t peripheral lymph node cells. The pe- 
ripheral lymph node B cell population differs from that of 
the spleen in that very few IgMbrig ht cells are normally 
present (33). Thus, if treatment with anti-IgD mAb caused 
some initially IgM a~ll spleen cells to become IgMbng ht, then 
the percentage of IgM b~gh~ lymph node cells would be ex- 
pected to increase in anti-IgD mAb-treated mice. Instead, 
5 d after mice that had been pretreated with anti-IL-7, anti- 
CD4, and anti-Fcj'RII mAbs, as well as cobra venom factor, 
were injected with HB~6, we observed a four- to fivefold 
decrease in the percentage of IgM a~ll lymph node cells, with 
little change in the percentage of IgM b~ight lymph node cells 
(Fig. 7). As was observed with spleen, the effects of injection 
of 11-26 were qualitatively similar, but considerably less marked 
than those induced by HB66. The observation that anti-IgD 
mAbs have the same effects on peripheral lymph node B cells as 
on splenic B cells suggests that the selective loss of IgM a~ll 
spleen ceils in anti-IgD mAb-injected mice is not a result 
of expression of increased mlgM by some IgM a~n cells and 
rules out the possibility that anti-IgD mAb causes the migra- 
tion of IgM a~]l spleen cells to peripheral lymph nodes. 

Low Doses of Anti-lgD mAb Do Not Cause the Loss of Splenic 
B Cells. Experiments were performed to determine the quan- 
tity of anti-IgD mAb that is required to decrease the number 
of IgM au" spleen cells and to try to correlate modulation of 
IgD from B cell surface and B cell activation with the B cell 
depletion. Mice were treated with anti-CD4 and anti-Fc'yRII 
mAbs plus cobra venom factor, then left without further treat- 

I l l  IgM "~ 
0 " ht 
~ ao 

x 
e-  
~ 20 
o 
D. 

t,D ~o 

0 o 

Days After HB86 Injection 

Figure 6. In vivo treatment with anti-lgD antibody causes a slow de- 
cline in the number of IgM du" spleen cells. BALB/c mice (three/group) 
were pretreated with anti-CD4, anti-IL-7, and anti-Fc~RII mAbs and cobra 
venom factor. Mice received no further treatment or were injected intrave- 
nously with 100 #g of HB66. All mice were killed at the same time, 1-5 d 
after HB~6 injection. Spleen cell suspensions were prepared, counted, and 
stained with FITC-anti-B220 and biotin-anti-lgM mAbs followed by 
streptavidin-K-PE. Stained cells were analyzed by FACScan | for the per- 
centages of B220 + IgMb~g h* and IgM d~ll cells. Means and standard errors 
are shown. 
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Figure 7. Selective depletion of lymph node IgM duIl B cell in node 
treated with anti-lgD mAbs. Percentages of IgM dull and IgMbng ht cells in 
pooled axillary, superclavicular, and popliteal lymph nodes from groups 
of three mice that had been pretreated with anti-CD4, anti-IL-7, and anti- 
Fc~R.II mAbs and cobra venom factor, and then left without further treat- 
ment or injected intravenously with 100/~g of 11-26 or HBfi6, were deter- 
mined 7 d after anti-lgD mAb injection in the same experiment from which 
spleen cell data are shown in the right panels of Fig. 2 and the bottom 
panel of Fig. 4. No attempt was made to calculate absolute numbers of 
lymph node cells of each phenotype because of considerable variation in 
lymph node size. 



merit or injected with 10, 33, or 100/zg of HB~56. These 
mice were killed 1 d after anti-IgD mAb injection. A second 
set of mice was treated with the same reagents, as well as 
with anti-IL-7 mAb, and killed 5 d after HBc56 injection. In- 
jection of 33 or 100 #g of HB/$6 caused a three-to fourfold 
decrease in the number of splenic IgM d"ll cells 5 d after 
HB86 injection, while injection of 10 #g of HBc56 had only 
a minor effect on the number of these cells (Fig. 8, right). 
Although the injection of 10, 33, or 100 #g of HB~56 sub- 
stantially decreased B cell mlgD expression and increased B 
cell Ia expression 1 d later (Fig. 8, left), these changes only 
persisted 5 d after injection in mice that received 33 or 100 
#g of HB86. The reappearance of normal quantities of mlgD 
and the decrease to baseline Ia levels on B cells 5 d after mice 
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had received 10 #g of HB86 suggests that this dose of anti- 
IgD mAb was neutralized or catabolized by this time. The 
failure of this quantity of anti-IgD mAb to cause a significant 
loss of splenic IgM duu B cells 5 d after injection, even though 
it is more effective than 100 #g of 11-26 at upregulating Ia 
expression by these cells 1 d after injection, is compatible 
with the view that signaling through mlgD needs to be main- 
tained beyond 24 h to cause B cell loss. 

T Cell Help Decreases the Anti-IgD Antibody-induced Loss 
of lgM't"ll B Cells and Induces the Appearance of an Ia+B220 - 
IgM- Cell Population. To investigate whether the gener- 
ation of T cell help during the course of an immune response 
could prevent anti-IgD antibody-induced loss of splenic B 
cells, mice were treated with anti-IL-7 and anti-Fc'yRII mAbs 
plus cobra venom factor and either anti-CD4 mAb or an 
isotype-matched control mAb 01.2). Mice were then injected 
with GotM~5, which is a stronger inducer of T cell help than 
HBc56, and killed 7 d later. Immunofluorescence staining and 
flow microfluorimetry were used to determine mlgM expres- 
sion by B220 § and Ia § spleen cells from these mice, and 
from mice that received no GotMS. GotMc5 treatment caused 
an ,o40% decrease in spleen cell number in anti-CD4 
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Figure 8. A high dose of anti-IgD mAb is required to deplete IgM dun 
spleen cells. BALB/c mice (three/group) were pretreated with anti-CD4 
and anti-Fc3"RlI mAbs plus cobra venom factor (left) or these reagents 
plus anti-Ib7 mAb (right), after which they received no further treatment 
or were injected intravenously with 10, 33, or 100 #g of HB~56. Mice 
were killed 1 d (left) or 5 d (right) after HBc56 injection. Spleen cell suspen- 
sions were prepared, counted, and stained with FITC-anti-B220 and bi- 
otin-anti-IgM mAbs (top), FITC-anti-Ia d and biotin-anti-IgM mAbs 
(middle), FITC-anti-IgD (FF1-4D5) and biotin-anti-IgM mAbs (bottom 
left) or FITC-anti-B220 and biotin-anti-IgD mAbs (bottom right), followed 
in all cases by streptavidin-R-PE. Stained cells were analyzed with a 
FACScan | for percentages of B220+IgM d" and IgMbrig ht cells, the me- 
dian fluorescence intensity of Iad staining of B220+IgM duu and IgMbrig ht 
cells, and the median fluorescence intensity (MFI) of IgD staining of ei- 
ther B220+IgM dun and IgM~g ht ceUs (bottom left) or all B220+ cells (bottom 
right). Means and standard errors are shown. 

Figure 9. T cell help prevents the loss of splenic B cells in anti-IgD 
antibody-injected mice. BALB/c mice (three/group) were pretreated with 
anti-IL-7 mAb, anti-Fc3,RII mAb, cobra venom factor, and either anti- 
CD4 mAb or an isotype-matched control mAb, then injected intravenously 
with 800 #g of Gc~MS. Mice were killed 7 d after GotM8 injection, and 
spleen cell suspensions were prepared, counted, and stained with FITC-anti- 
B220 and biotin-anti-lgM mAbs or FITC-anti-l-A a and biotin-anti-lgM 
mAbs, followed in all cases by streptavidin-K-PE. A FACScan | was used 
to determine percentages of B220 + and la d+ IgM dull and IgMbrig ht spleen 
cells. Means and standard errors are shown. 
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mAb-treated mice and an ~50% increase in spleen cell 
number in T cell-sufficient mice (Fig. 9, top). In anti-CD4 
mAb-treated mice, GotM~ caused a greater than fivefold de- 
crease in the number of IgM a"n spleen cells and a two- to 
threefold decrease in the number of IgMbrig ht spleen cells 
(Figs. 9 and 10). In contrast, in T cell-sufficient mice, GotM~ 
caused a less marked decrease in the number of B220* 
IgM d~11 and B220+IgMbrig ht spleen cells (Fig. 9, middle, and 
Fig. 10, lower left) and induced the appearance of a large popu- 
lation of Ia + spleen cells that lack B220 and express little 
or no mlgM (Fig. 9, middle, and Fig. 10, compare lower 
left and right panels). This latter population probably corre- 
sponds to the large population of Ia + B220- IgM- IgG-se- 
creting spleen cells that are present at this time in GotMS- 
injected T cell-sufficient mice (26, 40). 

Discussion 

Our experiments demonstrate that anti-IgD mAbs cause 
a substantial decrease in the number of IgM a"ll spleen and 
lymph node B cells when injected into mice in which the 
generation of new B cells and T cell help are blocked by anti- 
IL-7 and anti-CD4 mAbs, respectively. It is likely that B cell 
loss in these mice results from cell death, rather than migra- 
tion of B cells from the spleen and lymph nodes to other 
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Figure 10. T cell help prevents the loss of splenic B cells in anti-lgD 
antibody-injected mice. Representative fluorescence histograms of stained 
spleen cells from the same experiment depicted in Fig. 8 are shown. Solid 
lines are histograms of B220+ or Iaa+ spleen cells stained with biotin-ami- 
IgM mAb followed by streptavidin-R-PE; dotted lines are histograms of 
the same cells stained with streptavidin-R-PE in the absence ofbiotin-anti- 
IgM mAb. 

organs or a change in B cell phenotype, because (a) anti-IgD 
antibody also causes loss of mature B cells from the bone 
marrow; (b) histologic studies of lung and liver from anti- 
IgD antibody-treated mice fail to show increased lymphoid 
infiltrates (data not shown); (c) parallel decreases are observed 
in numbers of Ia + and B220 + cells; and (d) no increase in 
the number of mlgG * cells is seen (data not shown). The 
consequences of the interaction of mlgD and anti-IgD mAb 
in our model should resemble those that follow an interac- 
tion between antigen and the mlg of an antigen-specific B cell. 
Features of IgG antibodies that differentiate them from most 
antigens, such as complement fixation and interaction with 
Fc receptors, cannot account for the induction of B cell death 
in our system, inasmuch as (a) rat IgG2a mAbs, which were 
used for most of our experiments, have little ability to directly 
kill targeted cells in vivo (41), and, at least in rats, do not 
bind to FcTRI (42); (b) anti-IgD mAb--induced B cell death 
is not blocked by cobra venom factor and anti-FcTRII receptor 
mAb; (c) the loss of B ceils occurs slowly, over a period of 
2-7 d, unlike complement-mediated cell lysis or clearance of 
opsonized B cells, which would be expected to occur more 
rapidly; (d) IgM dun B cells are much more susceptible than 
IgMbng ht B cells to the cytocidal effects of anti-IgD mAbs, 
although both cell populations are bound to a similar extent 
by these antibodies (Figs. 5 and 8); and (e) the loss of B cells, 
unlike complement-mediated lysis or clearance of opsonized 
cells, is prevented by the presence of T cell help (Figs. 9 and 
10). These same considerations suggest that death is likely 
to occur by apoptosis. Increased numbers of apoptotic B ceils 
have not been observed in anti-IgD mAb-injected mice 
(Ashman, R., personal communication), however, presum- 
ably because the slow progression of cell death in this system, 
coupled with rapid in vivo removal of apoptotic cells, pre- 
vents the accumulation of detectable numbers of apoptotic 
cells. The failure to detect apoptotic lymphocytes in vivo when 
the rate of cell death is slow has also been noted by other 
investigators (43, 44). 

The slow loss of B cells in this system resembles that de- 
scribed recently in double-transgenic mice, in which B cells 
express mlgM and mlgD specific for hen egg lysozyme (HEL) 
and HEL is present in serum (45). B cells in these double- 
transgenic mice are anergic (45) and have an in vivo half-life 
of ~5  d, while the half-life of HEL-specific B cells in trans- 
genie mice that do not have serum HEL is ~4  wk (46). The 
double-transgenic study differs from ours in that B cell loss 
was measured indirectly, by determining percentages of B cells 
that have synthesized DNA during a defined period of time, 
rather than by directly recording decreases in B cell numbers. 
This methodological difference may be important, because 
the half-life of anergic, HEL-specific B cells was considerably 
longer when measured in the same study by a cell transfer 
technique (46), although it was still shorter than that of com- 
petent HEL-specific B cells. In addition to differences in the 
methodology used to determine B cell life span, our studies 
differ from investigations with double-transgenic mice in that 
antigen-specific B cells in the double-transgenic mice become 
exposed to antigen as soon as they. have acquired mlg, while 
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the 2-wk pretreatment with anti-IL-7 mAb before injection 
of anti-IgD mAb in our system allows newly generated B 
cells to mature before mlgD is cross-linked. Thus, while the 
results in these two systems appear to be consistent, our ob- 
servations demonstrate that the decrease in B cell life span 
that results from signaling through mlg does not require that 
this signaling start when B cells are immature, even though 
immature B cells have been shown to be more easily killed 
or tolerized than mature B cells by exposure to antigen or 
anti-Ig antibody (6-8). Results that are consistent with ours 
have been obtained in a variant of the double-transgenic system 
in which HEL-specific B cells that were initially exposed to 
a subtolerogenic concentration of HEL during their devel- 
opment still became anergic if exposed to a higher HEL con- 
centration after they had matured, and in an experiment in 
which the transfer of HEL-specific B cells to an HEbexpressing 
mouse caused the donor B cells to become anergic (47). Al- 
though it was not determined whether the anergic B cells 
in these double-transgenic studies had a decreased in vivo life 
span, a likely interpretation of all of the double transgenic 
studies, when combined with ours, is that Ig cross-linking, 
in the absence of additional signals, inactivates and eventu- 
ally deletes most autoreactive B cells, regardless of whether 
autoreactivity results from expression of germline or somati- 
cally mutated Ig genes. 

In addition to methodological differences and differences 
in time of exposure to ligand for mlg, our system and the 
double-transgenic system differ in that HEL interacts with 
both mlgM and mlgD in the double-transgenic mice, while 
only mlgD is cross-linked in anti-IgD antibody-injected mice. 
Signaling through mlgM has been reported to be more effec- 
tive than signaling through mlgD at inducing the growth 
arrest of B cell tumor lines that resemble immature B cells 
(48, 49). Furthermore, the removal of mlgD from mature 
B cells has been reported to make them easier to tolerize than 
mlgD-expressing B cells by exposure to antigen (50-52), and 
B cells from mice that lack a functional c5 chain gene are more 
easily tolerized by in vitro antigen exposure than are B cells 
from conventional mice (53). In contrast, experiments with 
transgenic mice that expressed either IgM or IgD anti-HEL 
on their B cells as well as serum HEL or a cell membrane- 
bound form of HEL demonstrated that either mlg isotype 
can transduce signals that lead to B cell anergy or clonal abor- 
tion, respectively (54). In addition, B cells from conventional 
mice are stimulated in vitro to rapidly apoptose by extensive 
cross-linking of either mlgM or mlgD with biotinylated anti- 
IgM or anti-IgD mAbs and avidin (55). Our studies now 
establish that the in vivo interaction of a soluble ligand with 
mlgD on fully mature B cells can decrease the B cell's life 
span to that characteristic of anergic B cells. 

Our studies, combined with previous in vivo and in vitro 
experiments, suggest that the difference between B cell anergy 
and clonal abortion is quantitative rather than qualitative. 
Relatively limited mlg cross-linking, as is induced by a mAb 
such as 11-26 or an antigen such as HEL, decreases B cell 
life span to a relatively limited extent, which cannot be demon- 
strated in vitro and is not easily observed in vivo unless the 

generation of new B cells is blocked (46). More extensive 
mlg cross-linking, as is induced by a mAb such as HB~56, 
reduces B cell life span to a greater extent. Still more exten- 
sive mlg cross-linking, as would be induced by cells that ex- 
press multiple plasma membrane representations of the epi- 
tope that is recognized by B cell mlg, can abort the 
development of epitope-specific B cells (7, 56) and cause B cells 
specific for that epitope to apoptose within a 24-h period (57). 
For practical purposes, this would mean that B cells specific 
for self-antigens, for which T cell help is not available, would 
have their half-life shortened in proportion to the extent to 
which their mlg is cross-linked by self-antigens. Increased 
antigen valency and concentration, and higher affinity of the 
mlg on a B cell clone for that antigen, would increase the 
extent of mlg cross-linking and the limitation of B cell life 
span. As a result, autoreactive B cells that could cause the 
greatest threat to health by avidly binding antigens that are 
abundantly present on cell membranes would be eliminated 
most rapidly, while lower avidity binding, binding of less 
abundant antigen, and binding of nonpolymeric antigen would 
be associated with a less profound decrease in B cell life span 
that might allow less threatening autoreactive B cells to still 
be stimulated by a foreign antigen. Because elimination of 
all B cells that are even slightly autoreactive might eliminate 
cells that are required for optimal antibody responses to for- 
eign pathogens, a continuous inverse relationship between 
extent of autoreactivity and B cell life span may represent 
the optimal compromise between preventing autoimmune 
disease and allowing maximal protective antibody responses 
to foreign pathogens. 

The results of our experiments also provide evidence that 
not all populations of mature B cells are equally susceptible 
to negative signaling through mlg. The mature IgMbng ht 
B cell population, which includes marginal zone B cells (58, 
59), is retained to a much greater extent in mice injected with 
anti-IgD mAbs than is the more predominant mlgM aull 
B cell population, which predominantly consists of mantle 
layer B cells (58, 59). The resistance of IgMbrig ht B cells to 
the cytocidal effects of anti-IgD mAb does not reflect an ab- 
sence of mlgD from these cells or an inability of anti-IgD 
antibody to signal these cells. Many mature mlgMbng ht B cells 
express considerable quantities ofmlgD (Fig. 8), and the mAb 
11-26, which cross-links mlgD poorly, is actually more effec- 
tive at inducing increased Ia expression by IgMb=g ~t than 
IgM duu spleen cells. These observations suggest that, although 
the cross-linking of mlg induces stimulatory signals for both 
IgMbng ht and IgM auu B cells, the signals that are generated 
may not be identical in these two B cell subsets, and/or 
IgMbng ht B cells may be more resistant to the induction of 
cell death by the signals that are generated. Inasmuch as splenic 
polysaccharide-reactive B cells are predominantly in the splenic 
marginal zone B cell population (60, 61), and polysaccharide 
antigens generally express multiple representations of a given 
epitope and are unable to induce antigen-specific T cell help 
(62, 63), the ability of IgMb=g h~ B cells to resist the tolero- 
genic effects of mlg cross-linking in the absence of T cell 
help may contribute to the generation of antipolysaccharide 
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antibody responses. The resistance of IgM baght B cells to 
killing by cross-linking of their mIg, however, appears to be 
relative rather than absolute: the injection of mice with GoeM/~, 
which should have a greater ability than anti-IgD mAbs to 
cross-link mIgD, causes the loss of a considerable percentage 
of IgM bright B cells when the generation of T cell help has 
been blocked (Figs. 8 and 9). 

The induction of T cell help in mice injected with anti- 

IgD antibody both maintains the survival of most mlgM d~u 
B calls and stimulates the generation of a large number of 
B cells that exhibit a phenotype (Ia+B220-mIgM-) that is 
typical of newly generated IgG-secreting cells (16, 40). Ma- 
nipulation of this model should allow in vivo identification 
of the important signals by which T cell help prevents mlg 
cross-linking-induced B cell death and investigation of the 
extent to which mlg cross-linking-induced anergy is reversible. 
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