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Summary 
Interleukin 12 (IL-12) produced by macrophages immediately after infection is considered essen- 
tial for activation of a protective immune response against intracellular pathogens. In the murine 
Mycobacterium boris Bacillus Calmette-Gu~rin (BCG) model we assessed whether early IL12 pro- 
duction by macrophages depends on other cytokines. In vitro, murine bone marrow-derived 
macrophages produced IL-12 after infection with viable M. bows BCG or stimulation with LPS, 
however, priming with recombinant interferon 3' (rlFN-3r was necessary. In addition, IL-12 pro- 
duction by these macrophages was blocked by specific anti-tumor necrosis factor ix (TNF-ix) 
antiserum. Macrophages from gene deletion mutant mice lacking either the IFN- T receptor or 
the TNF receptor 1 (p55) failed to produce IL-12 in vitro after stimulation with rlFN-3' and 
mycobacterial infection. In vivo, IL-12 production was induced in spleens of immunocompetent 
mice early during M. boris BCG infection but not in those of mutant mice lacking the receptors 
for IFN-3' or TNF. Our results show that IL-12 production by macrophages in response to myco- 
bacterial infection depends on IFN-T and TNF. Hence, IL-12 is not the first cytokine produced 
in mycobacterial infections. 

D ue to its NK cell and T cell stimulating properties, 
IL-12 was originally termed NK cell stimulatory factor 

or cytotoxic lymphocyte maturation factor (1, 2). It is a het- 
erodimer composed of two covalently linked chains, p35 and 
p40. The light chain (p35) is homologous to IL-6 and G-CSF 
and is constitutively expressed in several cell types including 
macrophages. The p40 subunit is homologous to the extracel- 
lular part of the IL-6 and G-CSF receptor (3-5). The bioac- 
tive p70 heterodimer is produced by monocytes/macrophages 
and B cells and modulates various functions of mature T and 
NK cells including cytotoxicity and cytokine production (3, 
6-10). It has been shown recently that IL12 plays a decisive 
role in host-defense against intracellular pathogens. It is pro- 
duced by infected monocytes/macrophages as one of the first 
host responses to infection and, together with TNF, induces 
IFN-3r production by NK cells (11-13). This early IFN-3, 
activates macrophages and initiates differentiation of Thl cells 
(11, 14-16). Development of a Thl  response and IFN-T 
production are central to eradication of various pathogens 
including Leishmania major (15), Toxoplasma gondii (17), Listeria 
monocytogenes (11), Mycobacterium tuberculosis (18), Mycobac- 
terium leprae (19), and Schistosoma mansoni (20). On the other 
hand, in infections characterized by protective Th2 cytokine 
responses IL-12 downregulates Th2 cell expansion thus ex- 

acerbating the disease (21). We here show that the produc- 
tion of IL-12 by Mycobacterium bovis Bacillus Calmette-Gu~rin 
(BCG)l-infected macrophages in vitro and in vivo depends 
on prior stimulation with rlFN-3' and is mediated by endog- 
enous TNF-IX. The strict dependence of IL-12 secretion on 
IFN-y and TNF-IX suggests that production of the latter 
cytokines must precede IL-12 secretion. Thus, macrophage- 
derived IL-12 cannot be the first cytokine of the sequence 
leading to protective antimycobacterial immunity mediated 
by Thl  cells. 

Materials and Methods 
Mice. C57BL/6 female mice were raised in our own breeding 

colonies under specific pathogen-free conditions. The mice lacking 
the IFN-'y receptor (IFN-yR ~176 and those lacking the TNF 
receptor 1 (Tnfrl ~176 were generated as described in (22-24). Mu- 
tant mice were kept under specific pathogen-free conditions. 

Microorganisms. M. boris BCG was grown in Dubos broth 
(Difco, Detroit, MI) supplemented with BSA and Tween 80 with 

1 Abbreviations used in this paper'. BCG, Bacillus Calmette-Gu~rin; BMM, 
bone marrow-derived macrophages; IFN-"/K ~176 mice lacking the IFN-3' 
receptor; NRS, normal rabbit serum; RT, reverse transcriptase; Tnfrl ~176 
mice lacking the TNF receptor 1. 
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shaking. Aliquots were frozen and stored at -70~ Numbers of 
viable organisms were determined by plating 1:10 dilutions on Mid- 
dlebrook Dubos agar plates (Difco). Plates were incubated at 37~ 
and the numbers of colony-forming units were determined. 

Reagents. Murine rlFN-3, was kindly provided by Dr. G. Adolf 
(Ernst Boehringer-Institut flir Arzneimittelforschung, Vienna, Aus- 
tria). The specific activity was 107 U/mg protein. Murine rlL-12 
was a gift from Dr. Start Wolf (Genetics Institute, Cambridge, MA). 
The specific activity was 5.6 x 106 U/rag protein. Aliquots of 
recombinant cytokines were stored in Click's/RPMI containing 
10% FCS. Two rat anti-IL-12 (p40) mAb, C15.6.7 IgG1 and C17.8 
IgG2a, were a generous gift of Dr. G. Trinchieri (The Wistar In- 
stitute, Philadelphia, PA). LPS from Escherichia coli was obtained 
from Difco. Murine rTNF-oe and polyclonal rabbit anti-mouse 
TNF-cx antiserum were purchased from Genzyme (Boston, MA). 
As a control, normal rabbit serum (NRS) was used. Oligonucleo- 
tides for IL-12 (p40) were synthesized on a DNA synthesizer (381A; 
Applied Biosystems, Inc., Foster City, CA). Sense: 449-CGTGCT- 
CATGGCTGGTGCAAAG; antisense: 761-CTTCATCTGCAAo 
GTTCTTGGGC. 

Macwphage Cultures. Bone marrow-derived macrophages 
(BMM) were obtained in a serum-free culture medium as described 
previously (25). BMM were harvested after 9 d and stimulated in 
IMDM without additives and antibiotics as indicated in Results. 

DotBtotAssayforlL12(p40). Aliquots of culture supernatants 
were placed into the wells of Millititer filtration plates with 0.45-#m 
pore size (Millipore, Eschborn, Germany) and incubated at room 
temperature for 1 h. Subsequently, supernatants were sucked into 
the membrane filters by using a vacuum filtration holder (Milli- 
pore). Wells were blocked with 3% skim milk in 50 mM Tris-HC1 
buffer, pH 7.5, overnight. After three washes with PBS, aliquots 
of 200/A/well of biotinylated anti-IL-12 (1040) mAb C15.6.7 (1 
#g/ml) were added. After incubation at room temperature for 2 h, 
plates were washed three times with PBS and streptavidin alkaline 
phosphatase (Dianova, Hamburg, Germany) (1:5,000 in 0.1% BSA 
in PBS) was added. After 30 rain of incubation at room tempera- 
ture, plates were washed three times with PBS and the substrate 
p-nitrophenyl phosphate (Sigma, Mfinchen, Germany) was added. 
After 10 min of incubation at room temperature, the reaction was 
terminated with 0.5 M EDTA, pH 8.0. Aliquots were transferred 
into flat-bottom microdilution plates and ih05 was measured in an 
Immunoreader NJ 2000 (Intermed). The IL-12 content was calcu- 
lated by using rlL-12 as a standard with medium alone as a blank. 

ELISAfor ILl2. IL-12 was measured in a two-site ELISA. The 
mAb C17.8 IgG2a was used for coating and biotinylated mAb C15.6 
IgG1 was employed for detection. 

Semiquantitative Reverse Transc@tase (RT)~PCR-Analysis and Southern 
Hybridization of RT-PCR Amplified Products. Semiquantitative RT- 
PCR analysis of IL-12 and/3-actin mRNA was performed as de- 
scribed previously in detail (26). RT-PCR products were fraction- 
ated by electrophoresis on 1% agarose gel (0.5 x Tris-borate-EDTA). 
DNA was partially depurinated by 5-gel vol of 0.25 M HC1 for 
10-15 min at room temperature and denatured by placing the gel 
in 5-gel vol of 0.4 M NaOH, 0.6 M NaC1 for 15 rain. The DNA 
was blotted on nylon membranes (United States Biochem. Corp., 
Cleveland, OH) by applying a Vacuum Blotter from Appligene 
(Heidelberg, Germany) using 0.4 M HC1 and 0.6 M NaC1 dena- 
turing buffer for 1 h. Subsequently the DNA on the nylon mem- 
brane was fixed by UV cross-linking (125 mJ/cm 2) with Fluo-Link 
apparatus (Renner, Darmstadt, Germany) for 3 min. The hybrid- 
ization probe, 1 #g IL-12 (p40) cDNA, was labeled with biotin 
according to standard protocols (Gene Images kit, United States 
Biochem. Corp.) and used for hybridization of target RT-PCR DNA 

products. The hybridization was performed at 42~ overnight in 
a hybridization oven (Biometra, G6ttingen, Germany). The washing 
procedure and the chemiluminescent immunodetection protocol 
were applied according to the manufacturer's descriptions (Gene 
Images kit). The signal development on x-ray film (XOMAT-AK, 
Kodak) was performed for 1 h. As molecular weight markers, bio- 
tinylated DNA fragments (50-1,000 bp) from Research Genetics 
(Huntsville, AL) were used. 

In Vivo Induction of ILl2. To induce IL-12 synthesis in vivo, 
mice were injected with 5 x 106 i.v. viable M. bovis BCG. At 
different time points, spleen cells were prepared and seeded into 
round-bottom microdilution plates (Nunc, Roskilde, Denmark) 
at 10 s ceUs/well in Clicks/RPMI containing 10% FCS and 5 x 
10 -s M 2-ME. Cells were stimulated with ConA (5 #g/ml), 
rlFN-y (500 U/ml), or M. boris BCG (5 x 106/ml). Supernatants 
were collected after 24 h for determination of IL12. 

Results 
To analyze the stimuli that are required for IL-12 produc- 

tion, murine BMM obtained by cultivation in a serum-free 
medium were used that represent a quiescent macrophage 
population devoid of contaminating cells like granulocytes 
or lymphocytes (25). Accumulation of IL-12 in culture su- 
pernatants was analyzed by a specific ELISA with a detection 
limit of 200 pg/ml of IL-12 (p40). Supernatants in which IL-12 
was not detectable by ELISA were analyzed by the more sen- 
sitive dot-blot assay with a detection limit of "~,50 pg/ml. 
It has been shown previously that the presence of the II.-12 
p40 chain correlates with increased levels of the bioactive p70 
heterodimer (12). 

ILl2 Produced by Macrophages In Vitro After M. bovis BCG 
Infection or LPS Stimulation Depends on Priming with rlFN-T. 
BMM from C57BL/6 mice were primed with rlFN-3, and/or 
infected with M. bov/s BCG or stimulated with LPS. As shown 
in Table 1, only BMM primed with rlFN-3, for 24 h and 
subsequently infected with M. boris BCG or stimulated with 
LPS for another 24 h produced detectable levels of IL-12. Stim- 
ulation with rlFN-q, alone or treatment with M. bovis BCG 
or LPS alone failed to induce IL-12 synthesis. Incubation of 
macrophages with LPS before stimulation with rlFN-3' or 
concomitant treatment of cells with rlFN-3, and LPS for 24 h 
failed to induce IL-12 production. A kinetics of rlFN-3, priming 
revealed that r lFN-y had to be present for at least 8 h before 
addition of M. bovis BCG or LPS to induce significant I1.-12 
synthesis (data not shown). It has been shown that LPS- 
binding protein is required for macrophage stimulation with 
LPS (27, 28). Because the r lFN-y used for macrophage 
priming contained minute concentrations (0.001%) of FCS, 
we cannot exclude formally contamination of our rlFN-3, 
preparation with LPS-binding protein. However, we consider 
the minute FCS concentration insufficient. It appears more 
likely that BMM stimulation with rlFN-y induced LPS- 
binding protein synthesis that then rendered LPS bioactive. 
Other cytokines tested, including rlL-4 and rlL-6, failed to 
prime macrophages for IL-12 synthesis (data not shown). In 
addition, BMM were analyzed for IL-12 mRNA expression 
by PCR. As shown in Fig. 1 A, IL-12 mRNA was only found 
in macrophages costimulated with rlFN-3, and M. bov/s BCG. 
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Table 1. Production of lL-12 (p40) by BMM from C57BL/6, IFN-9/R ~176 and Tnfrl ~176 Mice* 

Stimulus 
Production of IL-12 (ng/ml) 

by mouse strain* 

rlFN-3, rTNF-a M. bovis BCG LPS C57BL/6 IFN-3,R ~176 Tnfflo/~ 

U/ml U/ral 
. . . .  NDS ND ND 
- - + - ND ND ND 
- - - + ND ND ND 
10 - - - ND ND ND 

100 - - - ND ND ND 
10 - + - 10.0 ND ND 

100 - + - 16.8 ND ND 
10 - - + 7.8 ND ND 

100 - - + 14.9 ND ND 
- 1 0  - - ND ND ND 
- 1 0 0  - - N D  N D  N D  

- 1 0  + - N D  N D  N D  

- 1 0 0  + - N D  N D  N D  

* BMM (10S/well) were cultured with or without rlFN-% After 24 h, cells were infected with M. boris BCG organisms 
LPS (50 ng/ml). Supernatants were harvested after an additional 24 h for detection of IL-12. 

IL-12 was measured by ELISA (detection limit 200 pg/ml). The amount of IL-12 per ml correlates to 5 • 105 BMM. 
of three independent experiments. 
s ND: not detectable by the dot-blot assay (detection limit 50 pg/ml). 
Similar results were obtained in three independent experiments. 

(106/well) or treated with 

Data shown are from one 

BMM treated with either rlFN-3, or M. boris BCG alone did 
not express IL-12 mRNA. Thus, induction of IL-12 mRNA 
and protein depended on two signals with IFN-3, as first and 
mycobacterial infection or LPS as second signal. 

Endogenous TNF-~ Regulates 11_,12 Production by BMM. We 
have shown previously that TNF-o~ mediates mycobacterial 
growth inhibition by nitric oxide (26). To investigate the role 
of endogenously produced TNF-a  in the induction of IL-12 
synthesis, a specific polyclonal anti-TNF-oe antiserum was used. 
BMM were primed with rlFN-3' for 24 h and subsequently 
infected with M. bovis BCG or stimulated with LPS for an- 
other 24 h in the presence of anti-TNF-o~ antiserum or NRS. 
As shown in Fig. 2, addition of anti-TNF-c~ antiserum during 
infection of rlFN-3,-primed BMM with M. bovis BCG or 
during stimulation with LPS significantly reduced IL-12 
production. NRS used as control had no significant effect 
on IL12 synthesis by BMM. In parallel, IL-12 mRNA ex- 
pression was analyzed in BMM stimulated with rlFN-3' and 
LPS in the presence of anti-TNF-a antiserum or NRS (Fig. 
3). The IL-12 mRNA expression was inhibited by incuba- 
tion of macrophages with anti-TNF-ol antiserum although 
TNF-ot itself failed to induce IL12 synthesis by BMM (Table 
1). Hence, induction of IL12 synthesis by macrophages de- 
pended on signaling through both IFN-'y receptor and TNF 
receptor 1. 

BMM from IFN-TR ~176 or Tnfrl ~176 Mice Fail to Produce 11.,12. 
To further analyze the contribution of IFN-3' and TNF-a  
to IL12 production, IFN-3,R ~176 mice and Tnfrl ~176 mice were 
employed. BMM prepared from these mutant mice were 
primed for 24 h with increasing concentrations of rlFN-3' 
and subsequently infected with M. boris BCG or stimulated 
with LPS for another 24 h. Neither BMM from IFN-3,R ~176 
mice nor BMM from Tnfrl ~176 mice were able to produce 
IL-12 at the mRNA or protein level after stimulation with 
rlFN-'y plus M. bov/s BCG or LPS (Table 1 and Fig. 1, B 
and C). These results verify that IL-12 production by macro- 
phages in vitro exclusively depends on both, IFN-y and 
TNF-ol and that IFN-~/and TNF-o~ stimulation cannot be 
compensated by other cytokines in these mutant mice. Fur- 
thermore our data reveal that TNF receptor 1, and not TNF 
receptor 2, is responsible for the TNF-ol effect. 

11_:12 Induction In Viva C57BL/6 mice were infected with 
M. boris BCG. 3 h and 4 d after infection, spleen cells were 
prepared and analyzed for mRNA encoding the p40 subunit 
of IL-12 by RT-PCR and Southern hybridization. As shown 
in Fig. 4, spleen cells from noninfected C57BL/6 mice did 
not express any IL-12 mRNA, however, IL12 mRNA was 
detectable at 3 h and still 4 d after mycobacterial infection. 
Spleen cells were cultured in vitro with ConA, rlFN-% 
or M. boris BCG for 24 h and supernatants were collected 
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Figure 1. I1:12 (1040) mRNA expression in BMM from C57BL/6 mice (A), IFN-3,R ~176 mice (B), and Tnfrl ~176 mice (C). Total cellular RNAs from 
unstimulated BMM (lane 1 ), BMM primed with rlFN-3' (500 U/ml) and infected with M. bovis BCG (lane 2), BMM primed with rlFN-7 (lane 
3), and BMM infected with M. boris BCG (lane 4 ) were extracted, reverse transcribed, and amplified by PCR with specific primers for I1:12 or B-actin. 
The amplified products were probed for IL-12 (312 bp) (right) and ~8-actin (324 bp) (left). 

for IL-12 detection. As shown in Table 2, splenocytes from 
naive mice produced only marginal amounts of IL-12 after 
in vitro stimulation with M. bovis BCG. Infection of mice 
with M. bovis BCG for 3 h significantly increased the capacity 
of spleen cells to generate IL-12 after in vitro culture with 
M. bovis BCG. At later time points of infection the capacity 
of spleen cells to synthesize IL12 was decreased (data not 
shown). These data demonstrate, that mycobacterial infec- 
tion induces IL-12 expression in vivo. To investigate the 
influence of IFN-y and TNF-o~ on IL12 induction in vivo, 
IFN-3,R ~176 and Tnfrl ~176 mice were infected with M. bovis 
BCG. Since these mutant mice are highly susceptible to in- 
fection with intracellular bacteria (22, 23) spleen cells were 
analyzed for IL-12 mRNA and protein expression 3 h after 
infection. Splenocytes from both mutant strains failed to ex- 
press IL-12 mRNA after infection with M. bovis BCG as ana- 

lyzed by RT-PCR and Southern hybridization (Fig. 4). In 
vitro, stimulation of spleen cells from mutant mice with 
ConA, rlFN-3,, or M. bov/s BCG did not induce IL12 produc- 
tion (Table 2). We conclude that IFN-3, and TNF secretion 
must precede early IL-12 production by macrophages during 
M. bov/s BCG infection. 

Discussion 

According to current view, IL-12 is the first cytokine pro- 
duced by macrophages infected with intracellular pathogens 
(11, 15, 17, 29, 30) and it is a requisite cytokine for induction 
of the Thl developmental pathway (15, 31). Together with 
TNF-c~, IL12 stimulates NK cells to generate IFN-3,. This 
early NK cell-derived IFN-3/induces activation of macro- 
phages and differentiation of Thl cells. In contrast, our data 
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Figure 2. Effect of anti-TNF-c~ 
antiserum on 1I:12 (p40) production 
by BMM from C57BL/6 mice. 
BMM (10S/well) were primed with 
rlFN-3, (500 U/ml) for 24 h and 
subsequently infected with M. boris 
BCG (106/well) or treated with LPS 
(50 ng/ml) for an additional 24 h 
in the presence of anti-TNF-c~ anti- 
serum (final dilution 1:100). NRS 
(final dilution 1:100) was used as con- 
trol. Similar results were obtained 
in three independent experiments. 



Figure 3. Effect of anti-TNF-ot antiserum on IL-12 (p40) mRNA ex- 
pression by BMM from C57BL/6 mice. Total cellular RNAs from un- 
stimulated BMM (lane 1 ). BMM primed with rlFN-3, (500 U/ml) and 
treated with LPS (50 ng/ml) (lane 2), BMM primed with rlFN-'y and 
treated with LPS in the presence of NRS (final dilution 1:100) (lane 3 ), 
and BMM stimulated with rlFN-q, and treated with LPS in the presence 
of anti-TNF-~ antiserum (final dilution 1:100) (lane 4) were extracted, 
reverse transcribed, and amplified by PCIk with specific primers for II~12 
or/~-actin. The amplified products were probed for IL-12 (312 bp) (right, 
lanes 1-4) and ~-actin (324 bp) (left, lanes 1-4). 

suggest that IL-12 is not the first cytokine produced in re- 
sponse to mycobacterial infection. Rather, we conclude from 
our experiments that rlFN-3, in combination with M. bov/s 
BCG or LPS stimulated TNF-ot synthesis in BMM and that 
both cytokines were then required for IL-12 induction. Con- 
sistent with this assumption TNF-ot is produced in vitro by 
macrophages upon stimulation with rlFN-3, and mycobac- 
terial infection and both cytokines are mandatory for activa- 
tion of antimycobacterial macrophage functions (26). Fur- 
thermore, TNF-c~ production in vivo in response to M. boris 
BCG infection is markedly impaired in IFN-3,R ~176 mutant 
mice (32). Our  results are in contrast to those by Reiner et 
al. (33) who described IL-12 m R N A  expression in BMM 
treated with LPS alone. However, in this study, macrophages 
were cultivated in serum-containing medium and hence may 
have already been primed whereas our experiments were per- 
formed under serum-free conditions that yield resting mac- 
rophages. 

Formal proof for strict dependence on IFN-'y and TNF-c~ 
of IL-12 induction in mycobacterial infection in vivo was ob- 
tained in experiments using IFN-'yR ~176 and Tnfrl ~176 mice. In 
contrast to C57BL/6 mice, spleen cells from M. bovis BCG- 
infected mutant mice lacking either the IFN-3' receptor or 
the TNF  receptor 1 failed to express IL-12 m R N A  and to 
produce IL-12 protein in vitro. We are therefore confident 
that IL-12 induction in vivo exclusively depends on priming 
with IFN-3' and TNF-ot and that this dependency cannot 
be compensated by other cytokines. Consistent with our 
results, depletion of NK cells or IFN-3' by specific mAb reduces 
IL-12 mlkNA expression in schistosome-infected mice (20) 

Figure 4. Analysis of IL-12 (p40) mRNA expression in spleen cells of 
M. bov/s BCG-infected C57BL/6 mice by RT-PCR analysis and Southern 
hybridization with IL-12 (p40) cDNA. (A) ~-actin RT-PCR of spleen cells 
from M. bovis BCG-infected C57BL/6 mice. (Lane m) DNA molecular 
weight marker (100-2,000). (Lane 1 ) fl-actin KT-PCR from spleen cells 
of an uninfected C57BL/6 mouse; (lane 2) ~-actin RT-PCR from spleen 
cells of a M. bov/s BCG-infected C57BL/6 mouse 3 h after infection; (lane 
3) B-actin RT-PCT from spleen cells of a M. bov/s BCG-infected C57BL/6 
mouse 4 d after infection; (lane 4)/J-actin KT-PCR from spleen cells of 
an uninfected IFN-yR ~176 mouse; (lane 5) ~-actin KT-PCK from spleen 
cells of a M. bov/s BCG-infected IFN-q,R o/o mouse 3 h after infection; (lane 
6)/3-actin RT-PCR from spleen cells of an uninfected Tnfr o/o mouse; (lane 
7)/~-actin RT-PCR from spleen cells of a M. bov/s BCG-infected Tnfrl ~176 
mouse 3 h after infection. (B) Reprobing RT-PCR amplified IL-12 from 
spleen cells by Southern hybridization. (Lane m) DNA molecular weight 
marker (50-1,000). (Lanes 1-7) Reprobed IL-12 RT-PCK amplified prod- 
ucts (312 bp) from cDNA preparations corresponding to cDNA samples 
of lanes I-7 in A, respectively. 

and peritoneal macrophages fail to produce IL-12 after infec- 
tion with L. major in vitro, although inoculation of this 
pathogen into the peritoneal cavity induces II.-12 production 
(34). We assume that L. major infection caused IFN-3, and 
TNF-c~ production in vivo that primed macrophages for Ib12 
synthesis. 

Schijns et al. (35) and Swihart et al. (36) have shown 
that infection of IFN-3,R ~176 mice with pseudorabies virus 
or L. major, respectively, leads to T h l  cytokine profiles. We 
also found IFN-3' production by splenocytes ofM. bov/s BCG- 
infected IFN-3,R ~176 mice (data not shown). In contrast to 
pseudorabies virus infection, control ofM. bov/s BCG is IFN-3' 
dependent and lack of IFN-3, action is obviously not com- 
pensated by other cytokines. In the M. bov/s BCG system IFN-3' 
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Table 2. Production of IL-12 (p40) by Spleen Cells from C57BL/6, IFN-yR ~176 and Tnfrl ~176 mice" 

Production of IL-12 (ng/ml) by mouse strain 

C57BL/6 IFN-"/R ~176 Tnfrl ~176 

Stimulus 0 h 3 h 0 h 3 h 0 h 3 h 

Nil ND* 1.2 ND ND ND ND 
ConA ND 1.6 ND ND ND ND 
rlFN-y ND 2.5 ND ND ND ND 
M. bovis BCG 0.6 5.8 ND ND ND ND 

* Mice were infected i.v. with 5 x 106 viable M, bovis BCG. Spleen cells were prepared at the time points indicated and restimulated in vitro (10 s 
cells/well) with ConA (5 ~g/ml), rlFN-3, (500 U/ml), or M. bovis BCG (1 x 106/well). After 24 h, supernatants were harvested and analyzed 
for IL-12 by ELISA. 

ND: Not detectable by the DOT-BLOT assay (detection limit 50 pg/ml). 
Similar results were obtained in three independent experiments. 

production may only partially depend on IL-12 and other 
cytokines may compensate. Another possibility is that IFN-3, 
production occurs independently from IL-12. 

Taken together, our data reveal that Ib12 is not the first 
cytokine generated after infection with M. bov/s BCG. Rather, 
we assume that IFN-3, primes macrophages for TNF-cz pro- 
duction and that both cytokines then induce II,-12 synthesis 

in response to mycobacterial infection. The cellular source 
of  the IFN-3' produced immediately after mycobacterial in- 
fection independent from IL-12 remains to be defined. Whether 
this immediate early IFN-3' production is stimulated directly 
by mycobacteria or involves other cytokines such as IL-13 (33, 
37) is currently under investigation. 
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