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Abstract. Tom40 is the main component of the prepro-
tein translocase of the outer membrane of mitochondria
(TOM complex). We have isolated Tom40 of Neuro-
spora crassa by removing the receptor Tom22 and the
small Tom components Tom6 and Tom7 from the puri-
fied TOM core complex. Tom40 is organized in a high
molecular mass complex of ~350 kD. It forms a high
conductance channel. Mitochondrial presequence pep-
tides interact specifically with Tom40 reconstituted into
planar lipid membranes and decrease the ion flow
through the pores in a voltage-dependent manner. The
secondary structure of Tom40 comprises ~31% B-sheet,

22% a-helix, and 47% remaining structure as deter-
mined by circular dichroism measurements and Fourier
transform infrared spectroscopy. Electron microscopy
of purified Tom40 revealed particles primarily with one
center of stain accumulation. They presumably repre-
sent an open pore with a diameter of ~2.5 nm, similar
to the pores found in the TOM complex. Thus, Tom40 is
the core element of the TOM translocase; it forms the
protein-conducting channel in an oligomeric assembly.

Key words: TOM complex ® Tom40 ® mitochondria
protein translocation channel ® protein targeting

Introduction

Transport of nuclear-encoded proteins into mitochondria
is mediated by distinct multisubunit translocation machin-
eries located in the outer and inner membranes of mito-
chondria (Schatz and Dobberstein, 1996; Neupert, 1997;
Voos et al., 1999). The translocase of the outer mitochon-
drial membrane (TOM' complex) facilitates the recogni-
tion of preproteins, their transfer through the membrane,
and the insertion of resident outer membrane proteins.
Two translocation machineries in the inner mitochondrial
membrane (TIM complexes), which are specific for differ-
ent subsets of preproteins, mediate the transfer of prepro-
teins across or into the inner membrane.

Biochemical and biophysical characterization of the
TOM complex of Neurospora crassa and Saccharomyces
cerevisiae revealed Tom40 as the key structural compo-
nent of the protein-conducting channel in the mitochon-

Address correspondence to Walter Neupert, Institut fiir Physiologische
Chemie, Universitit Miinchen, Butenandtstrasse 5, D-81377 Miinchen,
Germany. Tel.: 49-89-2180-7086. Fax: 49-89-2180-7093. E-mail: neupert
@bio.med.uni-muenchen.de

LAbbreviations used in this paper: ATR, attenuated total reflection;
CD, circular dichroism; DDM, n-dodecyl B-p-maltoside; FTIR, Fourier
transform IR spectroscopy; IR, infrared; Ni-NTA, nickel nitrilotriacetic
acid agarose; OG, n-octyl B,p-glucopyranoside; PSC, peptide-sensitive
channel; TOM, translocase of the outer mitochondrial membrane;
VDAC, voltage-dependent anion channel.

© The Rockefeller University Press, 0021-9525/2001/06/1151/10 $5.00
The Journal of Cell Biology, Volume 153, Number 6, June 11, 2001 1151-1160
http://www.jcb.org/cgi/content/full/153/6/1151

drial outer membrane (Hill et al., 1998; Kiinkele et al.,
1998a,b). Tom40 is an integral membrane protein that is
essential for viability in yeast and Neurospora (Vestweber
et al., 1989; Kiebler et al., 1990). Multiple copies of this
protein are organized in the TOM core complex together
with up to three small membrane-embedded subunits,
Tom5 (Dietmeier et al., 1997), Tom6 (Kassenbrock et al.,
1993; Alconada et al., 1995; Cao and Douglas, 1995), and
Tom7 (Honlinger et al., 1996) and Tom22 (Kiebler et al.,
1993; Lithgow et al., 1994; Honlinger et al., 1995; Nakai
and Endo, 1995), a subunit with hydrophilic domains ex-
posed to both sides of the outer membrane. The TOM
holo complex in addition comprises the receptors Tom20
(Sollner et al., 1989; Ramage et al., 1993) and Tom70
(Hines et al., 1990; Sollner et al., 1990), single-spanning
membrane proteins with hydrophilic domains exposed to
the cytosol. They are only loosely attached to the TOM
core complex (Dekker et al., 1998; Ahting et al., 1999).
The recent isolation and purification of the TOM holo
complex of N. crassa has provided information about its
composition, structure, and function as a protein-conduct-
ing channel. EM revealed particles, the majority of which
contained two and three centers of stain accumulation
(Kiinkele et al., 1998a). Electron tomography and three-
dimensional image reconstruction of the TOM core com-
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plex yielded a map with two channels traversing the complex.
Removal by proteolysis of the cytosolic or the intermem-
brane space domains of Tom22 did not interfere with the
structural integrity of the complex of Neurospora (Ahting
et al., 1999). On the other hand, in S. cerevisiae Tom22 was
proposed to be crucial for the high level organization of
the complex (van Wilpe et al., 1999).

Here, we report on the isolation and biochemical and
biophysical characterization of a TOM subcomplex, con-
sisting exclusively of Tom40 of N. crassa. Using circular
dichroism (CD) and attenuated total reflection Fourier
transform infrared spectroscopy (ATR-FTIR), we analyze
the secondary structure of the protein and compare it with
those of purified TOM core complex and the voltage-
dependent anion channel (VDAC), the mitochondrial porin.
The results provide insights into the secondary structure of
Tom40, revealing both B-sheet and a-helical elements.
Electrophysiological measurements suggest Tom40 to be
the essential element in the formation of the pore. Analy-
sis of purified Tom40 by EM and image analysis reveals
particles, most of which contain one center of stain accu-
mulation. The results indicate that Tom6, Tom7, and
Tom?22 are important for the stability of the TOM com-
plex but play only a relatively minor structural role in the
formation of the protein translocation channel.

Materials and Methods

Cell Growth and Isolation of Mitochondria

TOM core complex was isolated and purified from mitochondrial mem-
branes of an N. crassa strain (GR-107) containing a hexahistidinyl-tagged
form of Tom?22 as described previously (Kiinkele et al., 1998a; Ahting et
al., 1999). Cells were grown overnight under vigorous aeration in 100 liters
Vogel’s minimal medium supplemented with 1.3 mM histidine and 2%
(wt/vol) sucrose at 27°C. The cultures were inoculated with 10° conidia per
liter and grown under bright illumination. Hyphae were harvested by cen-
trifugation, cooled on ice, and homogenized in a Waring blender with
quartz sand in SEM buffer (0.2 M sucrose, 1 mM EDTA, 10 mM MOPS,
1 mM PMSF). After passing the cells through a corundum mill, sand and
cellular debris were removed by two centrifugation steps for 5 min at
3,000 g. Mitochondria were sedimented by centrifugation for 50 min at
17,700 g, washed by resuspending them in SM buffer (0.2 M sucrose,
10 mM MOPS, 1 mM PMSF, complete protease inhibitor cocktail;
Roche). After a second centrifugation step for 50 min at 17,700 g, mito-
chondria were resuspended in SM buffer at a protein concentration of
~50 mg/ml and stored in aliquots at —20°C.

Isolation and Purification of TOM Core Complex

TOM core complex was purified as described previously (Ahting et al.,
1999) with minor modifications. In brief, isolated mitochondria were solu-
bilized in 50 mM potassium acetate, 10 mM MOPS, pH 7.0, 20% glycerol,
and 1% (wt/vol) n-dodecyl B-p-maltoside (DDM; Anatrace, Inc.) in the
presence of 1 mM PMSF and a cocktail of protease inhibitors at a protein
concentration of 10 mg/ml for 30 min at 4°C. Insoluble material was re-
moved by centrifugation, and the clarified extract was loaded onto a
nickel nitrilotriacetic acid agarose column (Ni-NTA; QIAGEN) using 4
ml resin per 1 g of total mitochondrial protein. The column was washed
with 20 column volumes of a buffer containing 50 mM potassium acetate,
10 mM MOPS, pH 7.0, 20% glycerol, 0.1% DDM, and 40 mM imidazole.
Specifically bound material was eluted with 300 mM imidazole in the same
buffer. Fractions containing TOM core complex were pooled and loaded
onto a Resource Q anion exchange column (Amersham Pharmacia Bio-
tech) equilibrated with 50 mM potassium acetate, 10 mM MOPS, pH 7.0,
20% glycerol, and 0.1% DDM. The complex was eluted by a linear 0-500
mM KCI gradient in the same buffer. Stock solutions of purified TOM
core complex were stored at a protein concentration of ~5 mg/ml at 4°C.
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Preparation of Tom40

For the isolation of Tom40, purified TOM core complex (1-5 mg) was re-
loaded onto an Ni-NTA affinity column (1 ml resin) equilibrated with 50
mM potassium acetate, 10 mM MOPS, pH 7.0, 10% glycerol, and 0.1%
(wt/vol) DDM at 4°C. The column was washed with two column volumes
of equilibration buffer. Tom40 and Tom7 were eluted with 3% (wt/vol)
n-octyl B-p-glucopyranoside (OG; Fluka) in the same buffer using a col-
umn flow rate of 0.05 ml/min. 10 column fractions of a volume of 1 ml
were collected. Specifically bound material was eluted with 300 mM imi-
dazole in the same buffer containing 1% (wt/vol) OG. To prevent Tom40
from aggregation, the fractions containing Tom40 were supplemented
with 0.5% (wt/vol) DDM (final concentration) and subsequently loaded
onto a sucrose gradient (7-35%) containing 50 mM potassium acetate, 10
mM MOPS, pH 7.0, and 0.5% (wt/vol) DDM and centrifuged overnight to
replace OG with DDM. Alternatively, detergent exchange was performed
by anion exchange chromatography using a Resource Q column (Amer-
sham Pharmacia Biotech). Isolated Tom4( was stored in 0.5% DDM at a
protein concentration of 0.8-1 mg/ml at 4°C. The purity of protein was as-
sessed by denaturing gel electrophoresis (Laemmli, 1970).

Purification of Mitochondrial Porin

Mitochondrial porin (VDAC) was isolated from N. crassa according to
Freitag et al. (1982). In brief, mitochondrial outer membrane vesicles (1 mg
protein per ml) were prepared as described by Kiinkele et al. (1998a) and
solubilized by incubation in 1% DDM, 50 mM potassium acetate, pH 7.0,
10 mM MOPS, 20% glycerol, and 1 mM PMSF at 4°C for 30 min. Insoluble
material was removed by centrifugation at 226,200 g, and the supernatant was
passed over a Resource Q anion exchange column (1 ml resin; Amersham
Pharmacia Biotech). Mitochondrial porin was recovered from the flow
through fraction and stored at 4°C at a protein concentration of ~3 mg/ml.

Size Exclusion Chromatography

For determination of the molecular mass of Tom40, 100 pg of protein was
loaded onto a Superose 6 size exclusion column (Amersham Pharmacia
Biotech) equilibrated with 50 mM potassium acetate, 10 mM MOPS, pH
7.0,10% glycerol, and 0.1% DDM at 4°C. Protein was eluted at a flow rate
of 0.5 ml/min. Control experiments were carried out using purified TOM
core complex. The molecular masses of Tom40 complexes were estimated
using thyroglobulin (669 kD), apoferritin (443 kD), alcohol dehydroge-
nase (155 kD), and carboanhydrase (29 kD) as protein standards.

CD Spectroscopy

CD measurements were performed using a Jasco J-715 spectrometer in
quartz cuvettes of 0.1-cm path length. Spectra were recorded at 4°C from
198 to 250 nm with a resolution of 0.1 nm and an acquisition time of 50
nm/min. Final CD spectra were obtained by averaging 10 consecutive
scans and corrected for background by subtraction of spectra of protein-
free samples recorded under the same conditions. Mean ellipticities per
residue O were calculated based on the molar protein concentration and
the amino acid composition (Tom40 and mitochondrial porin) or based on
the absolute protein concentration and a mean residue molecular weight
of 113 (TOM core complex). The concentrations of Tom40 and mitochon-
drial porin were determined by ultraviolet absorbance spectroscopy after
unfolding of protein in 7.2 M urea and using extinction coefficients
€w 2500m ~ 3,600 M~lem ™! for tryptophan and ey ygp0m ~ 1,200 M~ lem™! for
tyrosine (Pace et al., 1995). Secondary structure predictions were based on
algorithms by Sreerama and Woody (1993) using the Dicroprot version
2.5 software package by G. Deleage (CNRS).

ATR-FTIR

ATR-FTIR was performed using a Nicolet 740 FT spectrometer. The
spectrometer was purged continuously with nitrogen gas to remove water
vapor. The internal reflection element was a germanium crystal (ATR
plate) with an aperture angle of 45°. Purified TOM core complex, Tom40,
or mitochondrial porin was dialyzed against 5 mM phosphate buffer at
4°C. 50-100 pg of protein was applied onto one side of the glow-dis-
charged ATR plate and taken to dryness under a stream of nitrogen. The
ATR plate was sealed in a home built sample holder. Infrared (IR) spec-
tra were recorded from 600 to 4,000 cm ™! at a resolution of better than 2
cm L. The data are means of 1,024 scans. To differentiate a-helical com-
ponents from random coil, the sample compartment was flushed with
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D,O-saturated nitrogen for 120 min at room temperature. This shifted the
absorption peak corresponding to the random coil structure elements
from ~1,655 to ~1,642 cm~!. The exchange of hydrogen with deuterium
was monitored by repeated measurements and judged by decrease of the
amide band II centered around 1,530 cm~'. The content of B-sheet, ran-
dom coil, and a-helical secondary structure elements was estimated by an-
alyzing the amide I region between 1,600 and 1,700 cm ™! using Fourier self
deconvolution according to Kauppinen et al. (1981) for determining the
position of absorption bands, and constrained band fitting to original
spectra essentially by following the approach described by Byler and Susi
(1986). Spectra of mitochondrial porin revealed a significant contribution
of residual lipid, indicated by carbonyl ester vibrations ~1,730 cm™'.
These absorptions were fitted and subtracted from porin spectra before
further quantitative analysis.

Electrophysiological Procedures

Conductance measurements of Tom40 in planar black lipid membranes
were carried out as described previously (Benz et al., 1978; Kiinkele et al.,
1998a). Membranes were formed from a 1% (wt/vol) solution of di-
phytanoyl phosphatidyl choline (Avanti Polar Lipids) in n-decane/butanol
(9:1 vol/vol) across circular holes (surface area ~0.1 mm?) in the wall of a
Teflon cell separating two aqueous compartments of 5 ml each. The aque-
ous solutions contained 1 M KCI, 5 mM Hepes-KOH, pH 7.0 (o, = 96.7
mS cm™!). To improve the insertion of protein into the lipid membranes,
purified TOM core complex and Tom40 were mixed with an aqueous sus-
pension of ergosterol (Fluka) before addition to the aqueous phase bath-
ing the black lipid membrane. Membrane currents were measured at a
membrane potential of +20 mV with a pair of Ag/AgCl electrodes
(Metrohm) using a 428-current amplifier (Keithley Instruments, Inc.).
Amplified signals were monitored with an analogue/digital storage oscillo-
scope (HM 407; Hameg) and recorded with a strip chart recorder. Single
channel analysis was carried out according to previously described meth-
ods (Kiinkele et al., 1998b). Voltages are given as Vs~ Vs

EM

Purified Tom40 (~0.1 mg protein/ml) was adsorbed to glow-discharged
carbon-coated grids (Cu, 600 mesh) for 30 s. The grids were washed twice
with deionized water, blotted with filter paper, and stained with 2% (wt/
vol) uranyl acetate for 30-60 s. EM images of Tom40 were recorded using
a Philips CM 12 electron transmission microscope equipped with a VIPS
computer (TVIPS) and a large area CCD camera (Photometrics). The mi-
croscope was operated at 120 kV. Images were taken at an underfocus of
~1.5 pm, a nominal EM magnification of 35.000X and a postmagnifica-
tion factor of 1.934 on the CCD camera. This corresponded to a pixel size
of 0.355 nm at the specimen.

Single particle image processing was carried out on a Silicon graphics
workstation using the EM software (Hegerl, 1996). Images were low-pass
filtered to the first zero of the electron microscope transfer function corre-
sponding to a cutoff frequency of ~2.3 nm~!. A total of 1,550 particles
were manually marked in the digitized images. After extraction of frames
with 64 X 64 pixels, images were subjected to multireference alignment
using synthetic model images with one, two, three, and four pores as first
references (Frank et al., 1981). Particle images of the two most prominent
classes were resubjected to separate alignment, multivariate statistical
analysis (Frank and van Heel, 1982), and averaging. 20 eigenimages of
each class were calculated. Each data set was subsequently split into 20
groups using the 6 most significant eigenimages.

Results

Isolation of Neurospora Tom40

Incubation of purified TOM core complex with OG at
concentrations >3% (wt/vol) led to the dissociation of the
core complex into the individual components Tom40,
Tom?22, Tom7, and Tom6. This was exploited to isolate
Tom40. Purified TOM core complex containing a Tom22
with an oligohistidinyl tag at its COOH terminus was
bound to an Ni-NTA affinity column in 0.1% (wt/vol)
DDM. Fig. 1 A shows the main fractions analyzed for
polypeptide composition after elution of proteins succes-

Ahting et al. The TOM Channel

sively with OG and imidazole. The initial OG fractions
contained nearly all of Tom40 and Tom?7, then virtually
pure Tom40 was eluted. Tom22 and Tom6 eluted upon in-
clusion of imidazole into the buffer. A component corre-
sponding to yeast Tom5 was not detected in the TOM core
complex (Dembowski et al., 2001) or in Tom40 prepara-
tions by Coomassie blue or silver staining. To stabilize
Tom40 in DDM buffer and to prepare Tom40 without
contamination by Tom?7, fractions obtained by elution
with OG were pooled and subjected to anion exchange
chromatography (Fig. 1 B). Size exclusion chromatogra-
phy of purified Tom40 exhibited a peak in the high molec-
ular mass range corresponding to ~350 kD (Fig. 1 D), in-
dicating that Tom40 is organized in a high molecular mass
complex similar to the TOM core complex.

Structure of Isolated Tom40

Does the structure of purified Tom40 resemble that of the
TOM complex? EM images of negatively stained Tom40
particles were diverse (Fig. 2 A). Nevertheless, there were
several molecules with one and two stain-filled openings
or pores. A total of 1,550 projections were extracted. Mul-
tireference alignment procedures (Frank et al., 1981) using
synthetic reference images corresponding to particles with
one, two, three, and four pores were used to eliminate
poorly defined images of Tom40 and to separate the main
groups of Tom40 particle images. The class averages con-
tained predominantly one and two pores. Using multivari-
ate statistical analysis (Frank and van Heel, 1982), the data
of the most prominent one and two pore classes were each
broken up into 20 groups using the 6 most significant
eigenimages. The group averages are shown in Fig. 2, B
and C. Compared with TOM core complex (Ahting et al.,
1999), preparations of Tom40 revealed mainly one ring
structures (n = 560). Particles with two centers of stain ac-
cumulation (n = 114) were present but much less frequent
(~7%) than one pore particles (~36% ). This suggests that
the components Tom22, Tom7, and Tom6 are not neces-
sary for the formation of the two pore form of the TOM
complex but help to stabilize this form. The pore size of
the Tom40 particles ranged between 2 and 3 nm and was
comparable with that of the TOM core complex and the
TOM holo complex (Ahting et al., 1999).

Secondary Structure of Tom40

The secondary structure of Tom40 in detergent solution
was analyzed by two different methods. CD and IR spec-
tra of purified Tom40 were recorded and compared with
those of TOM core complex and VDAC, the mitochon-
drial porin (Figs. 3 and 4). Table I summarizes the charac-
teristics of the CD spectra in terms of the minimum value
(Amin), the wavelength at which the ellipticity equals zero
(Nerossover)> and the spectral deconvolution results. Tom40
revealed a spectrum with a crossover of the baseline at 202
nm and a minimum at 216.5 nm (Fig. 3 A). At wavelengths
>245 nm, the CD spectrum approached ellipticity values
close to zero, indicating that the Tom40 preparation was
virtually free of higher order aggregates, which would
cause light scattering effects and interfere with the inter-
pretation of the data. CD measurements of the TOM core
complex yielded a spectrum with additional local minima
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Figure 1. Purification of
Tom40. (A) Purified TOM core
complex carrying Tom22 with a
hexahistidinyl tag was solubi-
lized in 0.1% DDM and bound
to an Ni-NTA affinity column.
Tom40 and Tom7 were eluted
with 3% (wt/vol) OG; Tom22
and Tom6 were eluted with 300
mM imidazole. Aliquots of the
resulting column fractions were
analyzed by high Tris/urea SDS-
PAGE and staining with Coo-
massie blue. (Lane 1) TOM core
complex; (lanes 2 and 3) column
fractions 3 and 5 of the OG elu-
ate; (lane 4) column fraction 3 of
the imidazole eluate. (B) Frac-
tions containing Tom40 were
pooled and further purified by
anion exchange chromatogra-
phy on a Resource Q column
equilibrated with 0.5% DDM.
The peak fraction of the column
was analyzed by high Tris/urea
SDS-PAGE and Coomassie
staining. Tom7 and residual
amounts of Tom6 were removed
completely from Tom40 after
passage over the anion exchange
column. (C) SDS-PAGE of
VDAC isolated from N. crassa

_ VDAC
(Mitochondrial porin)

mitochondria. The gel was stained with Coomassie blue. (D) Size exclusion chromatography of isolated Tom40. Tom40 purified by an-
ion exchange chromatography was subjected to gel filtration on a Superose 6 column equilibrated with 0.1% DDM. Column fractions
(16-33) were analyzed by SDS-PAGE and staining with Coomassie (top). For comparison, gel filtration analysis of purified TOM core
complex is shown at the bottom. Protein M, standards: ApoF, apoferritin (M,443,000); ADH, alcohol dehydrogenase (M, 155,000); CA,

carboanhydrase (M, 29,000).

at 208 and 222 nm, which are characteristic of a-helical
structure (Fig. 3 B). Both spectra were markedly different
from that of mitochondrial porin (Fig. 1 C), which yielded
a spectrum with a large positive ellipticity <206 nm and a
less intense minimum centered at 216 nm (Fig. 3 C). The
content of a-helix of Tom40 was higher than proposed
previously on the basis of structure predictions (Court et
al., 1995; Mannella et al., 1996).

The IR spectra of Tom40 and TOM core complex re-
vealed peak signals in the amide I vibrational frequency re-
gion centered between 1,629 and 1,680 cm™!, which are
characteristic of a-helical, random coil, and B-sheet struc-
ture elements (Fig. 4, A-D). Evaluation of this frequency
region by Fourier self deconvolution and curve fitting re-
vealed for Tom40 and the TOM core complex a content of
B-sheet structure of ~31 and 30%, respectively (Table II).
This was significantly less than that of mitochondrial porin
of Neurospora (Fig. 4 E). The shape of the amide I band of
porin was typical of proteins with a high content of antipar-
allel B-sheet. Also for Tom40, the spectral component at
1,695 cm ™! indicated the existence of antiparallel B-strands.
Analysis of the spectra of deuterated proteins (Fig. 4, B and
D) resulted in estimates of ~22 and 33% a-helical struc-
ture for Tom40 and the TOM core complex. In agreement
with the CD measurements, the content of a-helical struc-
ture of Tom40 was again larger than that of mitochondrial
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porin (Fig. 4 F). The amount of B-sheet structure of Tom40
based on CD was less than that calculated from IR spec-
troscopy. It should be noted that the prediction of B-strand
structures by CD measurements tends generally to under-
estimate B-sheet relative to a-helical structures.

Channel Properties of Tom40

To test whether isolated Tom40 is functional and forms
pores, we analyzed its channel-forming activity after re-
constitution into planar lipid membranes. Fig. 5 A shows a
current trace obtained for purified Neurospora Tom40 re-
corded in 1 M KCI at a membrane potential of +20 mV.
The single channel distribution of 114 insertion events
showed a characteristic maximum at ~2.8 nS (Fig. 5 B).
The mean conductance of isolated Tom40 insertions was
comparable to those of the TOM holo complex (Kiinkele
et al., 1998a), the TOM core complex, and protease-
treated core complex lacking the hydrophilic domains of
the receptor component Tom22 (Ahting et al., 1999).
Tom40 and TOM core complex channels were further
characterized in single channel records (Fig. 6). They were
either directly integrated into the bilayer by adding deter-
gent-solubilized protein to the bath solution or they were
reconstituted into proteoliposomes, which were subse-
quently fused to lipid bilayers. The channels described pre-
viously for the core complex showed cation selectivity and
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Figure 2. EM and projection map of purified Tom40. (A) Sur-
vey view of negatively stained Tom40 particles. The image was
filtered to the first zero of the electron microscope transfer func-
tion. (B and C) Statistical analysis of Tom40 particles. From elec-
tron micrographs a total of 1,550 Tom40 particles were extracted
and subjected to multireference alignment. Based on eigenimage
analysis, the data sets of the two most prominent groups were
split into 20 classes. (B) Class averages of one pore particle im-
ages. (C) Group averages of the two pore classes. The numbers
given for a specific class average represent the number of merged
particle images. Group averages containing <10 particle images
were omitted. Bars: (A) 20 nm; (B and C) 10 nm.

were characterized by three main conductance levels sepa-
rated from the fully open state (1,100 pS in 150 mM KCl)
by two identical jumps of 440 pS (Fig. 6 A). At ~0 mV, they
were fully open, and they closed with slow kinetics at po-
tentials of either polarity. In addition, a fast flicker between
the three main conductance levels occurred only at voltages
of one polarity around 70 mV (Fig. 6 A). These characteris-
tics are similar to those of the dimeric peptide-sensitive
channel (PSC) identified in outer membrane and holo com-
plex fractions of Neurospora (Kiinkele et al., 1998b). The
channels most often found in the Tom40 fraction had simi-
lar selectivity and voltage-dependence properties, but their
maximum conductance (550 pS in 150 mM KCI) was half
that of the channels described above. They exhibited only
two main conductance levels separated by jumps of 440 pS
and a fast flicker at voltages of one polarity (Fig. 6 B). They
are thus similar to the monomeric form of the Neurospora
PSC described previously (Kiinkele et al., 1998b). This
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Figure 3. Far ultraviolet CD spectra of Tom40, TOM core com-
plex, and mitochondrial porin isolated from N. crassa mitochon-
dria. (A) Tom40; (B) TOM core complex; and (C) porin. Protein
was solubilized in 0.1% DDM, 50 mM potassium-acetate/MOPS,
pH 7.0, 10% glycerol. 10 scans were accumulated at 4°C. The pro-
tein concentrations of Tom40 (2.5 pM) and mitochondrial porin
(6.9 uM) relevant for computing the molar ellipiticities @ were
determined by UV absorbance spectroscopy. The protein con-
centration of the TOM core complex was determined using a col-
orimetric assay.

form was also found in the core complex fraction but with a
lower probability than the dimeric form. These results indi-
cate that Tom40 can form the protein translocation channel
of the mitochondrial outer membrane.

The channel formed by purified Tom40 is blocked by
mitochondrial presequences. Purified Tom40 was inserted
into bilayers, and single channels were recorded at differ-
ent voltages before and after addition of a synthetic pep-
tide corresponding to the first 32 residues of the precursor
of S. cerevisiae F;-ATPase B-subunit (pF;B) to one or both
compartments (Fig. 6 C). pF,B reduced the channel open
state probability in a voltage-dependent manner. Control
peptides had no effect on the channel activities (data not
shown). The channels formed by the TOM core complex
were blocked in a similar manner by pF;8 (data not
shown). This blockade has been reported previously also
for TOM holo complex channels (Kiinkele et al., 1998b).
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Table I. Comparison of the CD Spectrum of Tom40 with that of TOM Core Complex and Mitochondrial Porin

Protein Acrossover Amin OR min a-Helix B-Sheet + turn Other
nm 1073 deg cm? dmol ™! % % %
Tom40 202 216.5 —-11.7 32 22 46
TOM core complex 202 210 and 226 —5.6 ND ND ND
VDAC (mitochondrial porin) 206 216.0 —3.4 15 46 34

The secondary structure estimates were computed from CD spectra of Tom40 and mitochondrial porin of N. crassa in 0.1% DDM as described in Materials and Methods. The
content of a-helix and B-sheet was estimated for Tom40 and mitochondrial porin only, since the protein concentration of the TOM core complex could not be determined with the

required accuracy.

When Tom40-containing proteoliposomes were fused to
bilayers, not only monomeric PSC-type channels were ob-
served but, with a frequency of <25% of all channels re-
corded, two other types of channels were observed (Fig. 6
D), which were not seen using holo or core complex pro-
teoliposomes. Like PSCs, both types had cationic selectiv-

ity, but their maximum conductance and voltage depen-
dence were different. The first type was characterized by
multiple conductance levels and rectification. The second
type was a pore devoid of voltage dependence. Differing
from the PSCs, the two types of channels were not blocked
by pF,B at the concentration of 1 puM (data not shown). A

Figure 4. Original and deconvoluted FTIR
spectra of Tom40, TOM core complex, and mito-
chondrial porin. The spectra of Tom40 (A),
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Wavenumber {1/c¢cm)

TOM core complex (C), and porin (E) were re-
corded on thin films on Ge crystals applying the
ATR approach. After the end of measurements,
the films were exposed to D,O-saturated nitro-
gen gas for 120 min, and spectra of deuterated
protein were recorded (B, D, and F) in order to
separate contributions of a-helix from random
coil components. Spectral bands assigned to
a-helix structure are centered at ~1,650 cm™!,
random components at 1,645-1,640 cm™!, and
B-sheet at 1,630-1,625 cm~!. The shoulder at
1,695 cm™! indicates antiparallel B-sheet with
particularly short turns. For all spectra, the base-
line and residual water vapor components were
subtracted if necessary.

1620 1600
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Table I1. Secondary Structure of Tom40, TOM Core Complex, and Mitochondrial Porin Estimated from IR Spectra

Protein H,0/D,0 a-Helix B-Sheet Other* Position of the B-signal
% % % cm™!
Tom40 H,0 31 1,629.4
Tom40 D,0 22 31 47 1,628.0
TOM core complex H,O 24 1,631.1
TOM core complex D,O 33 30 37 1,628.0
VDAC (mitochondrial porin) H,0 48 1,630.5
VDAC (mitochondrial porin) D,O 15 48 37 1,627.3

*B-turn plus random coil.

likely explanation for the occurrence of these unusual
channels is the relative instability of Tom40 compared
with the very stable TOM core complex; this could lead to
the formation of nonnative Tom40 channels and nontypi-
cal Tom40 particles in the electron microscopic pictures in
the purified Tom40 preparations (see Fig. 2).

Discussion

We have isolated Tom40 from purified TOM core complex
of N. crassa and analyzed the pore-forming activity of this
protein. Channels of Tom40 were recorded, which were
very similar to those found with both TOM core complex
and TOM holo complex. This supports the view that
Tom40 is the central constituent of the protein-conducting
channel of the TOM complex. The characteristic gating
properties of Tom40, TOM core complex, and TOM holo
complex point to common elements in the protein translo-

M

A

P(G)

0.0
01 2 3 4 5 6 7
G (nS)

Figure 5. Single-channel recording of isolated Tom40. (A) Puri-
fied Tom40 (~4 wg/ml final protein concentration) was added to
both sides of a black lipid membrane formed by diphytanoyl
phosphatidyl choline/n-decane/butanol, and single channel con-
ductances were measured in the presence of a membrane poten-
tial of +20 mV. (B) Histogram of channel conductances. P(G) is
the probability that a given conductance increment G is observed.
A total of n = 114 conductance increments were analyzed. The
aqueous phase contained 1 M KCl, 5 mM Hepes, pH 7.0.
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cation channel that sense the electric field in planar lipid
membranes. On the other hand, channels exhibiting differ-
ent properties were recorded together with classical PSCs
(Thieffry et al., 1992), indicating that removal of the pro-
tein environment weakens the channel stability. This leads
to structural changes, which however do not preclude the
ability of Tom40 to form, albeit different, pores.

Analysis of Tom40 preparations was reported previ-
ously for yeast Tom40 obtained by expression in Escheri-
chia coli and refolding from urea-solubilized inclusion
bodies (Hill et al., 1998). These preparations are different
in several aspects from the Tom40 purified from TOM
complex under nondenaturing conditions described here.

The maximum conductance level of recombinant Tom40
was reported to be ~360 pS in 250 mM KCI (Hill et al.,
1998). This is a rather low conductance that does not fit to
previous measurements of TOM complex channels in pla-
nar lipid membranes. The conductance of single channels
(the major form found in the present study, which corre-
sponds to one pore particle) is ~550 pS in 150 mM KCl,
corresponding to ~900 pS in 250 mM KCI both in TOM40
(this study) and holo complex fractions (Kiinkele et al.,
1998a,b). Similar values were observed previously using
different techniques for S. cerevisiae and adrenal cortex
channels (Thieffry et al., 1992; Bathori et al., 1996).

Also, the spectral properties of purified Neurospora
Tom40 were different from those of recombinant Tom40.
The CD spectra of recombinant yeast Tom40 showed
crossovers of the ellipticity to the baseline at ~217 nm and
a broad minimum >230 nm (Hill et al., 1998). Again, this
may suggest that the folding of refolded recombinant
membrane protein Tom40 differs considerably from that
of Tom40 isolated from mitochondria. We presume that
gentle isolation of Tom40 from the native complex con-
serves the basic structure and function of the channel,
whereas expression in E. coli as inclusion bodies and rena-
turation from 8 M urea may not produce the correct
higher order structure.

Tom40 was predicted to traverse the mitochondrial
outer membrane as a series of antiparallel B-strands that
form a B-barrel (Court et al., 1995; Mannella et al., 1996).
A novel multiple alignment algorithm, called the Gibbs
sampling algorithm, was used previously to detect motif-
encoding regions in sequences of bacterial outer
membrane proteins that correspond to transmembrane
B-strands in bacterial porins (Neuwald et al., 1995). This
bacterial motif has been used to screen sets of mitochon-
drial membrane protein sequences. Matches occurred in two
proteins: mitochondrial porin and the outer membrane
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Figure 6. Properties of single channels of Tom40
and purified TOM core complex. Samples of current
traces of channels of TOM core complex (A) and
purified Tom40 (B). Currents were recorded after
voltage jumps from 0 mV to the voltages indicated

40 mvV
20 mvV

-20 mV

on the left of the traces. The main conductance lev-
els are indicated on the right of the traces recorded
at +80 and —80 mV. (C) Blockade of a channel
from purified Tom40 by a mitochondrial prese-
quence peptide. Currents were recorded after volt-
age jumps from 0 mV to the voltages indicated on

-40 mV

the left of the traces. Left, control, before peptide

-60 mV
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-20 mvV
~40 mvV

60 mv
80 mv

1nS|y¢ 2nS|4¢

protein import pore Tom40. This suggested a structural re-
latedness between Tom40 and the bacterial and mitochon-
drial pore proteins (Mannella et al., 1996). CD measure-
ments of bacterially expressed Tom40 of S. cerevisiae were
suggested to indicate a predominance of >60% B-sheet
(Hill et al., 1998) and high structural similarity to members
of the porin membrane protein family.

We have performed CD and FTIR spectroscopy mea-
surements with purified Neurospora Tom40. A maximum
of 31% of Neurospora Tom40 was found to adopt B-sheet
topology, whereas the calculated helix content is =22%.
Surprisingly, the content of B-sheet is markedly less than
that of mitochondrial porin, which in agreement with pre-
vious studies (Shao et al., 1996; Koppel et al., 1998) re-
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addition; middle, after addition to the cis (cytosolic)
side of a peptide corresponding to the first 32 resi-
dues of yeast pF;f (final concentration 0.5 pM);
right, after further addition of the same peptide to
the trans (intermembrane space) side (final concen-
tration 1 wM). The orientation of the channels in the
bilayer was determined from the polarity of the
membrane potential at which the characteristic
flicker occurred (Kiinkele et al., 1998b). (D) Proper-
ties of nontypical channels formed by purified
Tom40. Samples of current traces recorded after
voltage jumps from 0 mV to the voltages indicated
on the left of the traces. The first type (right) is volt-
age dependent and exhibits rectification. The sec-
ond type (right) does not rectify and is not voltage
dependent. Both types are devoid of the characteris-
tic flicker. The dashed lines represent the 0 pA lev-
els. For all records, the cis and trans compartments
contained 150 mM KCI, 10 mM Hepes, pH 7.0. Data
were sampled at 400 Hz and filtered at 200 Hz.

vealed predominantly B-sheet structure (48% pB-sheet,
15% o-helix).

An important question is whether a single Tom40 pro-
tomer can form a protein translocation pore. Our data pre-
dict that ~108 amino acid residues of Tom40 may be orga-
nized in B secondary structure elements. The mean radius
of a regular B-barrel can be computed according to the
number of B-strands and the shear number (Murzin et al.,
1994). Given an inner diameter of 2.5 nm of the barrel, im-
plying a larger diameter of the barrel backbone, and ap-
plying common values for the shear number (Murzin et al.,
1994), >14 B-strands are necessary to fulfill the structural
requirements. This denotes that the B-strands of Tom40
consist of less than seven to eight amino acid residues on
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average and cannot be expected to span the hydrophobic
region of the membrane, if the shear number is close to or
greater than the number of B-strands. In fact, the average
of B-strands in bacterial outer membrane proteins are
made up by ~12 amino acid residues (Buchanan, 1999;
Koebnik et al., 2000; Schulz, 2000). If this would also apply
to Tom40, our data suggest the existence of only 8-10
B-strands in Tom40. This number of strands can hardly be
expected to form stain-filled and open channels of the ob-
served size.

On the basis of these considerations, we speculate that a
B-strand solvent-accessible pore with a diameter of 2.5 nm
could only be formed by B-barrel structures contributed
by more than one Tom40 protomer. These protomers
could be imagined to assemble in a way similar to staphy-
lococcal a-hemolysin (Song et al., 1996) or the bacterial
multidrug efflux and protein export channel TolC (Ko-
ronakis et al., 2000). However, to fully understand the
structural basis of pore formation, further studies address-
ing the oligomeric state of Tom40 will be required. It
seems possible that different oligomeric structures of
Tom40 exist, similar to the bacterial protein translocase
SecYEG, which forms primarily dimeric but also tet-
rameric structures. Formation of the tetramer is induced
by SecA (Manting et al., 2000).

EM and image analysis of Tom40 revealed mainly single
ring structures, whereas the TOM core complex consists
predominantly of double rings. The core complex is com-
posed of about eight Tom40 molecules (Ahting et al., 1999).
From the size of the Tom40 complex as indicated by gel fil-
tration analysis, the stoichiometry cannot be determined
with certainty. Higher resolution images of the Tom40 com-
plex are required to resolve structural symmetries.

It seems clear from the findings reported here that oli-
gomeric Tom40 forms the basic structure of the TOM
complex. At the same time, our results demonstrate that
the other constituents of the core complex Tom22, Tom?7,
and Tomé6 have important functions in generating a stable
two pore channel. This agrees well with genetic experi-
ments in which the genes for these components were de-
leted (Honlinger et al., 1996; van Wilpe et al., 1999).
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