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Summal'y 
The class II major histocompatibility complex gene HLA-DRA is expressed in B cells, activated 
T lymphocytes, and in antigen-presenting cells. In addition, HLA-DRA gene expression is inducible 
in a variety of cell types by interferon-'), (IFN-3'). Here we show that the lymphoid-specific 
transcription factor Oct-2A plays a critical role in HLA-DRA gene expression in class II-positive 
B cell lines, and that the high mobility group protein (HMG) I/Y binds to multiple sites within 
the DP, A promoter, including the Oct-2A binding site. Coexpression of HMG I/Y and Oct-2 
in cell lines lacking Oct-2 results in high levels of HLA-DRA gene expression, and in vitro 
DNA-binding studies reveal that HMG I/Y stimulates Oct-2A binding to the HLA-DRA 
promoter. Thus, Oct-2A and HMG I/Y may synergize to activate HLA-DRA expression in 
B cells. By contrast, Oct-2A is not involved in the IFN-3, induction of the HLA-DILA gene 
in HeLa cells, but antisense HMG I/Y dramatically decreases the level of induction. We conclude 
that distinct sets of transcription factors are involved in the two modes of HLA-DRA expression, 
and that HMG I/Y may be important for B cell-specific expression, and is essential for IFN-~/ 
induction. 

C lass II molecules of the MHC play a central role in the 
immune response by presenting processed peptides of 

foreign antigen to T helper cells and by participating in the 
thymic selection of T lymphocytes (1). The c~ and/3 chains 
of the heterodimeric MHC class II molecules are encoded 
by genes located within the HLA-DR, -DP, and -DQ loci 
in human (2), with each set ofc~ and/3 polypeptides forming 
a distinct class II isotype. The different class II isotypes are 
generally expressed coordinately, although it is clear that this 
is not always the case in vivo (3-5). The expression of MHC 
class II molecules is ordinarily restricted to cells of the im- 
mune system, but a variety of cell types can be induced to 
express MHC class II molecules by several stimuli (reviewed 
in 6). Of these, the cytokine IFN-~/is among the most po- 
tent and well studied (7, 8). Aberrant expression of MHC 
class II molecules may be important in the pathogenesis of 
autoimmune disorders (9, 10) while defective expression of 
class II molecules is the basis for a subset of severe combined 

immunodeficiency diseases known as the bare lymphocyte syn- 
drome (11, 12). 

Analysis of the DNA sequence requirements for both B 
ceU-specific expression and IFN~ induction of the HLA genes 
reveal a complex organization of regulatory elements (reviewed 
in 6, 13). The proximal 160 bp of MHC class II gene promoters 
contain conserved DNA elements called the X, Y, and Z/W/H 
boxes, each of which are required for transcription (14-17). 
The Y box is an inverted CAAT box and a number of pro- 
teins that specifically interact with it have been identified 
(18, 19). 

The X box is found 18-20 bp upstream of the Y box. The 
sequences separating these elements are variable, but the length 
of the sequence is both conserved and critical for the tran- 
scriptional activity of the genes (17, 20). The X box can be 
further subdivided into two motifs: the X1 and X2 boxes, 
which bind distinct types of sequence-specific DNA-binding 
proteins (21-28). 
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A region termed W, which contains multiple potential con- 
trol elements called Z, H, V, or S, exhibits a degree of se- 
quence conservation when the different class II MHC se- 
quences are aligned (29-34). An additional element, called 
J, has recently been described, which appears to be impor- 
tant for induction of different class II MHC genes by IFN-7 
(35). In addition to these regulatory elements, which are found 
in all of the class II genes from mice and humans, the human 
DRA and DQB gene promoters contain a consensus binding 
site for the transcriptional activators Oct-1 and Oct-2 (14, 
36-40). 

The proximal promoter is su~cient in directing both B 
cell-specific and inducible expression of class II genes in tran- 
sient transfection assays. Most of the DNA-binding proteins 
that interact with conserved class II MHC regulatory ele- 
ments in vitro are ubiquitously expressed in vivo and the status 
of MHC class II transcription correlates with promoter oc- 
cupancy in vivo. In vivo footprinting of the DRA promoter 
in uninduced class II-negative HeLa cells shows little protec- 
tion of conserved motifs, while the regulatory DNA elements 
in class II-positive B cells are fully protected (40, 41). Induc- 
tion of dass II expression by treatment of HeLa cells in IFN-7 
leads to increased protection at the same sites as those pro- 
tected in class II positive B cells. 

The octamer binding site of the HLA-DR promoter has 
been shown to be required for constitutive expression in B 
cells but not for IFN- 7 induction (16, 42). We have confirmed 
these findings and we have shown that an octamer-binding 
site in the HLA-DQB promoter (38), is not required for tran- 
scriptional activation. In addition, we have carried out an- 
tisense RNA experiments to show that the Oct-2A protein 
is required for B cell-specific expression of the endogenous 
HLA-DRA gene. 

The high mobility group (HMG) 1 protein HMG I/Y was 
previously shown to be required for virus induction of the 
IFN-3 gene (43, 44). HMG I/Y facilitates the binding of 
two distinct transcription factors, NF-gB and ATF-2, and 
also appears to function as an architectural component of an 
inducible enhancer complex. Here, we show that HMG I/Y 
binds to multiple sites within the HLA-DRA promoter, that 
HMG I/Y and Oct-2A synergize in transfection experiments 
and that the two proteins cooperatively bind to DNA in vitro. 
In addition, using antisense RNA experiments we show that 
HMG I/Y is required for IFN-7 induction of the HLA-DRA 
promoter. Thus, HMG I/Y may be involved in the assembly 
of two distinct transcriptional activation complexes on the 
HLA-DRA promoter, one for B cell-specific expression, and 
the other for IFN-7 inducible expression. 

Materials and Methods 
Cell Culture and Flow Cytometry. HeLa cells were grown in 

DMEM supplemented with 10% fetal bovine serum, 2 mM gluta- 
mine, and antibiotics. Human Raji, Jijoye, and Jurkat ceUs were 
grown in RPMI 1640 with 10% fetal bovine serum, 2 mM gluta- 

1 Abbreviations used in this paper: CAT, chloramphenicol acetyl transferase; 
EMSA, electrophoretic mobility shift assay; HMG, high mobility group. 

mine, and antibiotics. For induction with IFN-7 HeLa ceils were 
incubated with recombinant IFN-3' (Genentech, South San Fran- 
cisco, CA) at 500 U/m1 for 48 h. The following monoclonal anti- 
bodies were used for flow cytometric analysis: LB3.1 (anti-DR), 
B7/21 (anti-DP), and Genox 3.53 (anti-DQ). These antibodies are 
all of the IgG1 subclass. 

Recombinant DNA and Proteins. The plasmids DRA300CAT 
and DQB2500CAT have been described (27). A.S. hXBP-1 and 
a.s.fos, plasmids have also been previously described (28). A.S. oct- 
1 and A.S. oct-2A were synthesized by subdoning the entire Oct-1 
or Oct-2A cDNAs in the reverse orientation behind the CMV pro- 
moter in the pcDNA cloning vector. DRA300 mutant pro- 
moter-chloramphenicol acetyl transferase (CAT) constructs were 
made by subcloning the mutated promoter fragments from the Bhe- 
script constructs (Stratagene Inc., La Jolla, CA), described under 
site-directed mutagenesis below, into the XbaI site of the pro- 
moterless plasmid pCATBasic (Promega Corp., Madison, WI). All 
constructs were confirmed by dideoxy sequencing. Escherichia coli 
expressed HMG I/Y protein was prepared as described (43). Re- 
combinant Oct-2 protein was kindly provided by M. Tanaka (Cold 
Spring Harbor Laboratory). 

Site-directed Mutagenesis. All site-specific mutations in FIMG I/Y 
binding sites were generated by PCR using as template the 
BSDRA300 plasmid (26). To mutagenize the octamer motif, oligos 

44a :  (5'AGAGTAATTGATGGGCATTTTAATGG-3') 
and 44b: (5'-CCATTAAAATGCCCATCAATTACTCT-3'), 

with bold type denoting mutated bases, were used. For 
mutagenizing the AT-rich D-box region, oligos 

45a:  (5'ATCTCAAAATATGGGTCTGATTGGCCA-3') 
and 45b: (5'-TGGCCAATCAGACCCATATTTTGAGAT-3') 

were used. Each of these mutagenizing oligos was used in a first 
PCR reaction with either the T3 or the T7 Bluescript primers. 
The two PCR products were purified by Geneclean II (Bin 101, 
La Jolla, CA), mixed in equimolar amounts and used in a third 
PCR reaction with the T7 and the T3 primers. The final PCR 
product was digested with EcoRI and HindlII and subcloned into 
the EcoRI-HindlII site of the Bluescript KS/+ plasmid. An addi- 
tional mutant: 

(5'-ATCTCCAGATATGGGTCTGATTGGCCA-3') 

was generated spuriously. Double mutants were generated by ex- 
ploiting a unique MscI restriction site between the octamer and 
the D box to swap fragments between the single mutants. All mu- 
tations were confirmed by dideoxy sequencing. 

Transfections and CATAssays. Jijoye and HeLa cells were trans- 
fected using lipofectamine (Gibco, Gaithersburg, MD) according 
to the manufacturer's instructions, while Jurkat cells were trans- 
fected using the DEAE dextran transfection method. For assessing 
the activity of mutant DRA promoters, Jijoye and HeLa cells were 
transfected with 1 #g of the mutant promoter-CAT constructs. 
The B galactosidase expression vector, pSV-~-gal (Promega) was 
included as an internal control to monitor transfection efficiency. 
Cell extracts were made 48 h after transfection, normalized for 
B-galactosidase activity, and used in CAT assays as described below. 
For Jurkat cells, 107 recipient cells were washed extensively with 
serum-free media. 20/zg of cesium chloride-purified, supercoiled 
plasmid DNA was added to the cells in a 1-ml vol of serum-flee 
RPMI 1640 containing 200 #g ofDEAE Dextran (Pharmacia Fine 
Chemicals, Piscataway, NJ). 5 #g of plasmid pXGHS, a mammalian 
expression vector encoding human growth hormone, was cotrans- 
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fected with reporter constructs to control for variability in trans- 
fection efficiency. The cells were incubated for I h at 37~ before 
addition of medium. 48 h after transfection, the cells were washed 
with serum-flee media and pelleted. The cells were resuspended 
in 300 #1 of 0.25 M Tris and freeze-thawed three times. After cen- 
trifugation in a microfuge to remove debris, 150 #1 of the cell ex- 
tract was incubated with 20/~1 10 mM acetyl coenzyme A (Phar- 
macia Fine Chemicals) and 2 #1 of ["C]chloramphenicol (New 
England Nuclear, Boston, MA) (49 mCi/mmol, 0.1 mCi/ml) for 
4 h at 37~ The chloramphenicol was then extracted with 1 ml 
ethyl acetate, speed vacuum dried, and spotted onto TLC plates. 
After the solvent front was allowed to travel three-quarters of the 
length of the plate, the plate was removed from the chromatog- 
raphy tank, allowed to dry, and subjected to autoradiography. For 
quantitation of CAT activity, appropriate slices of the TLC plates 
were analyzed by liquid scintillation counting. 

Gel Retardation Analysis. Jijoye and HeLa whole-cell extracts 
for gel shift analysis were prepared using a modification of a pro- 
tocol (45). In brief, 3-5 • 106 cells were pelleted, washed in ice- 
cold PBS, then resuspended in 100 #1 of 20 mM Hepes, pH 7.9, 
200 mM KC1, 1 mM DTT, 1 mM EDTA, 0.1 mM PMSF, 20% 
glycerol, and 0.1% NP-40, and incubated with periodic agitation 
for I h at 4~ The cells and large debris were pelleted by 10-min 
14,000-rpm centrifugation in a microfuge at 4~ and the super- 
natant, containing proteins solubilized from both the nucleus and 
the cytosol in the extraction media, removed, aliquoted, quick-frozen 
in liquid nitrogen, and stored at -80~ For nuclear extract prep- 
aration, 500 ml of log phase cells was pelleted at 2,000 rpm for 
10 min. The cell pellet was washed twice in ice-cold PBS and 
resuspended in 25 ml nuclear isolation buffer I (10 mM Tris-HC1, 
pH 7.9, 10 mM KC1, 1.5 mM MgC12, and 1 mM DTT). 0.3 ml 
of ice-cold 10% NP-40 was added dropwise (while vortexing at 
lowest setting) and incubated on ice for 20 min. The cell lysate 
was layered onto 12 ml of ice-cold nuclear isolation buffer I con- 
taining 1.7 M sucrose and centrifuged at 13,000 g for 15 min in 
an SW27 rotor (Beckman Instruments, Inc., Palo Alto, CA). 
Purified nuclei were then resuspended in 3 ml of ice-cold 20 mM 
Hepes, pH 7.9, 25% glycerol, 0.42 M NaC1, 1.5 mM MgC12, 0.2 
mM EDTA, 0.5 mM PMSF, and 0.5 mM DTT, and homogenized 
with 10 strokes of a Dounce homogenizer on ice. The suspension 
was then rocked for 30 rain at 4~ and centrifuged for 30 min 
at 25,000 g in an SS34 rotor (Beckman Instruments). The superna- 
tant was then dialyzed against 150 ml of transcription buffer 
(-rNTPs): 12 mM Hepes, pH 7.9, 12% glycerol, 0.3 mM DTT, 0.12 
mM EDTA, and 60 mM KC1 for 5 h. MgCI2 was omitted from 
those preparations to be used for gel-retardation assay, as MgC12 
has been found to inhibit gel retardation. For gel-shift analysis, 
32p end-labeled probes (5,000-15,000 cpm) were incubated in a 10- 
#1 vol with pure recombinant proteins or extracts on ice for 25 
min. Binding condition for recombinant HMG I/Y was 10 mM 
Tris.C1 (pH 7.6), 50 mM NaC1, 5% glycerol, 1 mM EDTA, and 
100 ng of poly(dG.dC). Poly(dG-dC) was always used since HMG 
I/Y binding is sensitive to poly(dI-dC). Octamer protein-binding 
reactions were in 20 mM Hepes pH 7.9, 2 mM DTT, 8% glycerol, 
40 mM KC1, 0.01% NP-40, and 100-500 ng of poly(dG.dC) or 
poly(dI-dC). The total amounts of protein in reactions containing 
exogenous HMG I were kept constant by using BSA or recom- 
binant IFN-3r. Antibody to HMG I/Y was generated as described 
(43) and an anti-/3gal antibody was purchased (Promega), 1 #1 an- 
tibody was used per reaction. Reactions were analyzed by electropho- 
resis in a nondenaturating 5% polyacrylamide gel in 0.5 x Tris- 
buffered EDTA. Bands were quantitated by densitometry. The Y 
+ OCT probe has the sequence: 

5'TCTCAAAATATTTTTCTGATTGGCCAAAGAGTAATT- 
GATTTGCATTTTAAT3',  

the D R ~ O C T  oligo: 

5'-AGAGTAATTGATTTGCATTTTAATGG-3',  

andthe DRA-ISoligo: 

5'ATCTCAAAATATTTTTCTGATTGGCCA-3'.  

DNaseI Footprint Analysis. Both strands of the DRA proximal 
promoter were subjected to DNaseI footprint analysis using the 
plasmid pBSDRA300 which contains nucleotides -268 to +29 
of the DKA gene inserted into the pBluescript KS vector between 
the HindlII and EcoRI restriction sites (26). Strand-specific labeling 
was achieved by labeling after digestion with either HindlII or 
EcoRI, followed by complete digestion with the other restriction 
enzyme. The radiolabeled DRA proximal promoter was then 
purified by elution after gel electrophoresis and the specific activity 
of the fragment determined by scintillation counting. Footprinting 
reactions were performed in 50-/~1 binding reactions containing 
10,000 cpm of purified probe with increasing amounts of recom- 
binant HMG I protein for 30 min at room temperature. Binding 
reactions were carried out in a buffer containing 25 mM Hepes, 
pH 7.6, 50 mM NaC1, 1 mM DTT, 1 mM EDTA, 10 #g of BSA, 
0.01% NP-40, and 1/~g ofpoly dG/dC as a nonspecific competitor 
DNA. DNA was fragmented for 1 rain in a final concentration 
of 4 mM MgC12 using 0.2 U of DNaseI. After 1 min, the reac- 
tion was terminated with a solution containing 2% SDS, 200 mM 
EDTA, and 1/zg of salmon sperm DNA. After phenol-chloroform 
extraction, reaction mixtures were analyzed by electrophoresis on 
an 8% polyacrylamide sequencing gel containing 8 M urea. A G 
+ A sequencing ladder was also added for orientation after de- 

veloping the autoradiograph. 
In Vitro Transc@tion/Translation. In vitro translated Oct-1 pro- 

tein was made from the pBSOct-l+ plasmid (W. Herr, Cold Spring 
Harbor Laboratory) using the TNT coupled rabbit reticulocyte 13,- 
sate system (Promega) according to the manufacturer's instructions. 

Results 
Differential Requirement of the Octamer-binding Protein Oct-2 

for the B Cell-specific Expression of the HLA-DRA and HLA- 
DQB Genes. Among the human class II M H C  genes, only 
the H L A - D R A  and HLA-DQB promoters have been found 
to contain an octamer-binding site (36, 38; our unpublished 
observations). In the D R A  promoter the octamer element 
is located between - 5 2  and - 4 5  bp upstream from the start 
site of transcription, while the octamer element in the DQB 
promoter is located between -611 and -604  (see Fig. 1 A). 
Previous studies have established that the octamer motif  in 
the H L A - D R A  promoter binds both Oct-1 and Oct-2 and 
mutations that abolish in vitro binding adversely affect ex- 
pression in B cells (16, 42, 46; and data not shown). Since 
both Oct-1 and Oct-2 proteins are expressed in B cells, we 
were interested in determining whether one or both of these 
proteins are required for H L A - D R A  expression. Thus, we 
cotransfected expression vectors that direct the synthesis of 
either Oct-1 or Oct-2A antisense R N A  with the HLA-DRA 
reporter construct. While the vector encoding antisense Oct-1 
R N A  had no effect on either D R A  or DQB promoter ac- 

489 Abdulkadir et al. 



Figure 1. Antisense Oct-2 RNA blocks the expression of the HLA-DRA, but not the -DQB promoter in Raji cells. (.4) Diagram showing the 
location of octamer-binding sites within the human class II MHC gene promoters: HLA-DRA (-52 to -45 bp) and HLA-DQB (-611 to -604 
bp). (B) Effect of expression of antisense Oct-2 RNA on HLA-DRA and DQB promoter activity as assessed by CAT assay. Raji cells were transfected 
with the indicated reporter constructs (pHGCAT is a promoterless CAT plasmid). Lanes marked - were from cells transfected with only the reporter 
construct. In the remaining lanes the cells also received the indicated antisense vector, a.s. BZLF1 directs the expression of an antisense BZLF1 RNA 
(the immediate early response transcription factor Zebra, involved in the latent/lytic transition of EBV; a.s. Oct1 directs the expression of antisense 
Oct1 RNA; a.s. Oct2 directs the expression of antisense Oct2A RNA. (C) The effect of antisense Oct1 or Oct2 RNA on cell-surface expression 
of endogenously encoded MHC class II molecules. Raji cells were transfected with the vectors described in B and cell-surface expression of the HLA-DR, 
-DQ, and -DP molecules was assessed by flow-cytometric analysis using isotype-specific monoclonal antibodies (subpanel A). Synthesis of antisense 
Oct2 RNA resulted in the specific down-regulation of HLA-DR expression. The subpopulation of cells expressing reduced levels of HLA-DR was 
purified by cell-sorting (subpanel B). The same cells that expressed reduced HLA-DR, expressed wild-type levels of HLA-DQ and -DE (D) Raji cells 
were transfected with the control antisense vector pRSV2.Z or the antisense Oct2 expression vector. Cells transfected with the antisense Oct2 expression 
vector were then sorted into HLA-DR high and low populations by flow cytometry, based upon cell-surface HLA-DR expression levels. Whole cell 
extracts were prepared from these cells and assessed for the presence of octamer-binding proteins by EMSA. The lane marked Control contains extract 
from unsorted, p.a. Oct2-transfected Raji cells. Cells expressing decreased levels of cell-surface HLA-DR (lanes marked Low) show no detectable levels of Oct2. 

tivity (in the B lymphoblastoid cell line Raji), the vector en- 
coding antisense Oct-2A R N A  strongly down-regulated ex- 
pression of  the D R A  (but not the DQB)  promoter in these 
cells (Fig. 1 B). 

To further assess the significance of  the octamer-binding 
proteins on the transcription of the class II M H C  genes, we 
tested the effect of  antisense Oct-1 and Oct-2A R N A  produc- 
tion on the cell-surface expression of  the endogenous class 
II molecules in the B cell line Raji (Fig. 1 C). Raft cells were 
transiently transfected with either the antisense Oct-1 or Oct- 
2A expression vector and then analyzed for surface class II 
antigen expression by flow cytometric analysis using isotype- 
specific monoclonal antibodies. It is important to note that 
cell-surface expression of  any of  the class II isotypes requires 

transcription and translation of  both the ol and 3 chain genes. 
Therefore, a reduction in expression of either an ot or 3 chain 
gene at a particular locus will result in decreased cell-surface 
expression of  that particular isotype. Significantly, Raft cells 
transfected with the antisense Oct-2A expression vector ex- 
hibit a specific down-modulation of H L A - D R  antigen ex- 
pression in a subpopulation of  cells (Fig. 1 C, subtmnel A). 
In contrast, vectors encoding antisense Oct-1 and the con- 
trol antisense Zebra R N A  had no effect on cell-surface ex- 
pression of  any of  the class II isotypes. 

To further characterize this phenomenon, the subpopula- 
tion of  Raji cells transfected with the antisense Oct-2A ex- 
pression vector (designated: H L A - D R A  sort low) were 
purified by cell sorting and shown to express wild-type levels 
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of H L A - D Q  and -DP (Fig. 1 C, subpanel B). Whole-cell ex- 
tracts were then prepared from the sorted populations of cells 
transfected with  antisense Oct-2A expression vector and ana- 
lyzed by gel mobility shift assay for expression of the octamer- 
binding proteins (Fig. 1 D). The sorted subpopulation of Raji 
cells expressing markedly decreased levels of cell surface HLA- 
DR. molecules showed reduced levels of  Oct-2 protein (lanes 
marked Low), while the subpopulation of antisense Oct-2A 
expression vector transfected cells that express high levels of  
surface HLA-DR. retain normal levels of Oct-2 protein (lanes 
marked High). Thus, there is a correlation between reduced 
cell-surface expression of H L A - D R  molecules and reduced 

amounts of  Oct-2 protein. The subpopulation of cells trans- 
fected with antisense Oct-2A expression vector that express 
wild-type levels of  H L A - D R  presumably did not incorporate 
the expression vector. 

The Octamer-binding Protein Oct-2A Is Not Required for IFN-y 
Induction of the HLA-DRA Gene. To further investigate the 
role of  the octamer-binding site in IFN-3'  induction of the 
H L A - D R  promoter, we examined the effects of  mutations 
in this site on the expression of the DRA300CAT reporter 
in B cells and in HeLa cells. We substituted the T T  bases 
for GG in the octamer element as shown in Fig. 2 A.  This 
mutat ion drastically reduced the expression of the reporter 

Figure 2. The octamer-binding site is required for 
HLA-DRA expression in B cells, but not for its IFN-'y 
induction in HeLa cells. (.4) Diagram showing the wild- 
type and mutant octamer sequence in the HLA-DRA pro- 
moter. Base substitutions were introduced using the PCK. 
(B) A representative CAT assay showing the effect of oc- 
tamer site mutations on expression in B cells. The mutant 
and wild-type DRA300CAT reporter constructs were 
transfected into the dass II-positive B lymphoblastoid cell 
line Jijoye and cell extracts assayed for CAT activity, pCAT- 
basic (Promega) is a promoterless CAT construct. AB2CAT 
contains the mutation in the octamer motif. (C) The effects 
of octamer site mutations on IFN-3~ induction in HeLa 
cells. ( -)  refers to extracts from uninduced cells, (+) refers 
to IFN-y-induced cells. A representative CAT assay is 
shown. (D) IFN-3' treatment of HeLa cells does not in- 
duce detectable levels of Oct-2 protein. A gel-shift assay 
showing octamer-binding proteins in extracts from HeLa 
cells induced (+IFN) or uninduced (-IFN) with IFN-v. 
100-fold excess of the following competitors (all from 
Promega) were used: OCT (the consensus octamer), AP1 
(the consensus AP1 oligo), AP3 (the consensus AP3- 
binding site from the SV40 enhancer), and CTF (the con- 
sensus CTK/NFl-binding site). Lane I contains free probe. 
The specific band corresponding to Oct-1 is arrowed. The 
fast migrating HMG I/Y-containing complex (lanes 7-10) 
is indicated. The unlabeled arrow indicates a band seen 
in some preparations of induced HeLa cells, which, how- 
ever, is not specific. (E) EMSA with extracts from induced 
HeLa cells and the DRA octamer. Antibody against HMG 
I/Y (~-HMG I) inhibits the formation of the fast- 
migrating complex labeled as HMG I/Y, while the con- 
trol antibody against /3-galactosidase had no effect 
(~-/~Gal). 
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Figure 3. Identification of HMG I/Y-bind- 
ing sites in the HLA-DRA promoter. (.4) In 
vitro DNase I footprint analysis of regions of 
the HLA-DRA proximal promoter that are 
protected by binding of recombinant HMG 
I/Y. The noncoding strand is end-labeled in 
subpanel A and the coding strand in subpanel 
B. Lanes I and 7 are Maxam-Gilbert G + A 
sequencing ladders. Lanes 2, 6, 8, and 12 are 
DNaseI-generated fragments in the absence of 
HMG I/Y. Lanes 3-5 and 9-11 contain increas- 
ing amounts of HMG I/Y. Six protected re- 
gions are labeled A-F. (B) Sequence of the 
HLA-DRA proximal promoter showing the 
regions footprinted by HMG I/Y binding. Site 
A coincides with the transcription initiation 
site, site B with the TATA element, site C with 
the octamer motif, site D with the A/T-rich 
interspace region between the X and Y boxes, 
and two upstream binding sites (E and F) that 
are located in a region which is dispensable for 
tissue-specific and inducible expression of the 
HLA-DRA promoter. 

gene in the B cell line Jijoye (Fig. 2 B). On the other hand, 
the same mutations in the octamer-binding site had only a 
slight effect on the induction of the HLA-DRA promoter 
by IFN-7 in HeLa cells (Fig. 2 C). While the octamer muta- 
tion almost completely abolished HLA-DRA promoter-driven 
CAT activity in B cells, it reduced CAT activity in HeLa cells 
to between 70 and 80% of wild type (Fig. 2, B and C; see 
also Fig. 4 C). These observations are in general agreement 
with earlier reports that DRA reporter constructs containing 
mutations in the octamer element have impaired activities 
in B cells but not in HeLa cells induced with IFN-3' (16, 42). 

HeLa cells do not normally express Oct-2 protein (46-48). 
We, however, wanted to investigate the possibility that Oct-2 
plays a role in IFN-7-mediated induction of HLA-DRA 
gene expression in HeLa cells. We therefore assayed for de 
novo Oct-2 protein synthesis in IFN-7-treated HeLa cells 
by gel-shift analysis using the DRA-octamer as a probe. As 
shown in Fig. 2 D, we found no evidence of de novo Oct-2 
synthesis in HeLa cells induced with IFN-7. This observa- 
tion strongly supports the notion that induction of the DRA 

promoter in HeLa cells occurs via an Oct-2-independent 
pathway. Thus the modest effects of the octamer mutation 
seen on inducibility in HeLa cells is more likely to be due 
to the impairment of another factor, which we feel is likely 
to be HMG I/Y itself. In support of this model, we have 
observed in electrophoretic mobility shift assays (EMSA)s that 
a high mobility complex which forms on the DRA octamer 
element is enhanced when extracts from IFN-7-induced HeLa 
cells are used (Fig. 2 D; compare lane 2 with lane 7). This 
complex appears to contain HMG I/Y or an immunologi- 
caUy related protein as judged by its sensitivity to antisera 
raised against recombinant HMG I (Fig. 2 E). This observa- 
tion suggests that induction of HeLa cells with IFN- 7 en- 
hances the binding of HMG I or an HMG I-containing com- 
plex to the DRA octamer and suggests that the slight 
impairment in IFN-7 inducibility of the AB2CAT reporter 
may result from inhibition of HMG I/Y binding. 

The High Mobility Group Protein HMG I / Y  Binds to Mul- 
tiple Sites in the HLA-DRA Promoter, Including the Octamer- 
binding Site. Previous studies have in fact shown that the 
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Figure 4. The effect of mutations in HMG I/Y- 
binding sites on DRA expression. (A) A diagram 
showing mutations introduced into two HMG I/Y- 
binding sites in the DRA promoter. Substituted bases 
are arrowed. AB2 contains the octamer mutation as 
indicated previously. CDH and CDI are D box (inter- 
space) mutants, while EF1 and EF2 are double mutants. 
(B) Gel-shift assay comparing the binding of recombi- 
nant HMG I/Y to wild-type octamer (OCT) and D 
box interspace (IS) and mutant octamer (MOCT) and 
mutant D box (MIS) oligos. (C) Results of CAT assay 
showing the effect of HMG I/Y-binding site muta- 
tions on the expression of the DRA promoter in HeLa 
cells induced with IFN-% The lane marked basic refers 
to extract from cells transfected with the promoter- 
less CAT plasmid pCATBasic. WT refers to the activ- 
ity of the wild-type DRA300CAT plasmid. AB2CAT, 
CDHCAT, and CDICAT are single mutants, while 
EF1CAT and EF2CAT are double mutants. CAT ac- 
tivity, averaged from triplicate transfections, is shown. 
(-)  Extracts from uninduced cells. 

H M G  I / Y  protein can interact with the octamer element 
of  the human Ig L promoter (49). The D K A  promoter con- 
tains an octamer element, as well as several AT-rich regions, 
which are potential H M G  I/Y-binding sites. To precisely map 
the H M G  I/Y-binding sites within this region we carried 
out DNAse  I footprinting experiments using recombinant 
H M G  I /Y  (Fig. 3 A). Six binding sites, designated A-F (Fig. 
3 B), were identified on both the coding and noncoding 
strands. These sites coincide with: (A) the transcription ini- 

tiation site, (B) the TATA-element, (C) the octamer motif, 
(D) the A/T-r ich  region located between the X and Y boxes, 
and (E and F) two additional sites between - 250 and - 200. 
As would be expected from the known sequence preference 
of  H M G  I/Y, all of these binding sites are A / T  rich. 

The two upstream sites, E and F, do not appear to be es- 
sential for H L A - D K A  gene expression, since reporter con- 
structs lacking these sites exhibit proper tissue-specific and 
inducible expression patterns (14, 31, 50). To further charac- 
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Figure 5. Antisense HMG I/Y RNA inhibits IFN-3~ induction of the HLA-DRA gene. (A) Raji cells were transiently transfected with the indicated 
plasmids and CAT expression assessed 48 h after transfection. The lanes marked pHGCAT and DRA300CAT were from cells transfected with those 
plasmids alone. The other lanes were from cells transfected with both the DRA300CAT reporter plasmid and the indicated antisense expression vector. 
The plasmids: pAhXBP1, palos, and pAHMGI/Y, each contain either the entire or portions of the coding regions of the hXBPl, c-~s, and HMG 
I/Y genes inserted in the antisense orientation in mammalian expression vectors. Antisense hXBPI and c-fis RNA inhibit transcription from the DRA300CAT 
reporter construct as previously reported (28). Antisense HMG I/Y and BZLF1 R.NA have no effect on DRA transcription. Resuhs from duplicate 
transfections are shown. (B) HeLa cells transfected with the DRA300CAT plasmid were induced with recombinant IFN- 7 (except the lane marked 
-IFN-'y). As in A, cells were cotransfected with various antisense vectors (as indicated). In these cells, antisense HMG I/Y RNA (in addition to antisense 
hXBP1 and c-los RNA) is able to inhibit induction of the gene. 

terize these binding sites, we decided to study the effects of  
mutations that affect H M G  I / Y  binding to these sites on 
D R A  expression. Unfortunately, the effect of  mutations in 
the A and B boxes could not be tested, since these mutations 
would be expected to disrupt transcriptional initiation and 
TATA box function, respectively. The effect of  mutations in 
the octamer (C box) and the D box, were thus studied. We 
used D R A  reporter constructs that contained mutations at 
these single sites as well as double mutants (Fig. 4 A).  These 
mutat ions abolish H M G  I / Y  binding in vitro, as shown in 
Fig. 4 B .  

The  effects o f  these mutatio:~s on ]3 cells, as well as induc- 
ible expression in HeLa cells, were studied. As expected, all 
the constructs containing octamer mutations had severely im- 
paired expression in B cells (Fig. 2 B, and data not shown), 
while the D box mutations had only modest  effects on B 
cell-specific or inducible expression of the H L A - D R A  reporter 
(Fig. 4 C, and data not shown). Significantly, however, while 
neither the octamer mutat ion nor the D box mutat ion alone 
greatly impaired IFN-q,-inducible expression in HeLa cells, 

constructs containing mutations at both  sites showed a se- 
verely reduced level of  expression (Fig. 4 C). These results 
indicate that multiple H M G  I /Y-binding sites may be re- 
quired for IFN-3~-inducible expression of the D R A  promoter. 

The Effect of Antisense HMG I / Y  R N A  on HLA-DRA B 
Cell-specific and Inducible Expression. We carried out experi- 
ments using antisense H M G  I / Y  R N A  to further investigate 
a possible role of  H M G  I / Y  in constitutive and inducible 
expression of the H L A - D R A  gene. Raft cells were cotrans- 
fected wi th  the H L A - D R A 3 0 0  reporter construct and a 
plasmid directing the expression of ant/sense H M G  I /Y RNA,  
and no effect on H L A - D R A  expression was observed (Fig. 
5 A). By contrast, as we previously reported, antisense hXBP-1 
and c-fis R N A  expression decreased transcription from the 
DRA300CAT reporter construct in these cells (27, 28). These 
results might  suggest that H M G  I / Y  is not required for B 
cell-specific expression of  H L A - D R A .  Alternatively, the an- 
tisense R N A  might  not effectively block the expression of 
H M G  I / Y  in B cells. 

A dramatically different result was obtained when the an- 

Figure 6. Transactivation of the HLA- 
DRA promoter by the octamer-binding 
transcription factor Oct-2A and its cooper- 
ation with HMG I/Y. (A) Either the 
DRA300CAT or DQB2500CAT reporter 
plasmid was transfected into the MHC class 
II-negative, Oct-2-negative cell line HeLa, 
alone (lanes marked -) or with mammalian 
expression vectors encoding Oct1 or Oct2. 
Overexpression of Oct2 selectively trans- 
activates the HLA-DRA promoter. Results 
of duplicate transfections are shown. (B) 
Oct-2 transactivates DRA300CAT in the 
Oct-2-negative, MHC class ll-negative cell 
line Jurkat, and this transactivation is facili- 
tated by HMG I/Y overexpression. Jurkat 
cel[s were trar~sfected with DRA300CAT 

and the indicated expression vectors and CAT activity was assessed 48 h after transfection. The y-axis indicates CAT activity in extracts from these 
cells relative to CAT activity in DRA300CAT-transfected Jijoye cells (DRA300CAT-mediated activity in Jiyoye cells results in 23% transacetylation). 
The data are from three independent transfections.., pHGCAT; I ,  DRACAT; [], DRACAT + Oct-l; [~. DRCAT + Oct-2A; I-l, DRACAT 
+ HMG 1; B, DRACAT + HMG 1 + Oct-l; [~, DRACAT + HMG 1 + Oct-2A. 
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Figure 7. HMG I/Y selectively facilitates interaction of Oct-2 with the HLA-DRA octamer motif in EMSAs. (,'t) The influence of recombinant 
HMG I on Oct-1 and Oct-2 binding to the HLA-DRA octamer motif was assessed in EMSAs using Jijoye extracts that contain both Oct-1 and Oct-2. 
Decreasing amounts of Jijoye whole-cell extract (10/xg-0.1/.tg) were incubated with a fixed amount of the radiolabeled octamer probe in the presence 
(lanes 4-7) or absence (lanes 8-11) of 0.1/~g of recombinant HMG 1. Lane I contains free probe, lane 2 contains only recombinant HMG I, lane 
3 contains only Jijoye extract (10 #g). The positions of major retarded complexes are indicated by arrows. The recombinant HMG I complex comigrates 
with a complex observed in Jijoye extracts (which may be endogenous HMG I/Y). The formation of the Oct-2A-containing complex is selectively 
enhanced in the presence of HMG I, especially at lower concentrations of extract (compare lanes 6 and 7 to lanes 10 and 11). (13) The efftdency of 
Oct-1 and Oct-2A complex formation in the various conditions were determined by densitometry and the results are shown in this graph. The y-axis 
represents the ratio of octamer-binding complex formation in the presence of HMG I to that in the absence of HMG I. The x-axis represents the 
amount of whole-cell extract used in each reaction. -El-, OCT 1; -~ - ,  OCT 2A. 

tisense KNA experiments were carried out in HeLa cells in- 
duced with IFN-y. As shown in Fig. 5 B, expression of an- 
tisense HMG I/Y KNA in HeLa cells abolishes IFN-'y 
induction of the HLA-DK reporter construct. This obser- 
vation, in conjunction with the results of the mutations in 
the HMG I/Y-binding sites of the HLA-DK gene, indicates 
that HMG I/Y is essential for the induction of HLA-DRA 
gene expression by IFN-"/. 

Oct-2A Is a Transactivator of the HLA-DRA Gene and 
Cooperates with HMG I/Y. As we have shown above, the 
Oct-2 protein is required for constitutive expression of the 
DRA gene in B cells (Fig. 1). To determine whether trans- 
fected Oct-2 expression vector can mediate activation of HLA- 
DRA gene expression in an Oct-2-negative, class II-nega- 
tive cell line, we cotransfected the HLA-DRA300 reporter 
construct and an Oct-2A expression vector into either HeLa 
or Jurkat cells. As shown in Fig. 6 A, when increasing amounts 
of the Oct-2 expression vector were cotransfected with the 
reporter into HeLa cells, significant levels of CAT activity 
were observed. The reporter gene was not activated when 
an Oct-1 expression plasmid was cotransfected with the 
reporter gene. As expected, the DQB promoter, which we 
have shown does not require Oct-2 for its expression in 
B-cells (Fig. 1), is not transactivated by overexpression of ei- 
ther Oct-1 or Oct-2A (Fig. 6 A). 

Expression of Oct-2A, but not Oct-l,  also activated ex- 
pression of the HLA-DRA reporter plasmid in the dass 
II-negative cell line Jurkat (Fig. 6 B). Since HMG I/Y also 
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interacts with the octamer element, we tested the effect of 
overexpressing this protein on DRA promoter activity in 
Jurkat cells. We found that overexpression of HMG I/Y alone 
did not increase the level of HLA-DRA promoter activity. 
However, coexpression of both HMG I/Y and Oct-2A resulted 
in a significant increase in the level of HLA-DRA promoter 
activity compared with the effect of overexpressing Oct-2A 
alone (Fig. 6 B). 

HMG I / Y  Selectively Facilitates Interaction of Oct-2A with 
the HLA-DR Octamer Motif. To explore the possible mech- 
anisms by which HMG I/Y facilitates DRA transactivation 
by Oct-2, we carried out EMSAs to assess the effect of HMG 
I/Y on the binding of Oct-2 to the octamer element. Ini- 
tially, we examined the effect of recombinant HMG I/Y on 
the assembly of nucleoprotein complexes at the octamer site 
from whole cell extracts. As shown in Fig. 7 A, in the pres- 
ence of low protein concentrations of Jijoye extracts, the 
binding of the octamer factors Oct-1 and Oct-2 is undetect- 
able (lane 11). However, addition of a fixed amount of HMG 
I/Y (0.1 #g) resulted in a specific enhancement of the binding 
of Oct-2A to the octamer element (lanes 6 and 7). The binding 
of the octamer binding proteins Oct-1 and Oct-2B (the al- 
ternatively spliced form of Oct-2 which migrates with an 
intermediate mobility between Oct-1 and Oct-2A; 51, 52) 
are not facilitated in the presence of additional recombinant 
HMG I/Y. Indeed, the affinity of Oct-1 is reduced in the 
presence of HMG I/Y (compare lanes 6 and I0). Thus the 
presence of HMG I/Y not only facilitates the binding of Oct- 



2A to the octamer element but actually inhibits the binding 
of other competing proteins such as Oct-1. 

To quantitate these effects, we analyzed the abundance of 
each complex in a representative experiment by densitometric 
analysis and the results presented in Fig. 7 B. These data in- 
dicate that the formation of the Oct-2A-containing complex 
is enhanced approximately fourfold at low concentrations of 
Jijoye extract. A more striking observation is that the ratio 
of Oct2A to Oct-1 complex formation is shifted 90- to 100- 
fold in favor of Oct-2A in the presence of recombinant HMG 
I/Y. These effects of HMG I/Y may have been due either 
to the direct influence of HMG I/Y itself, or might have 
been mediated by other factor(s) present in Jijoye extracts. 
To distinguish between these possibilities, we performed these 
experiments using recombinant Oct-1 or Oct-2 proteins. We 
first tested the influence ofHMG I/Y on the binding of recom- 
binant Oct-2A. As shown in Fig. 8 A, HMG I significantly 
enhances the binding of Oct-2A to the HLA-DRA octamer 
at low Oct-2A concentrations. In sharp contrast, we found 
that the binding of the in vitro translated Oct-1 protein was 
inhibited by HMG I/Y, as we have observed with B cell-de- 
rived Oct-1 in EMSAs using crude nuclear extracts (Fig. 8 
B; compare lanes 2-4  with lanes 5-7). Taken together, these 
data strongly suggest that HMG I/Y exerts direct and op- 
posing effects on the interaction of Oct-1 and Oct-2 proteins 
with the octamer element. 

Discussion 

The MHC class II gene DRA is the most highly expressed 
of the human class II genes, and the HLA-DR molecule is 
the predominant restriction element for helper T cell clones 
(1, 50). Aberrant or unusually high levels of expression of 
the class II molecules have also been implicated in the patho- 
genesis of various autoimmune diseases, such as multiple scle- 
rosis, rheumatoid arthritis, and insulin-dependent diabetes 

mellitus. The lack of expression of these molecules is the cause 
of the severe combined immunodeficiency disorder, bare lym- 
phocyte syndrome. The transcriptional regulation of these 
genes has therefore been the focus of intense investigation 
(6). These studies of the HLA-DRA promoter have led to 
the identification of conserved elements within the promoter 
and a number of DNA-binding proteins which appear to par- 
ticipate in the regulation of the gene (reviewed in 13). 

An octamer element has been found in two human class 
II MHC genes: HLA-DRA and -DQB. While there have 
been reports that the octamer is important for the constitu- 
tive expression of DRA in B cells (31, 42), its role in DQB 
expression had not been assessed. In this report, we have 
confirmed the role of the octamer in constitutive expression 
of the DRA promoter, and have shown that the octamer- 
binding protein Oct-2A is critical for the expression of the 
endogenous DRA gene. Neither Oct-1 nor Oct-2 appears 
to be involved in DQB transcription as assessed by our ex- 
periments. It is possible that the positioning of the element 
in DQB (at about - 600 upstream of the transcription start 
site), compared with its location in the DRA promoter (where 
it is found just upstream of the TATA box), accounts for this 
observation. We cannot of course exclude the possibility that 
the element plays some role in DQB expression at some point 
during development or in a specific physiologic setting. 

We have also investigated the role of another octamer- 
binding protein, the high mobility group protein HMG I/Y, 
in HLA-DRA transcription. We have found that HMG I/Y 
binds to six sites between - 300 bp and the transcription start 
site of the HLA-DRA promoter. These include: two sites 
upstream of -200 bp, an AT-rich palindromic motif situ- 
ated between the X and the Y boxes (which we term the 
D box), the octamer motif, the TATA box, and a site that 
overlaps the transcription initiation site (which we call the 
A box). It is of interest that some of these sites coincide with 
well-defined cis elements that bind either well-defined regula- 

Figure 8. Influence of HMG I/Y on the 
binding of Oct-2 and Oct-1. (A) The 
influence of recombinant HMG I on recom- 
binant Oct-2/HLA-DRA octamer complex 
formation was assessed by EMSA. 
Decreasing amounts (10 rig-0.5 rig) of 
recombinant Oct-2A protein were in- 
cubated with radiolabeled DRA octamer 
in the presence (lanes 2-6) or absence (lanes 
7-11) of 10 ng HMG I. Total amounts of 
protein were kept constant. Lane I contains 
free probe. The formation of the Oct- 
2A-'containing complex is selectively en- 
hanced in the presence of HMG I, espe- 
cially at lower concentrations (compare 
lanes 5 and 6 to lanes I0 and II). (B) EMSA 
showing decreasing amounts of in vitro 
translated Oct-1 protein incubated with 
(lanes 2-4) or without (lanes 5-7) 100 ng 
of recombinant HMG I. Lane 8 contains 
recombinant HMG I alone. Lane marked 
I contains recombinant HMG I alone and 
lane marked F contains free probe. 
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tory DNA-binding proteins or components of the general 
transcriptional machinery. 

In a series of experiments using mammalian expression 
vectors directing the expression of sense or antisense HMG 
I/Y KNA, and using site-directed mutants of the promoter 
to assess the importance of individual HMG I/Y-binding sites, 
we show here that HMG I/Y is essential for IFN-3, induc- 
tion of the DRA gene in HeLa calls. Interestingly, treat- 
ment of HeLa cells with IFN-y appears to enhance HMG 
I/Y-binding activity in EMSAs, strengthening the notion 
that HMG I/Y plays a role in mediating IFN-3,-inducible 
expression of the DRA gene. We do not at this point know 
why IFN-3~ induction enhances the HMG I/Y-containing 
complex, although it does not appear to result from induc- 
tion of HMG I/Y itself (our unpublished observations). 

In contrast, expression of antisense HMG I/Y KNA did 
not affect DRA promoter activity in transiently transfected 
B cell lines which constitutively express class II genes. Al- 
though this might be interpreted to indicate that HMG I/Y 
is not involved in DKA transcription in B cells, we feel that 
this is not likely in view of the strong cooperativity between 
Oct-2A and HMG I/Y that we have observed both in vitro 
and in vivo in these experiments. Rather, we suspect that 
the inability of antisense HMG I/Y RNA to block DRA 
expression in B cells may be due to the presence of higher 
levels ofHMG I/Y in these cell lines compared with HeLa cells. 

We are also intrigued by the finding that DKA reporter 
constructs containing simultaneous mutations in two of the 
HMG I/Y-binding sites (the octamer and the D box) ex- 
hibit severely impaired IFN-3~ inducibility, while promoters 
containing single mutations in these sites show near-normal 
levels of activity. The observation that mutations in multiple 
HMG I/Y-binding sites are needed to impair IFN-3,-induced 
expression suggests that the multiple HMG I/Y molecules 
bound at various sites within the DKA promoter may to 
an extent be redundant, providing the generic function of 
facilitating assembly of the active transcription complex. This 
would almost certainly be achieved by interactions between 
HMG I/Y molecules bound at distinct sites or between HMG 
I/Y molecules and critical activator proteins (such as Oct- 
2A in B cells). 

The observation that both HMG I/Y and Oct-2 interact 
with the DRA octamer prompted us to investigate possible 
interactions between these proteins. Cotransfection of an HMG 
I/Y expression vector with either Oct-1 or Oct-2A expres- 
sion vectors into the class II-negative cell line Jurkat indi- 
cated that HMG I/Y can selectively facilitate the ability of 
Oct-2A to transactivate the DRA promoter. Furthermore, 
HMG I/Y selectively facilitates the binding of Oct-2A, but 
not Oct-l, to the octamer dement in EMSAs. 

A ternary complex of Oct-protein/HMG I/octamer was 
not apparent in our gel shift assays. The presence of HMG 
I/Y did not significantly alter the migration of the Oct-2 
or Oct-1 complexes, and the inclusion of antibody to HMG 
I/Y in the reactions did not result in a significant change 
in mobility of the complex (Figs. 7 A, 8 A, and 8 B, and 
data not shown). This observation may be due to the small 
size of HMG I/Y or may be due to instability of the HMG 
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I/Y containing complex under the EMSA conditions. There 
is indeed precedence for proteins that enhance the binding 
of sequence-specific transcription factors to DNA without 
being retained in the complex during nondenaturing elec- 
trophoresis. For instance, Phox 1 enhanced the binding of 
serum response factor to DNA without altering the mobility 
of SP, F-DNA complexes (53). Like the DNA-bending pro- 
tein, HMG-1 facilitated the binding of progesterone receptor 
to its target DNA without being retained in the complex (54). 

HMG I and its alternatively spliced variant HMG Y (which 
lacks an internal stretch of 11 amino acids), are well- 
characterized chromosomal nonhistone proteins preferentially 
associated with active chromatin. These basic, low molec- 
ular weight proteins are expressed at high levels in rapidly 
dividing, undifferentiated, or neoplastically transformed cells. 
A role for HMG I/Y has been invoked in the positioning 
of nucleosomes on DNA (55); in the replication of ribosomal 
DNA (56); in the stimulation of transcription of ribosomal 
RNA (57) and lymphotoxin genes (58); in the virus induc- 
tion of the IFN-/3 gene (43, 44); and in the displacement 
of histone H1 from scaffold attachment regions (59). Recently, 
HMG I/Y has been implicated in the repression of the IL-4 
promoter, a finding which is in sharp contrast to its usual 
stimulatory effect on transcription (60). It thus appears that 
HMG I/Y, as a structural component of active chromatin, 
may serve divergent functions. 

The mechanisms by which HMG I/Y can influence tran- 
scription are still incompletely understood. HMG I/Y has 
previously been shown to facilitate the binding of certain tran- 
scription factors to DNA (43, 44). This feature of HMG I/Y 
could be explained by at least two non-mutually exclusive 
mechanisms. First, since HMG I/Y can bend DNA, this could 
promote factor-binding by reducing the free energy of as- 
sociation of an activator with its binding site. Second, direct 
protein-protein interactions between HMG I/Y and tran- 
scription factors may promote the binding of the latter to 
their cognate DNA-binding sites. Our studies show that 
HMG I/Y can discriminate between octamer-binding pro- 
teins, selectively facilitating the binding of Oct-2A but not 
Oct-1 to the octamer site. These observations lead us to 
hypothesize that direct protein-protein interactions between 
HMG I/Y and the Oct proteins play an important role in 
determining the ability of HMG I/Y to facilitate binding 
of Oct-2A to the octamer element. Indeed, ongoing experi- 
ments in our lab indicate that HMG I/Y can interact with 
Oct-2A in the absence of the binding site (unpublished ob- 
servations). 

Our studies suggest a requirement for HMG I/Y in the 
induction of the DRA gene by IFN-% The mechanisms by 
which HMG I/Y may be involved in IFN-~/induction are 
not entirely clear at present. However, treatment of HeLa 
cells with IFN-'y induces the binding of a complex that con- 
tains HMG I/Y to the DRA octamer (Fig. 2 D). We hypothe- 
size that IFN-y induces posttranslational modifications in 
HMG I/Y that increase its affinity for the octamer element. 
This is reminiscent of what has been observed with the human 
IFN-/3 gene, where viral induction of gene expression results 
in the de novo binding of protein complexes to the promoter 



which contain HMG I/Y (44). A requirement for posttrans- 
lational modification of HMG I/Y for its participation in 
gene activation would perhaps help explain the efficacy of 
antisense HMG I/Y R NA in inhibiting the induction of these 
two genes. During the early stages of these experiments we 
were surprised that antisense HMG I/Y R NA was an effec- 
tive reagent in assessing the role of HMG I/Y in HLA-DRA 
gene transcription in view of the high abundance of both 
HMG I/Y R N A  and protein in practically all mammalian 
cells. We hypothesize that much of the HMG I/Y found in 
the nucleus is in an inactive form, and that an extracellular 
signal such as IFN-7 might posttranslationally modify newly 
synthesized HMG I/Y to an active form. This modified HMG 
I/Y would be "active" because it (a) binds with higher affinity 
to DNA (as our data suggest), and/or (b) promotes pro- 
tein-protein interactions more effectively than unmodified 
HMG I/Y. These possibilities are under active investigation 
in our laboratory. 

The data presented in this study indicate that distinct (but 
largely overlapping) sets of transcription factors may be in- 
volved in DRA expression in different cell types. Class II-nega- 
tive cell lines, such as HeLa and Jurkat, while containing most 
of the DNA-binding proteins known to interact with the 
promoter, do not have an active transcription complex as- 
sembled on the promoter, as assessed by in vivo footprinting 
(41). Induction with IFN-7 leads to the assembly of a tran- 
scription complex on the promoter (40). This transition could 
depend on the de novo synthesis or modification of critical 
factor(s) (which may or may not interact with DNA directly) 
that are critical to the formation of a functional transcription 
complex. Our findings suggest that HMG I/Y likely plays 
such a role in activation of the D R A  gene by IFN- 7. 

In HeLa cells induced with IFN-7, HMG I/Y appears to 
function in DRA transcription via an Oct-2-independent 
pathway. Mutations in the octamer element have modest effects 
on the inducibility of the DRA promoter, while severely im- 
pairing constitutive expression in B cells. Furthermore, after 
induction of HeLa cells with IFN-7, we found no evidence 
of de novo Oct-2 synthesis using gel-shift assays. In contrast, 
IFN-7 treatment enhances the binding of HMG I/Y to the 
octamer element. The modest effect of the octamer muta- 
tion on IFN-~, inducibility might be due to the effect of the 
mutation on HMG I/Y binding. The fact that double muta- 
tions in the octamer and the D box elements result in a pro- 
found reduction in IFN-7 inducibility of the promoter sug- 
gests that at least one HMG I/Y molecule bound to either 
of these sites is required for induction, with occupancy of 
both sites allowing full activation of the gene. 

Apart from the mechanisms described above, HMG I/Y 
may also facilitate interactions between DNA-bound factors 
and adapter proteins (such as the recently described class II 
activator, CIITA; 61), or might also participate at a step be- 
fore transcription complex assembly (such as alteration of chro- 
matin structure). 

In conclusion, the data presented in this paper indicate that 
the HMG I/Y protein and the Oct-2A transcriptional acti- 
vator are essential proteins for DRA transcription. Distinct 
sets of transcription complexes seem to be involved in DRA 
expression in B cells and induced HeLa cells, and HMG I/Y 
appears to play a role in both situations. The addition of Oct- 
2A to the list of transcriptional activators facilitated by HMG 
I/Y further underscores the notion that HMG I/Y plays a 
general and critical role in transcription complex assembly. 
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