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S u m m a r y  

Bcl-2 expression is tightly regulated during lymphocyte development. Mature lymphocytes in 
Bcl-2-deficient mice show accelerated spontaneous apoptosis in vivo and in vitro. Stimulation 
ofBcl-2-deficient lymphocytes by anti-CD3 antibody inhibited the spontaneous apoptosis not 
only in T cells but also in B cells. The rescue of  B cells was dependent on the presence of T 
cells, mainly through CD40L and interleukin (IL)-4. Furthermore, we generated Bcl-2--defi- 
cient mice transgenic for a T cell receptor or an immunoglobulin, both specific for chicken 
ovalbumin, to test for antigen-specific T-B  cell interaction in the inhibition of the spontaneous 
apoptosis. The initial T cell activation by antigenic peptides presented by B cells suppressed apop- 
tosis in T cells. Subsequently, T cells expressed CD40L and released ILs, leading to the protec- 
tion of  B cells from spontaneous apoptosis. These results suggest that the antiapoptotic signaling 
via CD40 or IL-4 may be largely independent of  Bcl-2. Engagement of the Ig alone was not 
sufficient for the inhibition of  B cell apoptosis. Thus, the physiological role of Bcl-2 in mature 
lymphocytes may be to protect cells from spontaneous apoptosis and to extend their lifespans to 
increase the opportunity for T cells and B cells to interact with each other and specific antigens 
in secondary lymphoid tissues. Bcl-2, however, appears to be dispensable for survival once ma- 
ture lymphocytes are activated by antigen-specific T-B cell collaboration. 

A Poptosis, a type of physiological cell death, is observed 
throughout phylogeny (1). In mammals, apoptosis has 

been extensively documented, particularly during lym- 
phoid and neuronal development. However, litde is 
known about the molecular mechanisms that control apop- 
tosis (2). The product of the bcl-2 protooncogene, a mam- 
malian homologue of ced-9 in Caenorhabditis elegans, has 
been considered a key negative regulator of apoptosis (3). 
Deregulated expression of Bcl-2 promotes cell survival by 
preventing apoptosis in many but not all types of cells. For 
example, forced expression of Bcl-2 can inhibit apoptosis 
in cytokine-dependent cell lines upon withdrawal of  the 
cytokines (4, 5). However, it has been unclear that Bcl-2 is 
essential for the signaling of  the cytokines to inhibit cell 
death. 

Endogenous Bcl-2 is normally expressed in long-lived 
cells such as mature lymphocytes and neurons (6, 7). Dur- 
ing lymphocyte development, Bcl-2 expression is tightly 
regulated. In T cells, CD4-8-  (double-negative) thy- 
mocytes express Bcl-2, while Bcl-2 is downregulated at the 
CD4+8 + (double-positive) stage when thymic positive and 
negative selections occur. Bcl-2 is subsequently reexpressed 
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in CD4+8 - or CD4-8 + (single-positive) thymocytes and 
can be further induced upon activation by anti-CD3 mAb 
(8, 9). In B cells, pro-B cells express Bcl-2, whereas Bcl-2 is 
downregulated among pre-B cells and IgM+D - immature 
B cells. Thereafter, IgM+D + mature B cells highly express 
Bcl-2 (10). In the peripheral lymphoid system, immuniza- 
tion leads to the formation of germinal centers in which 
Bcl-2 expression ceases in dividing B cells that undergo so- 
matic hypermutation (6, 11). After selection for high affin- 
ity Ig, Bcl-2 is reexpressed in plasma cells (12) and memory 
B cells (13). O f  note, germinal center B cells (Bcl-2-) show 
more spontaneous apoptosis than circulating B cells (Bcl- 
2 +) (14). The spontaneous apoptosis of germinal center B 
cells can be suppressed by CD40 stimulation. Since reex- 
pression of Bcl-2 follows the CD40 stimulation, it has been 
suggested that the upregulation of Bcl-2 may be essential 
for the prevention of apoptosis caused by CD40 stimula- 
tion. Kinetics studies, however, have suggested that the in- 
duction of  Bcl-2 by CD40 stimulation might be secondary 
to the survival signal through CD40 (15). Thus, require- 
ment for Bcl-2 in the survival signal of B cells mediated by 
CD40 has been controversial. 

Abnormalities occurring in bcl-2 gene-disrupted mice are 
consistent with the notion that Bcl-2 is a major regulator of  
the protection from apoptosis in mature lymphocytes. B c l - 2 -  
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mature lymphocytes show significantly increased apoptosis 
in vivo and in vitro, while lymphocyte  development  in 
Bcl-2-def ic ient  mice appears intact (16-18). In a previous 
report, we  could not  detect any obvious defect in Bc l -2 -  B 
cell survival in vitro, although the number  o f  B cells clearly 
decreased in vivo (16, 17). By means o f  more sensitive assays, 
we could find a significantly higher degree o f  apoptosis in 
Bc l -2 -  mature B cells in vitro (this report). Preliminary ex- 
periments suggested that stimulation by the an t i -CD3 anti- 
body could block T cell apoptosis in Bcl -2-  mice (16). 
Here,  we show that an t i -CD3 stimulation inhibited apop-  
tosis, not  only in T cells, but  also in B cells. This effect was 
confirmed by a specific antigen instead o f  an t i -CD3 by us- 
ing Bcl -2-  mice with transgenic T C R  or Ig. This inhibi-  
tion o f  apoptosis appears to be dependent  on cognate T - B  
cell interaction and T cell activation. In the absence o f  Bcl-2, 
B cells present antigenic peptide with class II M H C  to T 
cells, resulting in inhibit ion o f  T cell apoptosis and in acti- 
vation, which protects B cells from apoptosis mainly through 
CD40 and lymphokines.  O u r  data suggest that the physio-  
logical role o f  Bcl-2 in mature lymphocytes appears to be 
the protect ion o f  cells from spontaneous apoptosis and the 
extension o f  their lifespans until they are activated by spe- 
cific antigens. This may be important  for increasing the op-  
portunity for T cells and B cells to interact with each other  
and specific antigens in secondary lymphoid  tissues. Once  
activated, however,  T and B cells become more  resistant to 
spontaneous apoptosis in a Bc l -2- independent  fashion. 

Materials and Methods 

Animals. All mice used in this study were maintained in the 
specific pathogen-free animal facility at Washington University. 
Generation of bd-2 gene-disrupted mice was described elsewhere 
(16, 17). Heterozygous mutant mice (bd-2 § were crossed with 
chicken OVA (cOVA)l-specific TCR transgenic mice (19) or lg 
transgenic mice (20). By intercrossing F1 generation mice, we 
obtained bcl-2 - / -  TCtL or Ig transgenic mice. Similarly, we made 
bd-2 - / -  Ipr (fas - / - )  double-mutant mice. The mice that were 
killed were 2-3-wk old. All experiments were performed with 
littermate control animals. 

Reagents. All purified and fluorescent dye-conjugated anti- 
bodies in this study were purchased from PharMingen (San Di- 
ego, CA), except MR-1 (anti-mouse CD40L) (21), a gift of Dr. 

1 Abbreviations used in this paper: cOVA, chicken OVA; CsA, cyclosporin 
A; EtBr, ethidium bromide. 

tk. j .  NoeUe (Dartmouth Medical School, Hanover, NH). I<U- 
486 was a gift of Dr. J. D. Ashwell (National Institutes of Health, 
Bethesda, MD). Recombinant mouse IL-lc~, IL-2, IL-4, IL-7, 
and IFN-y were purchased from Genzyme Corp. (Cambridge, 
MA). cOVA protein was purchased from Sigma Immunochemi- 
cals (St. Louis, MO). cOVA protein was multimerized by glu- 
taraldehyde cross-linking (20). cOVA peptide (323-339) was syn- 
thesized as described (19, 22). 

Cell Culture. Medium was P,,PMI 1640 (GIBCO BRL, 
Gaithersburg, MD) with 10% FCS, t4 rnM Hepes (pH 7.3), 2 
mM L-glutamine, 0.1 mM MEM nonessential amino acid solu- 
tion, 0.1 mM sodium pyruvate, 20 U/ml penicillin G, 20 I~g/ml 
streptomycin sulfate, and 25 p,M 2-ME (GIBCO BRL). For most 
cultures, 3 • 105 cells were placed in the well of a 96-well v-bot- 
tom plate (Costar Corp., Cambridge, MA) at 37~ CO 2 for 
20 h. For the 72-h cultures, 100 U/ml rlL-4 was added in culture 
for the first 48 h and was removed 24 h before the end of culture. 
In some experiments, subpopulations oflymphocytes were puri- 
fied. For the purification of B cells, adherent cells were removed 
by a brief spin at 1,000 rpm for 2 rain and after incubation for ] h 
at 37~ CO2. Nonadherent spleen cells were treated with 
anti-Thy-1 antibody and complement lysis. Viable cells were 
harvested by Lympholyte M gradient separation according to the 
manufacturer's protocol (Cedarlane Laboratories Ltd., Ontario, 
Canada). T cell lines established from the cOVA-specific TCP, 
transgenic mice were used in some cases (20). 

Flow Cytometry Analysis. Staining with propidium iodide or 
ethidiurn bromide (EtBr; Sigma) to detect apoptotic cells was 
performed as described (23, 24). To discriminate T and B cell 
death, staining by ant i -Thy-l .2-FITC or anti-B220-FITC were 
combined with EtBr staining. All analyses were carried out using 
FACScan| (Becton Dickinson & Co., Mountain View, CA). 
Percentage of EtBr-positive cells in each population were defined 
as percentage of EtBr. For comparative purposes, data were nor- 
malized in some experiments as follows: 

% specific death = 
(% EtBr in treated Bcl-2- cells - % EtBr in treated Bcl-2 + cells) 

(% EtBr in untreated Bcl-2- cells - % EtBr in untreated Bct-2 + cells). 

With any treatment used in this study, the percentage of EtBr 
in treated and untreated Bcl-2 + cells was comparable (difference 
was usually within 15%). 

Results 

Inhibition of Apoptosis in B d - 2 -  Mature Lymphocytes by 
A n t i - C D 3  Stimulation. Thymocytes  (80-90% immature T 
cells, 10-20% mature T cells), spleen cells ( '- 'q0% mature T 

80  

70  

~ 6o 

.~ 50 

.~ 40 

~ 2o  

10 

Thymocytes Splenocytes 
80 

6O 

511 

Bc l2  + Bc l2  - 

LN Cells 

Bc l2  + Bc l2  - Bc l2  + Bc l2  - 

Figure 1. Spontaneous apoptosis in in vitro 
culture and its inhibition by anti-CD3 mAb. 
Cells isolated from thymus (left), spleen (middle), 
and lymph nodes (nght) were cultured for 20 h 
in the absence (black) or presence (hatched) of 
anti-CD3 mAb (145-2C11; I p.g/ml), followed 
by staining with hypotonic fluorescent solution 
(23), and the percentage of hypodiploid cells 
was determined. The means of triplicated cul- 
ture with SDs are shown. 
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Fig'are 2. Both T and B lymphocytes undergo apop- 
tosis in vitro. Lymph node cells from Bcl-2 + (left) and 
Bcl-2- (right) mice were placed in culture for 20 h, 
then stained with B220-FITC and EtBr. Note the sig- 
nificant increase in EtBr + cells, representing apoptotic 
cells, in not only the B220- fraction, but also the 
B220 + fraction of  the Bcl-2- lymph node cells. 

cells, 50% mature B cells, 40% non-T,  non-B cells), and 
lymph node cells (~60% mature T cells, 35% mature B 
cells) were prepared from Bcl-2 + and Bcl-2- animals in the 
same litter. Cells were placed in culture for 20 h with or 
without anti-CD3 mAb (1 gtg/ml). After culture, cells 
were stained by a hypotonic fluorescent solution contain- 
ing 50 Izg/ml propidium iodide (23), and the percentage of  
hypodiploid cells, representing apoptotic cells, was assayed 
(Fig. 1). In thymocytes, apoptosis in Bcl-2- cells was mod- 
erately higher than in Bcl-2 + cells. Since >80% of  thy- 
mocytes do not (or barely) express Bcl-2 normally, the dif- 
ference between Bcl-2 + and Bcl-2- probably result from 
apoptosls of  mature thymocytes, which normally express 
Bcl-2 (8, 9). In contrast, immature thymocytes express Bcl- 
x, which is a member of  the bcl-2 gene family and may pre- 
vent apoptosis of  immature thymocytes (25, 26). Bcl-2- 
peripheral lymphocytes showed a significant increase in ap- 
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Figure 3. Anti-CD3 stimulation inhibits the spontaneous apoptosis of 
mature T and B cells. Lymph node cells were placed in culture and 
stained in the combination with B220-FITC and EtBr as shown in Fig. 2. 
Percentage of specific death in T cells (black bars) and B cells (hatched bars) 
was calculated as described in Materials and Methods. Cells were cultured 
with (CD3) or without (MED) 1 I~g/ml anti-CD3 mAb. Cyclosporin A 
was added at the concentration of  0.1 I~M (CSA+) or 1 I~M (CSA++) 
with anti-CD3 mAb. CsA alone did not affect the viability of  lympho- 
cytes in the concentration used (data not shown)�9 The means oftriphcated 
culture with SDs are shown�9 
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optosis (Fig. 1). O f  note, the increase in apoptosis was 
more evident in lymph node cells than in spleen cells, sug- 
gesting that differences in cell populations may affect apop- 
tosis (as discussed below). 

The observed dramatic apoptosis does not appear to re- 
quire any specific induction or stimuli. First, we failed to 
block this apoptosis by addition of  RU-486, a potent in- 
hibitor of  glucocorticoid receptors (data not shown). Sec- 
ond, we generated bcl-2 - / -  Ipr/lprrrfice to test for the require- 
ment of  signaling via Fas for the induction of  apoptosis. 
Peripheral lymphocytes lacking both Bcl-2 and Fas showed 
the same high degree ofapoptosis as did those lacking Bcl-2 
only, while less apoptosis was observed in Bcl-2+/Fas + and 
Bcl-2+/Fas - control cells (data not shown). For simplicity, 
here we designate this accelerated apoptosis observed in 
Bcl-2- cells as "spontaneous apoptosis." The spontaneous 
apoptosis in Bcl-2- mature lymphocytes could be inhibited 
by anti-CD3 treatment in the periphery, while anti-CD3 
treatment induced increased apoptosis among thymocytes 
(Fig. 1). 
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Figure 4. Effect of  cytokines on the spontaneous apoptosis in Bcl-2- 
lymphocytes�9 Lymph node cells were cultured for 20 h in medium alone 
(MED) or with IL-lct, IL-2, IL-4, IL-7, and IFN-~t. All cytokines were 
used at 100 U/ml. Staining was carried out as in Fig. 2, and the percent- 
age of specific death in T cells (black bars) and B cells (hatched bars) is 
shown. The means of triplicated culture with SDs are shown. 



1201 T Cel l  1~ 

110~1 1 100 1 
90 

o o 

30 
2o 
10 

o 
-10 

anti-CD3 + + + § + + antI-CD3 

anti-lL-4 . . . .  + + § anti-lL-4 

anti-CD40L + ++ + ++ antI-CD40L 

+ + 

+ 

§ § 

§ 

§  

+ § 

+ § 

§ + +  

Figure 5. Synergistic inhibition of anti-CD?r-induced 
protection ofBcl-2- lymphocytes by anti-IL-4 and anti- 
CD40L antibodies. Cultures were done as in Fig. 3, ex- 
cept for the presence of anti-IL-4 (1 p,g/ml), anti- 
CD40L (+; 10 ~g/ml, ++; 50 Ixg/ml), or both in 
some cases. Percentage of specific death in T cells (let)) 
and B cells (right) was depicted. The means of tripli- 
cated culture with SDs are shown, except for 50 Ixg/ml 
anti-CD40L treatment (in duplicate). 

Anti-CD3 Stimulation Inhibits both T and B Cell Apoptosis. 
To determine which lineage o f  cells underwent apoptosis, 
dual-color FACS | analyses with FITC-labeled antibodies 
and EtBr were performed (24). As shown in Fig. 2, both 
B220 + and B220-  lymph node cells showed significantly 
greater apoptosis in Bcl-2-  cells than in Bcl-2 + cells. Since 
most lymph node cells consist o f T  and B cells, B220-  cells 
primarily represent T cells. Consistent with this, the result 
of  T h y - I - F I T C / E t B r  staining of  lymph node cells was re- 
ciprocal to that o f  B220-FITC/EtBr  (data not shown). The 
observed T cell death was more pronounced than B cell 
death among Bcl-2-  lymph node cells (Fig. 2). Since T cell 
content in the lymph node is much higher than that in the 
spleen, this may explain why spontaneous apoptosis was 
more evident previously in Bcl-2-  lymph node cells than 
in spleen cells. 

Unexpectedly, anti-CD3 treatment inhibited the sponta- 
neous apoptosis, not only in Bcl-2-  T cells, but also in Bcl- 
2 B cells (Fig. 3). This rescue effect o f  anti-CD3 stimula- 
tion was dependent on the coexistence o f T  and B cells (as 
shown in Fig. 7), and was reversed by the addition o f  cy- 
closporin A (CsA) in a dose-dependent manner (Fig. 3). 
Antibody-induced inhibition o f  the spontaneous apoptosis 
appeared to be specific to anti-CD3: anti-CD2, anti-CD4, 
anti-CD8, or anti-Thy-1 mAb did not affect the spontane- 
ous apoptosis (data not shown). These results eliminate the 
possibilities that nonspecific cross-linking of  T and B cells 
inhibited the spontaneous apoptosis, or that signaling via 
the Fc receptor is solely responsible for the inhibition o f  B 
cell death. Thus, we hypothesized that certain molecule(s) 
on the T cells, either membrane-bound or secreted, might 
be induced by anti-CD3, and mediate the inhibition o f  B 
cell death. 

IL-4 Blocks Spontaneous Apoptosis in Bcl-2- T and B Cells. 
Some ILs or cytokines can inhibit lymphocyte death under 
certain conditions. These include IL-1 (27, 28), IL-2 (28- 
31), IL-4 (32-34), and IFN-~/ (35, 36). To test whether 
these soluble factors may inhibit the spontaneous apoptosis 
due to the lack o f  Bcl-2, recombinant mouse ILs were 
added into cultures (Fig. 4). We  failed to find any signifi- 
cant inhibitory effect on the spontaneous apoptosis with 
IL-1 or IL-2. In contrast, IL-4 clearly inhibited both T and 
B cell apoptosis. IL-7, which induces growth o f  mature T 
cells and early differentiation o f  B cell precursors, remark- 

ably inhibited T cell apoptosis. Although IL-7 also affected 
B cell apoptosis, the degree o f  inhibition was less promi- 
nent. This suggests that the survival o f  T cells may not be 
sufficient for the avoidance of  B cell apoptosis. In addition, 
I F N - y  showed moderate inhibition o f  T and B cell apop- 
tosis (Fig. 4), although increased concentrations o f  IFN-2t 
could not further block the spontaneous apoptosis (data not 
shown). It is possible that a subpopulation o f  cells was res- 
cued by IFN-y.  

CD40 and IL-4 Are Mediators of the Inhibition of B Cell 
Apoptosis by Anti-CD3-activated T Cells. Some reports dem- 
onstrated that the stimulation o f  CD40 on B cells by stimu- 
latory antibody or its natural ligand, CD40L, rescued B 
cells from apoptosis (14, 15, 37-39). CD40L is specifically 
expressed on activated T cells, e.g., after stimulation by 
anti-CD3 mAb (21, 40). To address the possible requirement 
and role for CD40 and IL-4 in the suppression of  spontane- 
ous apoptosis, we performed an inhibition experiment by 
using blocking antibodies against CD40L and IL-4. Protec- 
tion o f  Bcl -2-  T cells from spontaneous apoptosis by anti- 
CD3 was almost unaffected by the addition o f  the anti- 
CD40L and anti-IL-4 mAbs (Fig. 5). In contrast, anti-CD40L 

Figure 6. Inhibition of spontaneous apoptosis in Bcl-2 TCR_-trans- 
genic lymphocytes by the specific peptide antigen. Lymph node cells 
were isolated from Bcl-2- nontransgenic mice (Bd-2-) or Bcl-2- TCR 
transgenic mice (Bcl-2-/TCR-TG), which are specific for cOVA (323- 
339) peptide. Cells were cultured for 20 h in medium alone (black bars), 
with 1 Ixg/mI anti-CD3 mAb (hatched bars), or with 5 ~M cOVA (323- 
339) peptide (shaded bars). Percentage of specific death in T cells (left) and 
B cells (right) is shown. The means of triplicated culture with Slgs are 
shown. Note that specific inhibition of apoptosis with cOVA peptide was 
seen only in Bcl-2- TCR transgenic lymphocytes. 
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Figure 7. Inhibition of spontaneous apoptosis in Bcl-2- lg transgenic B 
cells by antigen-specific T-B cell collaboration. (/t) Lymph node cells 
were cultured in medium alone (MED), with 1 p~g/mJ cOVA protein 
(cOVA pro), 1 p~M cOVA (323-339) peptide (cOVA pep), or 1 ~g/ml 
anti-CD3 mAb (CD3), in the absence (black bars) or presence (hatched bars) 
ofTC1L transgenic T cells that are specific for cOVA (323-339) peptide. 
Because of the presence of T cells from Bcl-2- or Bcl-2 Ig transgenic 
mice (Bcl-2 /Ig-TG) in the culture, anti-CD3 could suppress the apopto- 
sis of Bcl-2- B cells regardless of the presence of cOVA peptide-specific 
transgenic T cells. In contrast, cOVA peptide could inhibit the B cell apop- 
tosis only in the presence of cOVA-specific transgenic T cells. Addition 
ofcOVA protein did not affect B cell apoptosis significantly in short-term 
(24 h) cultures. (B) Inhibition of B cell apoptosis by cOVA protein takes 
place at a later stage. Purified splenic B cells were prepared as described in 
Materials and Methods and were cultured for 24 h (left) or 72 h (right) in 
the absence (black bars) or presence (hatched bars) ofcOVA-specific TCP, 
transgenic T cells. Cross-linked cOVA protein was added at a concentra- 
tion of 1 p~g/ml. In the 72-h culture, 100 U/ml [L-4 was added for the 
first 48 h and was then withdrawn by washing. In the 24-h culture, no 
significant reduction of Bcl-2- B cell apoptosis was observed in either 
Bcl-2- nontransgenic or Ig transgenic B cells, as described above. In con- 
wast, at 72 h, specific inhibition was detected only in the presence of cOVA- 
specific B cells and cOVA-specific T cells with cOVA protein. 

Antigen-specific T - B  Cell Collaboration Inhibits Spontaneous 
Apoptosis. T o  confirm the effect o f a n t i - C D 3  stimulation o n  
spontaneous  apoptosis unde r  more  physiological cond i -  
tions, we  have established a system that recapitulates an an -  
t igen-specific col laborat ion b e t w e e n  T cells and B cells. 
Mice  transgenic for T C R  and Ig specific for c O V A  were 
bred  wi th  bcl-2 +/ -  mice,  and F1 mice carrying the [tans- 
genes and  m u t a n t  alleles o f  bcl-2 were  intercrossed to gen-  
erate bd-2 - / -  transgenic mice.  The  B c l - 2 -  transgenic T 
cells and B cells showed the same dramatic apoptosis as did 
nontransgenic B c l - 2 -  cells (Figs. 6 and 7). Fig. 6 shows apop-  
tosis in l ymph  node  cells f rom B c l - 2 -  T C R  transgenic 
mice. A n t i - C D 3  treatment suppressed the spontaneous apop-  
tosis o f  T and B cells f rom B c l - 2 -  nont ransgenic  mice,  as 
well  as those from B c l - 2 -  TCP,. transgenic mice.  In  c o n -  
trast, c O V A  peptide inhibited the apoptosis only in the TC1L 
transgenic B c l - 2 -  T and B cells, bu t  no t  in  nont ransgenic  
B c l - 2 -  T and B cells. Since B cells in the cul ture were no t  
ant igen specific, specificity o f  Ig on  the B cells appeared ir- 
relevant  to the suppression o f  apoptosis w h e n  c O V A  pep-  
tide was added. This suggests that the an t igen-presen t ing  
func t ion  o f  B cells is pr imari ly  impor tan t  in the inh ib i t ion  
o f  B c l - 2 -  T and B cells. Moreover ,  this also eliminates the 
possibility that signaling via the Fc receptor  o n  the B cells is 
necessary for the inh ib i t ion  ofapoptos is  in  B cell apoptosis. 

Us ing  cells f rom B c l - 2 -  Ig transgenic mice,  we tested for 
the inh ib i t ion  o f  B cell apoptosis wi th  c O V A  protein,  
c O V A  peptide (323-339),  or  a n t i - C D 3  in  the presence and 
absence o f  cOVA-specif ic  T cells. The  concen t ra t ion  o f  
c O V A  prote in  was carefully de te rmined  to maximize  Ig- 
dependen t  responses and to min imize  [g - independen t  p i -  
nocytosis o f  c O V A  (20). As shown  in Fig. 7 A, the sponta-  
neous  apoptosis o f  B cells f rom B c l - 2 -  nont ransgenic  mice 
and  B c l - 2 -  Ig transgenic mice was inh ib i ted  by a n t i - C D 3  

m A b  significantly b locked the rescue o r B  cell apoptosis by  
a n t i - C D 3  (Fig. 5). A n t i - I L - 4  synergized wi th  a n t i - C D 4 0 L  
to inh ib i t  up to 80% o f  the rescue, bu t  showed on ly  a slight 
effect by  itself. Yet,  the inh ib i t ion  never  reached 100%, 
suggesting that o ther  soluble or  m e m b r a n e - b o u n d  mo le -  
cules may  further con t r ibu te  to the suppression o f  B cell 
apoptosis. W e  conclude that the rescue o f B c l - 2 -  B cell apop- 
tosis by  a n t i - C D 3  s t imulat ion was media ted  main ly  
th rough  C D 4 0  and IL-4. Bcl-2 appears to no t  be necessary 
for signaling via C D 4 0  and IL-4 receptor  on  B cells because 
the inh ib i t ion  o f  apoptosis was observed in  B c l - 2 -  cells. 
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Figure 8. A model for the inhibition of spontaneous apoptosis in Bcl-2- 
deficient T and B cells by antigen-specific T-B cell collaboration. Bcl-2- 
deficient Ig transgenic B cells (Bd2-/Ig-TG B cell) capture the cOVA pro- 
tein (cOVApro) through their Igs and process it to present small peptides 
(cO VApep) in the groove of variable domains of class II MHC molecules 
(I-A a) to Bcl-2-deficient TCP, transgenic T cells (BcI2-/TCR-TG Tcell). 
Engagement of the TCR by the peptide--MHC complex confers a signal 
to suppress T cell apoptosis, induces surface expression of CD40L, and re- 
leases ILs, including IL-4. Consequently, signaling via CD40 and the IL-4 
receptor blocks the apoptosis in B cells in a Bcl-2 independent manner. 



regardless of  the presence ofcOVA-specific T cells because 
of  the presence of nonspecific T cells in the culture. In 
contrast, cOVA peptide could inhibit the apoptosis only in 
the presence of  cOVA-specific T cells (Fig. 7 A). How- 
ever, cOVA protein, which engages the transgenic Ig, 
could not block the spontaneous apoptosis in the transgenic 
B cells in a 24-h culture (Fig. 7, A and B). Furthermore, 
engagement of  the Ig by anti-IgM antibody, which is be- 
lieved to cross-link Igs much more strongly than antigens 
do, did not rescue the B cells from apoptosis (data not 
shown). Thus, engagement of  the Ig alone is unlikely to be 
a sufficient signal for the inhibition of  B cell apoptosis. 

We hypothesized that the processing of  the cOVA pro- 
tein and presentation of the appropriate peptide to T cells 
in the context of class II MHC may be necessary. To test 
this hypothesis, we performed long-term (72-h) culture to 
allow antigen-specific B cells to process the cOVA protein 
(Fig. 7 B). IL-4 was added in culture for the first 48 h to 
maintain the viability of  Bcl-2- cells, and it was removed 
24 h before the end of  culture. Without cOVA protein, 
nontransgenic and Ig-transgenic Bcl-2- B cells underwent 
a comparable degree ofapoptosis (data not shown). In con- 
trast, the addition of  cOVA protein suppressed the B cell 
apoptosis only in the Ig transgenic Bcl-2- B cells, but not 
in the nontransgenic Bcl-2- B cells (Fig. 7 B). This inhibi- 
tion ofapoptosis was dependent on the presence ofcOVA- 
specific helper T cells. This result, specifically observed in 
Ig-transgenic B cells, minimizes the possibility that cOVA 
protein was nonspecifically degraded to small peptides by 
proteases present in the serum. Instead, it is likely that 
transgenic B cells effectively capture the cOVA protein 
through the cOVA-specific Ig, and present the cOVA pep- 
tide to the cOVA-specific T cells in the context of  class II 
MHC molecules after proper processing of  the protein. 
This is consistent with the kinetics of  antigen-dependent B 
cell activation observed in vitro (20). 

Hence, as depicted in Fig. 8, the inhibition of  spontane- 
ous apoptosis appears to be dependent on the cognate in- 
teraction between T and B cells. B cells capture antigens 
through their Igs and process them to present small pep- 
tides, complexed with class 1I MHC molecules, to T cells. 
Activated T cells then express CD40L and release ILs in- 
cluding IL-4. In turn, signaling via CD40 and the IL-4 re- 
ceptor blocks the apoptosis in B cells. 

Discuss ion  

The Bcl-2 oncoprotein functions as an antiapoptotic 
molecule in many experimental systems (3). The restricted 
expression of  Bcl-2 to long-lived cells also implies the im- 
portance of  Bcl-2 in the prevention of  apoptosis (6). Not 
only the spatial distribution of Bcl-2 expression, but also 
the developmental regulation of  Bcl-2 expression in certain 
lineages of  cells reinforces the notion that Bcl-2 is an anti- 
apoptosis molecule. Bcl-2 is expressed at early and late stages 
of  T and B lymphocyte development, but it is downreg- 

ulated in cells undergoing selective processes, including 
CD4+8 + thymocytes, IgM+D - immature B cells, and ger- 
minal center B cells (8-10, 4l). Our data presented here 
demonstrate that lymphocytes lacking Bcl-2 expression die 
rapidly. The biphasic expression of  Bcl-2 commonly ob- 
served in both T and B cell development may render T and 
B cells susceptible to apoptosis during specific selection 
stages and protect them from apoptosis at other times. 
Thus, Bcl-2 appears to be a main regulator of susceptibility 
to apoptosis in T and B lymphocyte development. There 
may be a physiological rescue signal from such apoptosis- 
sensitive Bcl-2- status. The signaling we described in this 
paper may be responsible for the rescue. 

Recently, we and others have described the requirement 
for Bcl-2 in the maintenance of  the lymphoid system. In 
Bcl-2- mice, the initial development of T and B lympho- 
cytes was unexpectedly intact, but mature lymphocytes dis- 
appeared (16-18). The Bcl-2- mature lymphocytes under- 
went dramatic apoptosis in vivo and in vitro. Since the 
reduction of the number oflymphocytes becomes apparent 
with the age of  Bcl-2-deficient mice, the changing level of 
glucocorticoid in the serum may account for the delayed 
onset of  lymphoid abnormalities (42). However, at least in 
vitro, Bcl-2- lymphocytes were still susceptible to apopto- 
sis in the presence of 1 tzM RU-486, a potent inhibitor of  
glucocorticoid receptors that clearly inhibited dexametha- 
sone-induced apoptosis in thymocytes in vitro (our unpub- 
lished observations). Therefore, the apoptosis observed in 
vitro could not be explained by the presence of  steroids in 
the FCS. Another possibility is that Bcl-2 might normally 
counter the signaling via Fas, a mediator of apoptosis. The 
absence of  Bcl-2 may render the Fas-mediated signal con- 
stitutive and result in apoptosis. Fas is not expressed on 
most resting B lymphocytes, however, and Bcl-2-Fas- B 
lymphocytes still showed drastic apoptosis. Hence, the apop- 
tosis in Bcl-2- lymphocytes appears to take place without 
any inducing stimuli. There is some evidence that Bcl-2 
functions in an antioxidant pathway, and the antioxidant 
ability may be sufficient for the inhibition of  apoptosis (43, 
44). If this is the case, oxidative substances, which are nor- 
really antagonized by Bcl-2, may be produced in the ma- 
ture lymphocytes. Lack of Bcl-2 might allow such oxida- 
tive substances to be accumulated, resulting in cell death. 
However, we could not observe any significant effect of  ei- 
ther N-acetyl-L-cysteine or ascorbic acid, which are potent 
antioxidative agents and effective in inhibition of  apoptosis 
(43, 44), on the spontaneous apoptosis in Bcl-2- lympho- 
cytes (our unpublished observations). 

Unexpectedly, the apoptosis observed in Bcl-2- mature 
T cells was much more evident than that in Bcl-2- thy- 
mocytes, suggesting the presence of  redundant molecule(s) 
in thymocytes. Bcl-xL, another member of  the Bcl-2 fam- 
ily, is expressed in CD4+8 + thymocytes, but not in mature 
T cells, and protects them from apoptosis (26). Initial re- 
ports failed to detect Bcl-xL expression in the human thy- 
mus, whereas it was demonstrated that Bcl-xS, which is a 
dominant negative molecule produced by alternative splic- 
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ing, is specifically expressed in the thymus (25). However, 
we detected much more Bcl-xL than Bcl-xS in the mouse 
thymus, and we have shown that Bcl-xL may be function- 
ally dominant because targeted disruption of bcl-x gene re- 
sulted in marked increase in apoptosis of  CD4+8 § thy- 
mocytes (26). The functional difference between Bcl-2 and 
Bcl-x has not been clear. Since mature T cells (Bcl-2 high, 
Bcl-x l~ have a much longer lifespan than do immature 
thymocytes (Bcl-2 l~ Bcl-x high) (45, 46), Bcl-2 may have a 
stronger effect on the longevity oflymphocytes than Bcl-x. 
Alternatively, Bcl-xL may have a comparable ability to in- 
hibit apoptosis to Bcl-2, but the presence of Bcl-xS antago- 
nizes this Bcl-xL activity in CD4+8 + thymocytes. Conse- 
quently, in Bcl-2-deficient mice, an opposite phenomenon 
was observed: mature T cells were more sensitive to apop- 
tosis than to thymocytes. This could be explained by the 
presence of  Bcl-x in thymocytes, but not in mature T cells. 
Moreover, Bcl-x is reexpressed upon T cell activation (25). 
Therefore, the inhibition of spontaneous apoptosis in Bcl-2- 
lymphocytes by antigenic stimulation may result from up- 
regulation of  Bcl-x. This possibility remains to be tested in 
Bcl-2/Bcl-x double-mutant mice. 

Our data suggest that T-B cell collaboration with spe- 
cific antigens inhibits the apoptosis in the absence of  Bcl-2 
(Fig. 8): B cells capture the antigens by their Ig and present 
the digested peptide in the groove of variable domains of  
class II MHC molecules. T cells specific for the peptide are 
activated by the peptide-MHC complex, and express CD40L 
on their surface as well as releasing ILs including IL-4. In 
turn, B cells escape from apoptosis with the help of T cells, 
mainly through CD40 and IL-4, both of  which have been 
shown to inhibit apoptosis in some experimental systems. 
CsA does not affect signaling via CD40 (47); thus, the inhi- 
bition of anti-CD3-induced rescue of  Bcl-2- B cells by 
CsA may be the result of disruption of  the T cell activation 
process. CD40 and IL-4 show synergism in many cases, in- 
cluding B cell proliferation (48), secretion of  IgE (49-51), 
and the induction of NF-AT (52). It has been shown that 
signals via CD40 or IL-4 induce upregulation of  Bcl-2 (11, 
33). Bcl-2 has therefore been suspected as a key molecule 
in the pathway. Bcl-2, however, is not necessary for the 
antiapoptotic activity of  CD40 and IL-4 because signaling 
via CD40 and IL-4 inhibited B cell apoptosis in the ab- 
sence of  Bcl-2. This is consistent with the observation that 
Bcl-2 induction in germinal center B cells is a relatively late 
event compared to the suppression ofapoptosis (15). 

The susceptibility of  mature lymphocytes to apoptosis 
resulting from a lack of Bcl-2 is observed, not only in ex- 
perimental systems, but also in normal animals. Upon im- 
munization, Bcl-2 is downregulated in germinal center B 
cells, which become susceptible to apoptosis (41). Interest- 
ingly, it has recently been suggested that T cells in the ger- 
minal centers are antigen-specific and selectively recruited 
into the germinal centers (53, 54). Engagement of  CD40 
on germinal center B cells that lack Bcl-2 expression, by 
CD40L on activated T cells, suppresses spontaneous apop- 
tosis and upregulates Bcl-2 expression. In Bcl-2-deficient 
mice, circulating B cells showed high susceptibility to apop- 
tosis, as seen in germinal center B cells of wild-type mice, 
suggesting that the lack of  Bcl-2 is the cause of the acceler- 
ated spontaneous apoptosis in germinal center B cells. More- 
over, spontaneous apoptosis in both germinal center B cells 
and circulating B cells in Bcl-2--deficient mice could be 
suppressed by CD40 stimulation and IL-4. Given that both 
B cells are similar in characteristics of apoptosis, our data 
suggest that germinal center B cells with high affinity to an- 
tigen after somatic hypermutation can be selectively rescued 
by activated T cells in an antigen-specific, Bcl-2-indepen- 
dent manner. Bcl-2-independent inhibition of apoptosis 
during cognate T-B cell collaboration may be critically im- 
portant in the selection of germinal center B cells. 

Deregulated expression of Bcl-2 in bcl-2-IgH fusion 
minigene transgenic mice resulted in an expanded germinal 
center cell population, prolonged the lifespan of germinal 
center cells, and augmented secondary immune responses 
(55, 56). In contrast, Bcl-2-deficient mice failed to form 
germinal centers efficiently after immunization, suggesting 
that the Bcl-2-independent inhibition is not solely suffi- 
cient for such secondary responses as germinal center for- 
mation (our unpublished observation). Collectively, the 
physiological function of  Bcl-2 in mature lymphocytes may 
be to protect lymphocytes from spontaneous apoptosis, and 
to promote their survival until they are activated by specific 
antigens. Thus, the lack of Bcl-2 may decrease the oppor- 
tunity for antigen-specific interaction, or it may reduce the 
ability to sustain the interaction. The assays in vitro using 
transgenic T and B cells circumvent this problem because 
of the extremely high efficiency of  antigen-specific cognate 
interaction (20). Taken together, it is likely that both Bcl- 
2-dependent and -independent inhibition of apoptosis play 
important roles in lymphocyte development and differenti- 
ation. 
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