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Abstract. Glycosylphosphatidylinositol-anchored in-
fluenza hemagglutinin (GPI-HA) mediates hemifusion,
whereas chimeras with foreign transmembrane (TM)
domains mediate full fusion. A possible explanation for
these observations is that the TM domain must be a
critical length in order for HA to promote full fusion.
To test this hypothesis, we analyzed biochemical prop-
erties and fusion phenotypes of HA with alterations in
its 27-amino acid TM domain. Our mutants included
sequential 2-amino acid (A2-A14) and an 11-amino
acid deletion from the COOH-terminal end, deletions
of 6 or 8 amino acids from the NH,-terminal and mid-
dle regions, and a deletion of 12 amino acids from the
NH,-terminal end of the TM domain. We also made
several point mutations in the TM domain. All of the
mutants except Al4 were expressed at the cell surface
and displayed biochemical properties virtually identical
to wild-type HA. All the mutants that were expressed

at the cell surface promoted full fusion, with the nota-
ble exception of deletions of >10 amino acids. A mu-
tant in which 11 amino acids were deleted was severely
impaired in promoting full fusion. Mutants in which 12
amino acids were deleted (from either end) mediated
only hemifusion. Hence, a TM domain of 17 amino ac-
ids is needed to efficiently promote full fusion. Addi-
tion of either the hydrophilic HA cytoplasmic tail se-
quence or a single arginine to A12 HA, the hemifusion
mutant that terminates with 15 (hydrophobic) amino
acids of the HA TM domain, restored full fusion activ-
ity. Our data support a model in which the TM domain
must span the bilayer to promote full fusion.
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Introduction

Influenza virus fusion is mediated by the hemagglutinin
(HA)! trimer (for reviews see Stegmann, 1994; Gaudin et
al., 1995; Hughson, 1995; Hernandez et al., 1996). Each HA
monomer is composed of two subunits: HA1, which con-
tains the receptor binding and major antigenic sites, and
HAZ2, which is primarily responsible for fusion. HA2 con-
tains an NH,-terminal fusion peptide, a region of high
a-helical propensity, a 27-amino acid transmembrane
(TM) domain, and a 10-amino acid cytoplasmic tail. Stud-
ies have demonstrated the importance of the fusion pep-
tide as well as structural changes within the trimeric coiled
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coil for fusion (Carr and Kim, 1993; Bullough et al., 1994;
Steinhauer et al., 1995; Qiao et al., 1998, 1999).

In previous work, we demonstrated that replacing the
TM and cytoplasmic tail domains of HA with a glyco-
sylphosphatidylinositol (GPI) anchor generated an HA
trimer that could promote only hemifusion (Kemble et al.,
1994). This suggested that the TM domain plays an impor-
tant role during the hemifusion to fusion transition
(Kemble et al., 1994; Melikyan et al., 1995b, 1997a; Blu-
menthal et al., 1996; Nussler et al., 1997; Chernomordik et
al., 1998). Other studies have demonstrated that replacing
the HA TM domain (and/or cytoplasmic tail) with those
from foreign proteins, both viral and nonviral, has no ef-
fect on fusion (Roth et al, 1986; Dong et al., 1992;
Schroth-Diez et al., 1998; Melikyan et al., 1999). Although
the aforementioned conclusions have been based on stud-
ies using different assays, the collective findings suggest
that there may not be any specific sequence requirements
for the HA TM domain to support full fusion (Roth et al.,
1986; Dong et al., 1992; Schroth-Diez et al., 1998; Me-
likyan et al., 1999). However, the HA TM domain may re-
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quire a minimal length to promote the hemifusion to fu-
sion transition. The major goal of this study was to test the
latter hypothesis.

Materials and Methods

Mutagenesis

HA mutants were generated in HA cDNA (X:31 strain) present in the
pTM1 vector using the Quik-Change Site-Directed Mutagenesis Kkit
(Stratagene) according to the manufacturer’s instructions. Oligonucle-
otide primers with stop codons in the TM domain were used to generate
cytoplasmic tail” HA (Tail~ HA) and then, sequentially, two—amino acid
deletions from the COOH-terminal end of the TM domain (A2-A14; see
Fig. 1). Oligonucleotide primers were also used to create the following ad-
ditional HA mutants (in the Tail~ HA construct): a deletion of 6 amino
acids from the NH,-terminal end of the TM domain (A185-190; NA6); a
deletion of 6 amino acids from the NH,-terminal end and 2 amino acids
from the COOH-terminal end of TM (A185-190/A210-211; NA6A2); a de-
letion of 12 amino acids from the NH,-terminal end of TM (A185-196;
NA12); deletions of 6 or 8 amino acids from the central region of TM
(A195-200, MidA6; and 195-202, MidAS8); a deletion of 11 amino acids
from the COOH-terminal end of TM (A101-111; A11); 6 single point mu-
tants (S194L, S194A, G204A, G204L, W185A, and W188A); and two dou-
ble point mutants (W185A/W188A and S194L/G204L) in the HA TM do-
main. The point mutants were made in the context of the full-length HA
construct (i.e., containing the cytoplasmic tail). We also engineered two
HA mutants that contained the TM domain of A12 HA (amino acids 185~
199), followed by either the entire cytoplasmic tail sequence of HA
(A12Tail HA) or a single arginine (A12Arg HA). In this paper we use the
term GPI-HA to refer to the construct BHA-PI (K/S) described in
Kemble et al. (1994). When GPI-HA is expressed, a nine—amino acid se-
quence from the decay-accelerating factor GPI anchor addition signal,
containing a lysine to serine substitution, remains with the HA
ectodomain (Kemble et al., 1994). GPI-HA was subcloned into the pTM1
vector. Mutant HA ¢cDNAs were sequenced to confirm that the desired
mutations had, but that second site mutations had not, been introduced.

Expression of Wild-Type HA and Mutant HAs

CV-1 cells (CCL 70; American Type Culture Collection) were maintained
in Iscove’s modified Dulbecco’s medium (IMDM; GIBCO BRL) contain-
ing 10% supplemented calf serum (SCS; Hyclone Laboratories, Inc.),
50,000 U penicillin, 50,000 pg streptomycin (GIBCO BRL), and an addi-
tional 146 mg glutamine (GIBCO BRL) per 0.5 liter. Wild-type (WT) and
mutant HAs were expressed using the vaccinia virus T7 RNA polymerase
transient transfection system (Fuerst et al., 1986). Confluent monolayers
of CV-1 cells were infected with modified vaccinia ankara (MVA; a gift of
Bernard Moss, National Institutes of Health, Bethesda, MD) at a multi-
plicity of infection of 10 PFU per cell and incubated at 37°C for 1 h with
intermittent rocking. After removing the virus inoculum, the cells were
washed once with Dulbecco’s PBS (Cellgro; Fisher Scientific) and then
transfected with cDNA using 12.0 pl Mirus Transit (Panvera) per 6-cm
dish according to the manufacturer’s instructions. Unless otherwise stated,
we used 5.0 pg cDNA per 6-cm dish except for A10, A12, and NA12, for
which we used 7.5 wg cDNA per 6-cm dish. After a 5-h incubation (at 37°C
in a 5% CO, incubator), the DNA/Transit mixture was replaced with
IMDM, and the cells were incubated at 31°C for 15-20 h.

Metabolic Labeling

CV-1 cells expressing WT and mutant HAs were metabolically labeled
with 3°S-Translabel (ICN Biomedicals) essentially as described previously
(Kemble et al., 1993). After transfection, the cells were incubated for 2 h
in Cys~/Met~™ DME (GIBCO BRL) containing 2% SCS at 37°C. The me-
dium was then replaced with 1.25 ml Cys~/Met™ DME containing 50-75
wCi ¥S-Translabel and 2% SCS, and the cells were incubated at 31°C for
14-18 h.

Cell Surface Biotinylation, Immunoprecipitations, and
Western Blot Analyses

Biotinylation of cell surface proteins was performed as described previ-
ously (Qiao et al., 1999). Trypsin cleavage of HAO was performed as de-
scribed previously (Qiao et al., 1998) except that 10 pg/ml trypsin in PBS
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was used and incubation was for 10 min at room temperature (RT). Cells
were then treated with 50 wg/ml soybean trypsin inhibitor (STI; Sigma-
Aldrich) for 10 min at RT. CV-1 cells expressing WT and mutant HAs
were washed with PBS, lysed in a cell lysis buffer containing 1% NP-40
and protease inhibitors as described previously (Delos et al., 2000), and
then immunoprecipitated as described (Kemble et al., 1993). Immune
complexes were suspended in SDS gel loading buffer containing 0.14 M
B-mercaptoethanol, boiled for 5 min, and separated by 10% SDS-PAGE.
The proteins were transferred to nitrocellulose. The membrane was
blocked using superblotto (0.5% Tween 20, 3% [wt/vol] BSA, 18% [wt/
vol] glucose, 1% [wt/vol] milk, and 10% glycerol in PBS) and probed with
antibodies to HA (C-HA1) or streptavidin-HRP (Pierce Chemical Co.) as
described previously (Qiao et al., 1999).

Sucrose Gradient Analysis

CV-1 cells expressing WT and mutant HAs were treated with trypsin,
then STI, and lysed as described above. Cell lysates were layered on con-
tinuous 3-30% sucrose (wt/vol) gradients. After centrifugation, 12 395-u.l
fractions were collected and prepared as described previously (Qiao et al.,
1998).

C-HA1 Conformational Change Assay

Transfected CV-1 cells were metabolically labeled overnight as described
above. After treatment with trypsin and STI (see above), the cells were in-
cubated at 37°C for 10 min in fusion buffer (100 mM NaCl, 10 mM Hepes,
10 mM MES, 10 mM succinate, and 2 mg/ml glucose) adjusted to the indi-
cated pH. After reneutralization with pH 7.0 fusion buffer, the cells were
lysed and immunoprecipitated with the C-HA1 antibody as described pre-
viously (Kemble et al., 1993). Samples were analyzed by SDS-PAGE and
PhosphorImager analysis (Molecular Dynamics).

RBC Labeling, Binding, and Lipid and Content
Mixing Assays

Freshly collected human RBCs were either colabeled with octadecyl-
rhodamine B chloride (R18) and carboxyfluorescein (CF; Molecular
Probes, Inc.) or labeled with CF only (Melikyan et al., 1999). WT and mu-
tant HA-expressing cells were treated with trypsin and STI as described
above, washed once with PBS* (PBS containing 0.1 g/liter CaCl, and 0.1
g/liter MgCl,), and incubated with a solution containing 0.05% labeled
RBCs for 15 min at RT. Unbound RBCs were removed by three washes
with PBS™ and fusion was triggered by incubating the HA-expressing cells
with pH 5.0 fusion buffer at 37°C for either 2 or 5 min (times indicated in
the figure legends). The pH 5.0 solution was replaced with pH 7.0 fusion
buffer, and the cells were examined with a fluorescent microscope. Where
indicated, cells were treated for 1 min at RT with either 0.1 or 0.5 mM
chlorpromazine (CPZ) in fusion buffer, pH 7.0, and then returned to
PBS*. Images were collected using an Axioplan 2 microscope (Carl Zeiss,
Inc.) equipped with a C4742-95 CCD camera (Hamamatsu), and Openlab
(Improvision) software, and were prepared using Adobe Photoshop®.

Preparation of Microsomal Membranes

Transfected CV-1 cells were biotinylated and treated with trypsin and STI
as described above. The cells were then released from their dishes by incu-
bation for 10 min at RT in 1.0 ml PEEG (PBS containing 0.5 mM EDTA,
0.5 mM EGTA, and 10 mM glucose), transferred to a 1.5-ml Eppendorf
tube, pelleted at 325 g for 2 min at 4°C, resuspended in 0.8 ml DHB buffer
(10 mM Tris-HCI, pH 7.5, 1 mM MgCl,), and incubated for 5 min on ice
(to induce cell swelling). The cells were then passed 10 times through a 25-
gauge needle. Sucrose was added to bring the solution to a final 1.18 M
(wt/wt) concentration by the addition of 2.0 M sucrose (in DHB), and the
suspension was overlaid with 3.0 ml of 0.25 M sucrose (in DHB). The nu-
clei were pelleted by centrifugation in an SWS55 rotor at 192,000 g for 90
min at 4°C. The interface containing the microsomal membrane fraction
was collected, transferred to a tube containing 4.0 ml of 0.25 M sucrose (in
DHB), and centrifuged as before. The pellet containing the microsomal
membranes was collected.

Carbonate Extraction

The pellet containing the microsomal membranes was resuspended in 0.3
ml 50 mM TEA, pH 7.5 (triethanolamine, pH adjusted with acetic acid).
The pH was adjusted to 11.0 by the addition of 0.1 volume 1 M Na,CO;
(pH 11.0), and the suspension was incubated on ice for 20 min. Mem-
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branes were layered on top of a 0.68-ml sucrose cushion (0.2 M sucrose, 20
mM Hepes-NaOH (pH 11.0), 150 mM potassium acetate, 2.5 mM magne-
sium acetate) and centrifuged at 135,000 g in a TLS-55 rotor for 20 min at
4°C. The supernatant was collected and reneutralized by the addition of
30 mM HCI and designated the “supernatant fraction.” The pellet was
lysed in 0.5 ml lysis buffer containing protease inhibitors, incubated on ice
for 20 min, centrifuged to clear debris at 16,000 g for 10 min at 4°C, and
transferred to a fresh 1.5-ml Eppendorf tube and designated “pellet frac-
tion.” HA from the supernatant and pellet fractions was immunoprecipi-
tated using the Site A mAb as described above, resolved by SDS-PAGE
on a reducing 10% gel, transferred to nitrocellulose, and probed with
streptavidin-HRP as described above.

FACS® Analysis

Transfected CV-1 cells (6-cm dishes) were released from the dish with
PEEG (as described above) and transferred to a 1.5-ml Eppendorf tube.
The cells were then washed twice with cold PBS™ containing 0.02% azide
(PBSA) and centrifuged at 325 g for 2 min at 4°C. The cells were resus-
pended in 0.2 ml cold PBSA containing 2% SCS and incubated for 30 min
on ice with 1.7 pl of 1.0 mg/ml Site A mAb. The cells were then washed
twice with PBSA as described above, resuspended in PBSA containing
2% SCS, and incubated with 1.0 wl FITC-conjugated goat anti-mouse IgG
for 30 min on ice. The cells were then washed twice with cold PBSA, re-
suspended in PBS containing 2% paraformaldehyde, and analyzed by
FACS® at the University of Virginia Core Facility, using a FACScan™
flow cytometer (Becton Dickinson).

Endo F Treatment

Transfected CV-1 cells (6-cm dishes) were metabolically labeled and
treated with trypsin and STI as described above. The cells were released
from the dish by a brief treatment with PEEG (as described above) and
transferred to a 1.5-ml Eppendorf tube. Lysates were prepared and HA
was immunoprecipitated with the Site A mAb as described above. After
the immunoprecipitation, 50 pl N-Glycosidase F buffer (1% octylgluco-
side, 0.2% SDS, 40 mM Tris, pH 8.0, 5 mM EDTA, and 1% B-mercapto-
ethanol) was added to the protein A—Agarose (PAA) beads. The beads
were then treated at 95°C for 3 min, followed by centrifugation for 2 min
at 16,000 g. The supernatant was then transferred to a new 1.5-ml Eppen-
dorf tube and treated with 1.0 U N-Glycosidase F (Roche) for 2 h at 37°C.
SDS gel loading buffer containing 0.14 M B-mercaptoethanol was added,
the samples were reboiled, and the proteins were resolved by SDS-PAGE
on a 15% gel. The gel was then fixed in a solution of 40% methanol/10%
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Figure 1. HA TM domain truncation mutants. Line diagram of
the HA gene. The region encompassing the TM domain (gray
box) is expanded below. Deletion mutations are shown as se-
quential removal of two amino acids from the COOH-terminal
end of the TM domain (mutants A2-14) starting with the tail™
construct. NA12 HA lacks the NH,-terminal 12 amino acids of
the TM domain as well as the cytoplasmic tail. GPI-HA has been
aligned with the correct ectodomain sequences of the TM trunca-
tion mutants.
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acetic acid for 20 min at RT, followed by incubation in 1 M salicylic acid
for 20 min at RT. The gel was then dried and exposed to film.

Cholesterol Depletion and Triton X-100 Extraction

For fusion experiments, transfected CV-1 cells were treated with trypsin
and STT as described above, and depleted of cholesterol by a 30-min treat-
ment with 20 mM methyl B-cyclodextrin (MBCD; Sigma-Aldrich) in PBS*
at 37°C before RBC binding and fusion (see above). For Triton X-100 ex-
traction experiments, transfected CV-1 cells were biotinylated, trypsin
treated, cholesterol depleted with MBCD as described above, and lifted
off the dish by treatment with PEEG for 10 min at 4°C. The cells were pel-
leted in a refrigerated microfuge chilled to —2°C for 2 min at 325 g. After
centrifugation, the cells were placed on ice in a 4°C coldroom, resus-
pended in 500 pl cold lysis buffer (50 mM Tris, pH 8.0, 1% Triton X-100,
and protease inhibitors), and incubated on ice for 20 min. The insoluble
fraction was removed by centrifugation for 15 min at 16,000 g and 4°C,
again in a microfuge chilled to —2°C. The supernatant was designated the
“soluble fraction.” The insoluble (pellet) fraction was resuspended in 500
wl cold lysis buffer containing 0.1% SDS and protease inhibitors, incu-
bated for 1 h at RT with occasional vortexing, centrifuged to clear debris
at 16,000 g for 10 min at 4°C, transferred to a fresh 1.5-ml Eppendorf tube,
and designated “pellet fraction.” HA from the soluble fraction and the
pellet fraction was immunoprecipitated with the Site A mAb, detected as
described above with streptavidin-HRP, and quantitated by PhosphorIm-
ager® analysis.

Videomicroscopy Lipid Mixing Assay

Transfected CV-1 cells expressing either WT HA or A10 HA were pro-
cessed for fusion as described above. RBCs (0.05%) labeled with R18 as
described above were bound to the CV-1 cells. Fusion was triggered at
37°C with fusion buffer adjusted to the indicated pH. The cells were main-
tained at 37°C on a warm stage and monitored by videomicroscopy for 5
min using the software package Openlab (Improvision). Fusion was quan-
tified using Scion Image (National Institutes of Health, Bethesda, MD).
Care was taken such that one to three RBCs were bound per cell. Each
field contained 40 RBCs, and the amount of R18 fluorescence per field
was quantified. The values from three to four fields per time point were
averaged, and the data were plotted as a function of time. From these
plots, values for the lag time, initial rate, and final extent of lipid mixing
were calculated.

Results

Biochemical Properties of HA TM Truncation
Mutants D2-D14

We initially made a set of mutants in which we sequentially
deleted 2, 4, 6, 8, 10, 12, and 14 amino acids from the
COOH-terminal end of the HA TM domain in the context
of a Tail~ HA construct (Fig. 1). We first asked whether
these mutant HAs could be expressed at the cell surface in a
fusion-permissive form (i.e., cleaved from HAO to HA1-S-
S-HAZ2). We also examined them for a shift in the migration
of their HA2 subunits. With the exception of A14 (data not
shown), all of the mutants were expressed at the cell surface
as HAO and were efficiently cleaved to HA1 and HA2 by
the addition of trypsin (Fig. 2 A). A2-A8 HA exhibited the
expected shift in the mobility of the HA2 subunits (Fig. 2 B,
left). A10 and A12 HA exhibited an increased mobility com-
pared with WT HA (and Tail~ HA; data not shown), but
these mutants migrated more slowly than A8 HA (Fig. 2 B,
right). The fact that A12 was, but that Al4 was not, ex-
pressed at the cell surface is consistent with previous obser-
vations that a mutant HA with a 13-amino acid truncation
of the TM domain was not transported beyond the cis-
Golgi compartment (Doyle et al., 1986).

We next asked if the mutant HAs form trimers. Pro-
cessed forms of A2-A12 HA migrated to a similar position
on sucrose gradients as WT HA (Fig. 3 A, arrows). The
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Figure 2. Processing of HA truncation mutants.
(A) Chymotrypsin (C) or trypsin (T) treated CV-1
cells were biotinylated, lysed, immunoprecipi-
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tated with the Site A antibody, resolved by SDS-
PAGE, transferred to nitrocellulose, and visual-
ized with streptavidin-HRP. Like WT HA, all
mutant HAs exhibit efficient processing. (B) CV-1
cells were metabolically labeled, treated with
trypsin, lysed, immunoprecipitated with an HA-

s specific mAb, treated with 1 U of N-Glycosidase
F for 2 h at 37°C, and resolved on 15% SDS-
PAGE. The gels were dried and exposed to film.
- 20 A2-12 HA exhibit a mobility shift indicative of a

truncated HA2 subunit (HA2%).

higher molecular weight band seen in some of the gradi-
ents corresponds to intracellular HAO.

To address whether the mutant HAs change conforma-
tion at the same pH as WT HA, HA-expressing cells were
briefly incubated at the indicated pH, lysates were pre-
pared, and HA was immunoprecipitated using C-HA1, a
conformation-specific antibody (White and Wilson, 1987).
As seen in Fig. 3 B, A2-A12 HA changed conformation
with a pH dependence similar to that of WT HA.

Fusion Activity of A2-A12

We evaluated the fusion activity of A2, A4, A6, A8, A10,
and A12 HA using a dye transfer assay. RBCs colabeled
with a lipid dye (R18) and a soluble content dye (CF) were
bound to HA-expressing cells, and fusion was induced as

described in Materials and Methods. After 5 min at 37°C
and pH 5, the cells were returned to neutral pH medium
and examined with a fluorescence microscope. As seen in
Fig. 4, both dyes transferred efficiently to cells expressing
A2, A4, A6, A8, and A10 HA. A different phenotype was
seen for cells expressing A12 HA: whereas we observed ef-
ficient lipid dye transfer (97%), content dye transfer was
severely restricted (<10 vs. 97% for WT HA). As ex-
pected, we did not observe transfer of R18 or CF by WT
or mutant HA-expressing cells at neutral pH or at low pH
if the cells had not been pretreated with trypsin to process
HAO (data not shown).

Given the striking observation that A10 HA mediated
robust lipid and content mixing whereas A12 HA medi-
ated robust lipid mixing with minimal content mixing, we

Figure 3. Biochemical analyses. (A) Su-
crose gradient analysis. Transfected CV-1
cells were trypsin treated, lysed, run on
3-30% continuous sucrose gradients, and
fractionated as described in Materials and
Methods. The samples were precipitated
with Con A-agarose, resolved by 10%
SDS-PAGE, and analyzed for HA protein

by Western blotting. Processed forms of
A2-12 HA migrate to a similar position on
sucrose gradients as the WT HA trimer
(black arrowhead). (B) Conformational
change assay. Transfected CV-1 cells were
metabolically labeled, trypsin treated, in-
cubated at indicated pH values for 10 min
at 37°C, reneutralized, and lysed. Cell ly-
sates were then immunoprecipitated with
the C-HA1 antibody, which recognizes

45 5 55 6 65 7

T B < 120
123 456789101112 %100_
wT -. < HA1 2 80
0 4
A2 - P o 60
o 40 -
A4 . ® Ly q o
5 1 2P T
o~
A6 ::-«-—. J o 0 T T
AB : . m . 'lq
/ P
A10 T
Al12 EpE e <
Tail - up P

The Journal of Cell Biology, Volume 151, 2000

only the low pH conformation of HA, re-
solved by 10% SDS-PAGE, and quanti-
tated by Phosphorlmager® analysis. The
amount of HA precipitated when the total
HA precipitated at pH 5 is considered as
100%. A2-12 HA change conformation
with a pH dependence similar to WT HA.
The results presented for WT HA and A2—
A10 are from a typical experiment. The
values given for A12 HA are the average
from three independent experiments.

7.5
pH
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Figure 4. Quantitation of lipid mixing and content mixing. CV-1
cells expressing WT or mutant HAs were prepared for fusion as
indicated in Materials and Methods, except that fusion was trig-
gered at pH 5.0 for 2 min at 37°C and reneutralized. The amount
of cDNA used per transfection is indicated. Lipid and content
mixing events were averaged from 4-12 random fields (mean =
SEM). Percent lipid dye transfer (hatched bars) was determined
by dividing the number of cells receiving lipid dye by the number
of cells with bound RBCs in each field. Percent content dye
transfer (black bars) was determined by dividing the number of
cells receiving content dye by the number of cells with bound
RBC:s in each field. Relative surface expression of HA in fluores-
cence units (FU), was obtained by FACS® analyses, and is pre-
sented as the mean fluorescence intensity per cell normalized to
that of 3.5 g WT HA cDNA.

also tested a mutant lacking the 11 COOH-terminal resi-
dues of the TM domain (A11 HA). A11 HA exhibited bio-
chemical properties similar to WT HA (Table I). Whereas
A11 HA mediated efficient lipid mixing (Fig. 4), it was sig-
nificantly impaired in its ability to mediate content dye
transfer (Fig. 4).

The density of HA at the cell surface can influence the
fusion phenotype (Ellens et al., 1990; Melikyan et al.,
1995a; Blumenthal et al., 1996; Danieli et al., 1996). There-
fore, we took care to analyze the fusion phenotype of mu-
tant HAs expressed at comparable levels to a known
amount of WT HA. To do this, we first used FACS® analy-
sis to determine the amount of WT and mutant HA ex-
pressed at the cell surface when different amounts of
cDNA were used for transfection. We then used an
amount of WT HA cDNA such that the level of WT HA
expression at the cell surface was equivalent to that of the
mutant HA to which it was being compared (see results of
FACS® analysis, bottom of Fig. 4). We can therefore say
that under conditions of equivalent cell surface expression,
whereas WT HA (0.5 pg cDNA) mediates efficient lipid
and content mixing, A12 HA (7.5 ng cDNA) mediates effi-
cient lipid transfer but very poor content dye transfer. The
fusion phenotype of cells expressing A12 HA was thus sim-
ilar to that seen for cells expressing GPI-HA (Fig. 4). Rep-
resentative micrographs showing the fusion patterns of WT
HA, GPI-HA, A10 HA, and A12 HA are shown in Fig. 5.

The fusion data presented in Figs. 4 and 5 suggested that
there is a stringent length requirement for the HA TM do-
main to be able to mediate both lipid and content mixing.
To further test this possibility, we generated a second 12—
amino acid truncation in the HA TM domain, but in this
case we deleted 12 amino acids from the NH,-terminal end
of the TM domain (Fig. 1). This mutant, referred to as
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Tablel. Summary of Results: Effects of Truncation Mutations
intheHATM

Trypsin RBC Lipid Content
HA Trimer  cleavage  binding  mixing mixing ConfA
pH
WT (3.5 ng) + + ++ ++ ++ 50
WT (0.5 ng) + + + ++ ++ 5.0
Tail~ + + ++ ++ ++ 5.0
A2 + + ++ ++ ++ 50
A4 + + ++ ++ ++ 5.0
A6 + + ++ ++ ++ 5.0
A8 + + ++ ++ ++ 50
A10 + + ++ ++ ++ 5.0
A1l ND + + ++ - ND
Al12 + + + ++ - 50
NA12 ND + +/— + - ND
A12Tail ND + ++ ++ ++ 5.0
GPI-HA + + ++ + - 5.0*

The transfection efficiency of the HA TM domain mutants ranged from 61 to 78%
(SEM was <5%). Expression at the cell surface isindicated in Fig. 4. ND, not done.
3.5 wg WT refersto the higher amounts of cDNA used in transfections and with which
comparison with Tail~ HA and A2-A10 should be made. 0.5 g WT refersto the lower
amount of cDNA used in transfections and with which comparison with A11, A12,
NA12, and A12Tail should be made.

*Kembleet al., 1993.

NA12 HA, was then examined for biochemical properties.
Like all of the other truncation mutants, NA12 HA was ex-
pressed at the cell surface, was processed by trypsin into
HAT1 and HA2, and exhibited a faster migrating HA?2 sub-
unit than tail-HA (Table I, and data not shown). By all of
these criteria, NA12 HA resembled A12 HA. However, it
was not as well expressed at the cell surface as A12 HA, as
determined by FACS® analysis and RBC binding (~80%
compared with A12 HA; Fig. 4 and Table I). In terms of fu-
sion with RBCs, NA12 HA mediated significant lipid mix-
ing, albeit less than seen with A12 HA (63 vs. 97%). With
respect to content mixing, NA12 HA mediated <5% dye
transfer similar to the behavior of A12 HA and GPI-HA
(Figs. 4 and 5). Neither A12 HA nor NA12 HA promoted
significant content mixing (>10%) even after 60 min of in-
cubation at 37°C at either pH 4.8 or 5.0 (data not shown).

Comparison of the Lipid and Content Mixing Ability of
D10 HA and WT HA

Given the dramatic decrease in content mixing ability be-
tween A10 HA and A12 HA (and A11 HA), we examined
the fusion activity of A10 HA in more detail. For this pur-
pose, we compared the lag times, initial rate, and final ex-
tent of lipid mixing with WT HA and A10 HA at different
pH values. At all pH values tested, the lag time before the
onset of dye transfer was equivalent for A10 HA and WT
HA (Table II). There was no difference in either the initial
rate or the final extent of lipid mixing for A10 HA and WT
HA at pH 5.0 and 5.25. At pH 5.5, the latter parameter was
somewhat lower for A10 HA. Hence, the lipid mixing prop-
erties of A10 HA were very similar to those of WT HA at all
pH values tested. In addition, when incubated at the subop-
timal pH of 5.25 for 2 min at 37°C, A10 HA meditated con-
tent mixing to the same extent as WT HA (data not shown).

Effect of CPZ on Content Mixing

Previous work has shown that treatment with 0.1 mM
CPZ, a membrane-permeable amphipathic reagent that
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partitions preferentially into the inner leaflet of the
plasma membrane, efficiently induces full fusion in cases
of “stunted fusion” caused by performing fusion experi-
ments under suboptimal conditions (Melikyan et al.,
1997a). Stunted fusion is operationally defined as lipid
mixing without substantial content mixing due to the for-
mation of small or transient fusion pores. It is thought to
occur after hemifusion. In contrast, higher concentrations
of CPZ (0.4-0.5 mM) are needed to induce GPI-HA to
promote content mixing, and the extent of content mixing
seen with GPI-HA in the presence of 0.4-0.5 mM CPZ
never reaches that seen with WT HA (Melikyan et al.,
1997a). Therefore, we assessed the effects of 0.1 and 0.5
mM CPZ on the ability of A12 HA, NA12 HA, and GPI-
HA to promote content transfer. After binding double-
labeled RBCs (R18 and CF) to HA-expressing cells, fu-
sion was triggered by lowering the pH to 5.0 for 5 min at 37°C.
The medium was reneutralized, and CPZ was added to the
cells at neutral pH. After a 1-min incubation at RT, the

Tablell. Lipid Mixing of WT versus A10 HA

Initial rate
pH HA Lagtime of fusion Final extent
s
5.0 WT 45 1.0 100 = 4
A10 50 1.13 104 £ 1.3
5.25 WT 65 1.01 83*6
A10 70 0.96 83+6
55 WT 80 0.74 71+4
A10 80 0.67 58*+6

Lag time indicates the amount of time before initial spread of R18. Initial rate of fu-
sion isthe change in intensity over time (Al/At) for theinitia risein fluorescence rel-
ative to WT HA at pH 5.0. Final extent is the percent intensity values (= SEM) rela
tiveto WT HA at pH 5.0 at the highest extent of fusion. The data were calculated from
two independent experiments. See Materials and Methods for details.
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Figure 5. Fusion activity: lipid
and content mixing. CV-1 cells
were transfected with the indi-
cated amounts of WT HA
cDNA, 5.0 pg GPI-HA cDNA,
or 7.5 pg mutant HA cDNA.
The cells were prepared as de-
scribed in the legend to Fig. 4
and observed (within 15-30
min) by fluorescence micros-
copy. A10 HA (17-amino acid
TM domain) mediates full fu-
sion, whereas Al12 HA and
NA12 HA (15-amino acid TM
domain) are arrested at hemi-
fusion, as is GPI-HA.

NA12

CPZ solution was replaced with PBS*. The percentage of
R18-stained HA-expressing cells that became labeled with
CF was then determined. In the absence of CPZ, ~1, 7,
and 3% of cells expressing NA12 HA, A12 HA, and GPI-
HA, respectively, received aqueous dye (Fig. 6). The addi-
tion of 0.1 mM CPZ increased content dye transfer to ~5,
8, and 4%, respectively. Addition of 0.5 mM CPZ induced
a greater extent of CF transfer: ~20, 27, and 22%, respec-
tively. Representative images of aqueous dye transfer be-
fore and after the addition of either 0.1 or 0.5 mM CPZ are
shown in Fig. 7. Hence, cells expressing NA12 HA and A12
HA respond similarly to CPZ as do cells expressing GPI-
HA in terms of their ability to promote aqueous dye trans-
fer. The presence of R18 in the RBC membrane augments
the transfer of aqueous contents to GPI-HA-expressing
cells (Markosyan et al., 2000). Therefore, we assessed con-
tent dye transfer from RBCs that were not labeled with
R18. As expected, content dye transfer under these condi-
tions was less than with double-labeled RBCs (data not
shown). Most importantly, A12 HA and NA12 HA still re-
sponded similarly to CPZ as did GPI-HA: a brief treat-
ment with 0.5 but not 0.1 mM CPZ increased content dye
transfer (data not shown).

Membrane Association of A12 HA

Given the striking phenotype of HA lacking 12 amino ac-
ids in the TM domain (lipid, but not content, mixing), we
explored how A12 HA is anchored in the membrane. Like
WT HA, A12 HA (as well as GPI-HA) was resistant to
carbonate extraction (Fig. 8 A). Given that some GPI-
anchored proteins associate with cholesterol and sphingo-
myelin-rich detergent-insoluble membrane fractions (DIGs;
Simons and Ikonen, 1997; Friedrichson and Kurzchalia,
1998; Varma and Mayor, 1998), we examined the solubility
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Figure 6. CPZ induces transfer of aqueous dye (CF) from
RBCs to hemifused NA12, A12, and GPI-HA-expressing cells.
CV-1 cells expressing WT and mutant HAs were prepared as de-
scribed in the legend to Fig. 4, except that fusion was triggered
for 5 min at pH 5.0 and 37°C before reneutralization. After trig-
gering fusion, these cells were exposed to either 0.1 or 0.5 mM
CPZ for 1 min at room temperature. The CPZ solution was re-
placed with PBS* and the cells were observed as above. In con-
trol experiments, virtually all WT HA-expressing cells (0.5 g
WT HA, inset graph) were stained with CF in the absence of
CPZ. Percent content mixing was determined by dividing the
number of cells receiving CF by the number of cells with bound
RBCs. Error bars show the SEM for four to five independent ex-
periments (mean = SEM). Only 0.5 mM CPZ promoted signifi-
cant content dye transfer between labeled RBCs and cells ex-
pressing NA12 HA, A12 HA, and GPI-HA.

of A12 HA and NA12 HA in Triton X-100 at 4°C before
and after treating cells with methyl B-cyclodextrin to re-
move cholesterol (Scheiffele et al., 1997). Proteins that as-
sociate with lipid raft microdomains are often relatively in-
soluble in 1% Triton X-100 in the cold (Simons and
Ikonen, 1997). Cholesterol depletion can increase the sol-
ubility of these proteins in Triton X-100, presumably by
disrupting the raft microdomains (Scheiffele et al., 1997).
Both A12 HA and NA12 HA (data not shown) were
readily solubilized by Triton X-100 at 4°C, suggesting that
they do not associate with DIGs. In contrast, both WT HA
and GPI-HA were partially insoluble in Triton X-100 at
4°C, and depletion of cholesterol appeared to increase
their solubility (Fig. 8 B).

Effect of MBCD on Fusion by A12 HA and NA12 HA

Because of the general interest in glycoprotein localization
to plasma membrane microdomains (Scheiffele et al.,
1997; Hooper, 1999), we asked whether treatment of cells
expressing WT HA, GPI-HA, A12 HA, or NA12 HA with
20 mM MBCD influenced their fusion activity. Treatment
of WT HA, GPI-HA, A12 HA, and NA12 HA-expressing
cells with MBCD did not affect the fusion phenotype. WT
HA still mediated efficient lipid and content dye transfer,
whereas the mutant HAs still demonstrated significant
lipid mixing but little or no content mixing (Fig. 8). Similar
results were obtained using WT HA of the Japan strain
(H2N2; Melikyan et al., 1999).

Figure 7. Effect of CPZ on content mixing. CV-1 cells expressing GPI-HA, NA12, and A12 HA cDNA were processed for fusion with
CF-labeled RBCs in the absence or presence of the indicated amount of CPZ, as described in the legend to Fig. 6. Only 0.5 mM CPZ is

able to promote significant content dye transfer (see Fig. 6).

Armstrong et al. Length Requirement of HA TM Domain for Fusion
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Figure 8. Effect of carbonate extraction and cholesterol depletion on HA TM mutants. (A) Carbonate extraction. Microsomal mem-
branes were prepared, adjusted to pH 11.0, and HA in the supernatant and pellet fractions was prepared, immunoprecipitated with an
anti-HA mAb, and detected as described in Materials and Methods. Processed HA (WT and mutant) was only found in the pellet frac-
tion, indicating that it is not extracted by high pH. (B) Triton X-100 insolubility. CV-1 cells expressing WT or mutant HAs were incu-
bated in the absence (—) or the presence (+) of the cholesterol-depleting reagent MBCD (20 mM) for 30 min at 37°C. HA was prepared
and divided into insoluble and soluble fractions and detected as described in Materials and Methods. The percentage of HA found in
the insoluble fraction in the absence or presence of MBCD was determined. Cholesterol depletion by treatment with MBCD increases
the Triton X-100 solubility of WT HA and GPI-HA, but not of A12 HA (n = 4). (C) Effect of cholesterol depletion on fusion. CV-1
cells expressing WT or mutant HAs were prepared as described in the legend to Fig. 4, depleted of cholesterol as described in B, bound
to labeled RBCs, and triggered for fusion. Cholesterol depletion by treatment with MBCD does not affect the fusion phenotype of WT

HA, GPI-HA, A12 HA, or NA12 HA (see Fig. 5).

Why A12 HA May Cause Lipid, but Not
Content, Mixing

We have considered two general models for why A12 HA
mediates only lipid mixing whereas A10 HA mediates con-
tent mixing as well. In the first model (Fig. 9 A, 1), we con-
sider that A12 HA has recruited specific (e.g., shorter fatty
acyl chain) lipids around it such that it spans a thinned bi-
layer. The lipids in such a thinned bilayer may not be com-
petent to promote the hemifusion to fusion transition. In
the second model, we consider that the TM domain of A12
HA is simply too short to span a bilayer; it may be an-
chored either perpendicularly (Fig. 9 A, 2a), obliquely (Fig.
9 A, 2b), or parallel (Fig. 9 A, 2c) to the membrane normal.
To test between these models, we analyzed a mutant HA in
which we added back the hydrophilic cytoplasmic tail (10
amino acids) to the end of A12 HA. We reasoned that if
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A12 HA spans a thinned bilayer (model 1), addition of the
cytoplasmic tail should not affect its fusion phenotype. If,
however, A12 HA does not span a bilayer (model 2), then
addition of the cytoplasmic tail may force A12 HA to span
a bilayer and it may therefore be able to support full fusion.
As seen in Fig. 10 A, the mutant A12Tail HA clearly pro-
motes full fusion. Next, we tested whether the first residue
of the cytoplasmic tail, an arginine, added to the end of the
A12 HA TM domain, was sufficient to restore full fusion
activity. As seen in Fig. 10 B, A12Arg HA clearly promotes
full fusion.

Additional HA TM Domain Mutants

To ascertain whether we could detect any specific TM do-
main sequences needed for HA to promote full fusion, we
constructed additional point and deletion mutations
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SNAREs

within the HA TM domain (Fig. 11). We mutated the tryp-
tophans (to alanines) within the highly conserved WILW
sequence at the beginning of the HA TM domain. We mu-
tated a serine at position 194, since this residue is the ana-
logue of a glycine implicated as being important for the fu-
sion activity of Japan HA (Melikyan et al., 1999). We also
mutated a glycine at position 204 (singly and in combina-
tion with Ser 194), since glycines near the middle of the
TM domain have been reported to be important for fusion
mediated by the vesicular stomatitis virus envelope glyco-

A A2

A12
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Figure 9. (A) Model of possible interactions be-
tween the Al12 (and NA12) TM domains and
membranes: (1) The truncated TM domains of
A12 and NA12 may span a thinned bilayer; (2a)
the TM domain may project into, but not span,
the bilayer in a perpendicular orientation rela-
tive to the membrane surface; (2b) the TM do-
main may project obliquely into the bilayer; (2c)
the TM domain may be anchored at the surface
parallel to the lipid bilayer. HA is presented as a
monomer for clarification. The TM domain is
depicted as an a-helix, but it may adopt other
structures. (B) Models of HA and SNARE-
mediated hemifusion to fusion transition. Multi-
mers of HA trimers promote hemifusion (mixing
of the outer, but not inner leaflets of the lipid bi-
layer). Subsequent interactions between the fu-
sion peptides (white) and the TM domains (dark
gray), either alone or in concert, with the hemi-
fusion diaphragm may promote full fusion. In
the case of the SNARESs, the TM domains of the
t- (gray) and v-SNARE (black) may perform
analogous functions.

protein (VSV G; Cleverley and Lenard, 1998). We also de-
leted six or eight amino acids at different locations within
the TM domain. All mutants were examined for expres-
sion at the cell surface, for their ability to be cleaved by
trypsin into HA1 and HA2, for RBC binding, and for fu-
sion (both lipid and content mixing). Most of the mutants
were also examined for trimer formation and the pH de-
pendence of the conformation change (Table III). As seen
in Table III, by all of the criteria examined, these addi-
tional mutants in the HA TM domain behaved virtually

A12Tail

Figure 10. Addition of the cy-
toplasmic tail or a single argi-
nine to A12 HA restores fusion.
CV-1 cells transfected with 0.5
ng WT, 75 pg Al12, 5.0 pg
Al12Tail, and 5.0 pg Al2Arg
were prepared for fusion as de-
scribed in Materials and Meth-
ods. Fusion was triggered at pH
5.0 for 2 min at 37°C. Images
presented in A and B are from
separate experiments. A12Tail
and A12Arg were expressed at
the cell surface at levels compa-
rable to that using 0.5 pg WT
HA cDNA. The COOH-termi-
nal sequences of A10, Al1, A12,
and A12Arg HA mutants are:
A10 WILWISFAISCFLLCVV
All WILWISFAISCFLLCV
Al12 WILWISFAISCFLLC
Al2Arg WILWISFAISCFLLCR.

433
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TableIll. Summary of Results: Effects of Point Mutations and

WTHA | — L Additional Deletionsin the HA TM Domain
[ ALNNRFOIKGVELKSGYKD] W ILW ISFA ISCFLLCVVLLGF IMWACQ | RGNIRCNICI | Percentage Trypsn RBC  Lipid Content
e b HA mutants of cells  FU Trimer cleavage binding mixing mixing ConfA
e N312

W185A HA [A ILW ISFAISCFLLOVVLLGFIMWACQ | RGNIRCNICI % pH
W188A HA | WILA SFAISCFLLCWLLGFIMWAC [RGNIRCNIC! | W185A 76 299 ND + ++ ++ ++ ND
W185/188A HA [A ILAISFAISCFLLGVVLLGFIMWACQ | RGNIRCNICI | W188A 50 270 ND + ++ ++ ++ ND
Point S194A Ha | WILWISFAI ACFLLCVVLLGFIMWACQ | RGNIRCNICI W185A/ 62 137 + + ++ ++ ++ 50

Mutants $194L HA [ WILWISFA| LCFLLGVVLLGFIMWACQ | RGNIRCNIC | W188A
G204A HA [ WILWISFAISCFLLCVVLL AFIMWACQ [ RGNIRCNICI | S194A 68 204 ND + ++ ++ ++ ND
G204L HA | WILWISFAISCFLLCVVLL L FIMWACQ | RGNIRGNICI | S194L 66 213+ + ++ ++ ++ 50
$194L/G204L HA [ WILWISFAI LCFLLCVVLL LFIMWACG |RGNIRGNICI | S194L/ 49 130 ND + ++ ++ ++ ND

- G204L

NABHA [ - FA Y EOPLLONYE GREAVACY G204A 2 224 ND + ++ ++ ++ ND
Deiations NABAZ HA | voe - FA | SCFLLCVVLLGFIMWA, . . G204L 79 337 + + T+ Tt Tt 5.0
e MIDAS HA | WILWISFAIS ... VLLGFIMWACA | NAG 38 152 + I T T - 50
MIDAB HA | WILWISFAIS ... LGFIMWACQ NAGA2 58 87 4+ + . . ++ 50
MidA6 30 145 + + 4+ ++ ++ 50
Figure 11. Additional TM domain deletion and point mutants. MidA8 46 179 + + ++ ++ ++ 50

Line diagram of the HA gene. In detail is the region surrounding
the HA TM domain (gray box). Point mutations were made in
the context of full-length HA and are indicated in large font. De-
letion mutations were made in the context of tail~ HA and are in-
dicated as spaces. A10, A12, and NA12 HA are included as a ref-
erence.

the same as WT HA. Most importantly, all of the 12 addi-
tional HA TM domain mutants exhibited efficient lipid
and efficient content mixing.

Discussion

Cells expressing the ectodomain of HA linked to the
membrane via a GPI anchor (GPI-HA) promote lipid, but
not content, mixing (Kemble et al., 1994). The behavior of
GPI-HA indicates that the HA TM domain, which is pre-
dicted to be 27 amino acids in length, plays an important
role in the hemifusion to fusion transition. In this study,
we tested whether there is a length or sequence require-
ment for the TM domain to facilitate this important step in
the fusion cascade. To do this, we first engineered stop
codons into the TM domain, generating mutant HAs with
sequential 2—amino acid deletions from the COOH-termi-
nal end (up to 14 amino acids). We also engineered mutant
HAs lacking 6 or 12 amino acids from the NH,-terminal
end, mutants lacking 6 or 8 amino acids from the central
region, and a mutant lacking 11 amino acids from the
COOH-terminal end. These HA mutants lacked the cyto-
plasmic tail, which has been shown to be dispensable for
fusion (Jin et al., 1994; Melikyan et al., 1997b). We also
made eight site-specific point mutations within the TM do-
main of full-length HA. With the exception of A14, which
did not reach the cell surface (data not shown), all of the
mutant HAs possessed biochemical properties similar to
WT HA (Tables I and III). In terms of membrane fusion,
all HAs studied with =17 amino acids in their TM do-
mains were able to efficiently mediate full fusion (both
lipid and content mixing). In contrast, HAs with 15 or 16—
amino acid TM domains (and no cytoplasmic tail) medi-
ated robust lipid mixing, but were either severely impaired
(16—amino acid TM domain) or virtually unable (15—
amino acid TM domain) to mediate content mixing. All of
the point mutants examined efficiently promoted full fu-
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Percentage of cells indicates the expression efficiency (SEM = +9). Fluorescence
units (FU) indicates the mean fluorescence as detected by FACS® analysis (SEM =
+24). ND, not done.

sion. Our findings suggest that there is a stringent length
requirement, 17 amino acids, for the HA TM domain to be
able to support the hemifusion to fusion transition. Addi-
tional experiments (see below) suggested that the HA TM
domain must span its bilayer to properly execute the fu-
sion reaction.

Al12 HA and NA12 HA Mediate Hemifusion

Hemifusion is functionally defined as the merger of the
outer, but not the inner, leaflets of the fusing bilayers, such
that aqueous continuity is not established. Many investiga-
tors have proposed that biological fusion events proceed
through a hemifusion intermediate (Palade, 1975; Pinto da
Silva and Nogueira, 1977; Kalderon and Gilula, 1979; Lucy
and Ahkong, 1986; Chernomordik et al., 1987; Nanavati et
al., 1992).

Studies with GPI-HA indicate that progression to a fu-
sion pore, as monitored by the transfer of small content
dyes, does not occur when GPI-HA-expressing cells are
induced to fuse with RBCs (Kemble et al., 1994; Melikyan
et al., 1995b; Nussler et al., 1997). Combinations of dye
transfer and electrophysiological assays also indicated that
GPI-HA does not induce fusion pores in planar mem-
branes (Melikyan et al., 1995b; Razinkov et al., 1999).
However, more recent electrophysiological studies indi-
cate that under certain conditions (e.g., pH 4.8 with mem-
brane-labeled RBCs), GPI-HA can induce fusion pores
during fusion with RBCs, but that these pores occur less
frequently than with WT HA, never enlarge, and are
strongly influenced by the presence of lipid dyes in the tar-
get membrane (Markosyan et al., 2000). These observa-
tions indicate that the TM domain is required for efficient
fusion pore initiation and for fusion pore enlargement
(Markosyan et al., 2000). In the present study, we found
that two mutant HAs, A12 HA and NA12 HA, are severely
restricted in their ability to mediate mixing of a 376-mol
wt content dye, CF. Since the level of CF mixing seen with
A12 HA and NA12 HA is similar to that seen with GPI-
HA (Fig. 6 B), it is likely that A12 HA and NA12 HA are
unable to efficiently promote the hemifusion to fusion
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transition and are unable to support pore enlargement.
Additional evidence that A12 HA and NA12 HA are
blocked at the stage of hemifusion, and not at stunted fu-
sion, is that 0.5 mM CPZ is required to induce appreciable
content dye transfer (Fig. 6), as has been seen with GPI-
HA (Melikyan et al., 1997a). We propose that A12 HA
and NA12 HA are protein mimetics of GPI-HA.

Length Requirement of the HA TM Domain

We have uncovered a surprisingly stringent length re-
quirement for the HA TM domain to be able to (effi-
ciently) promote the hemifusion to fusion transition. HAs
harboring a 17-amino acid (predicted) TM domain pro-
mote full fusion, whereas an HA with a 16-amino acid
(predicted) TM domain is severely impaired in promoting
full fusion and HAs with 15-amino acid (predicted) TM
domains appear to arrest at hemifusion.

The finding that there is a stringent length requirement
of 17 amino acids for the HA TM domain to efficiently
promote the hemifusion to fusion transition suggests that
HAs with TM domains =17 amino acids are anchored dif-
ferently in the bilayer than fusion-impaired HAs that have
shorter TM domains (=16 amino acids). Using a synthetic
peptide representing the transmembrane segment of X:31
HA, Tatulian and Tamm (1999) have recently shown that
the WT HA TM domain (27-amino acid predicted) spans
DMPC/DMPG bilayers as an a-helix that aligns roughly
perpendicular to the bilayer normal. As discussed in Re-
sults (with reference to Fig. 9 A), we have considered two
general models for how the fusion-defective TM domain
mutants (with TM domains =16 amino acids) are an-
chored in the bilayer. The first (Fig. 9 A, 1) envisions that
the short (=16 amino acids) TM domains are aligned like
the WT HA TM domain (as a perpendicular a-helix), but
to span the bilayer, they have had to recruit specific lipids
(e.g., with short fatty acyl tails) around them. Such lipids
may not be able to adopt the necessary curvature to allow
fusion to progress beyond hemifusion (Melikyan et al.,
1997a; Chernomordik et al., 1998). The second general
model proposes that the fusion-incompetent TM domains
(=16 amino acids) cannot span the bilayer (Fig. 9 A, 2a,
2b, and 2c). Our finding that addition of the hydrophilic
10—-amino acid cytoplasmic tail sequence to a TM domain
of 15 hydrophobic amino acids generated an HA that effi-
ciently promotes full fusion (Fig. 10 A) supports the latter
model (Fig. 9 A, 2), as it suggests that the addition of these
hydrophilic residues has forced the 15-amino acid TM do-
main to span the bilayer. Even more striking is the finding
that addition of a single arginine to a 15 amino acid TM
domain generated an HA that promotes full fusion (Fig.
10 B). We propose that addition of one or more hydro-
philic residues forced the 15 amino acid TM domain to
span the bilayer. The need for a hydrophilic residue fol-
lowing a 15 amino acid TM domain is underscored by
comparing A1l HA and A12Arg HA (see Figs. 4 and 10,
legend). Collectively, these findings support a model in
which the HA TM domain must span a bilayer to effi-
ciently promote full fusion.

Why might it be necessary for the HA TM domain to
span its bilayer to efficiently promote fusion? One possibil-
ity is based on the concept that the TM domain of HA
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plays an important role in disrupting the lipid bilayer dur-
ing fusion (Melikyan et al., 1995b; Tatulian and Tamm,
1999). Since bilayer disruption by transmembrane peptides
critically depends on the extent of matching between the
peptide length and the bilayer thickness (Killian et al.,
1996; van Der Wel et al., 2000), aberrant insertion of the
short TM domains (Fig. 9 A, 2a, 2b, and 2c) may cause
them to be incapable of disrupting the bilayer of the hemi-
fusion diaphragm (Fig. 9 B, top). Another possibility is that
the TM domain of HA must apply tension to the hemifu-
sion diaphragm to efficiently promote pore formation. If
the short fusion-incompetent TM domains do not span the
bilayer, they may be unable to provide the needed tension.
And finally, the short TM domains may not be able to
adopt a-helical structures that may be required for specific
protein-lipid or protein—protein (e.g., TM domain-TM do-
main or TM domain—fusion peptide) interactions that are
required for progression to full fusion. Future biophysical
experiments will address how the short fusion-incompetent
TM domains are oriented in a bilayer.

Sequence Requirements of the HA TM Domain

We also asked whether we could identify any specific resi-
dues within the HA TM domain that are required to pro-
mote the hemifusion to fusion transition. During analysis
of four additional truncation mutants (of six or eight
amino acids) and eight point mutants at different locations
in the TM domain (Table IIT), we were unable to uncover
any specific sequence requirement for fusion. In particu-
lar, two highly conserved tryptophan residues within the
WILW motif at the NH,-terminal end of the TM domain,
which appear to be important for targeting HA to the api-
cal surface of epithelial cells (Scheiffele et al., 1997; Lin et
al., 1998), do not appear to be required for fusion. We also
examined the requirement for fusion of particular residues
within the interior of the HA TM domain based on two re-
ports concerning the role of glycine residues within the
TM domain of viral fusion proteins. Cleverley and Lenard
(1998) suggested the importance of glycine residues within
the TM domain of VSV G. Substitution of both glycine
residues within the TM domain of VSV G was reported to
result in a hemifusion phenotype (Cleverley and Lenard,
1998). Furthermore, a study using Japan HA, which con-
tains two glycine residues within the TM domain, demon-
strated that mutation of the more NH,-terminal glycine to
a leucine (G520L HA) caused a restricted hemifusion phe-
notype (no pore formation and no transfer of lipid or con-
tent dye; Melikyan et al., 1999). We have made the equiva-
lent mutations within the TM domain of X:31 HA (Table
III). Our results suggest that neither a serine residue at po-
sition 194 (the analogue of G520 in Japan HA) nor a gly-
cine residue at position 204, either individually or jointly,
is necessary for fusion (Table IIT).

If one models the WT HA TM domain as an «-helix,
there is a short face of four polar residues (two cysteines
and two serines). However, several of our mutant HAs
disrupt this motif (i.e., leave only two polar residues), but
do not impair fusion. Hence, although we cannot exclude
the possibility that there may be a sequence motif that is
important for the X:31 HA TM domain to promote the
hemifusion to fusion transition, we have not found such a
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motif. The differences we observe in the sequence require-
ments for fusion with X:31 HA (H3N2 subtype) and that
reported for Japan HA (H2N2 subtype) may be due to dif-
ferences in the subtype of HA or the techniques used.

Possible Parallel Roles for the Fusion Peptide and the
TM Domain in the Hemifusion to Fusion Transition

Four indirect lines of evidence suggest that although they
have different net hydrophobicities, the HA fusion pep-
tide and the HA TM domain may play parallel roles in the
hemifusion to fusion transition. First, we have recently
demonstrated that replacement of the glycine at the first
position of the HA fusion peptide with a serine (Ser HA)
arrests HA fusion at the hemifusion stage (Qiao et al.,
1999). Second, recent work using synthetic peptides corre-
sponding to the fusion peptide and the TM domain indi-
cates that these two peptides have similar effects on syn-
thetic bilayers (Han et al., 1999; Tatulian and Tamm,
1999). Both domains appear to order their respective lipid
environments, thus decreasing the amount of water bound
at the water-bilayer interface as well as increasing the sur-
face hydrophobicity. A third line of evidence that the fu-
sion peptide and the TM domain may be playing parallel
roles in breaking the hemifusion diaphragm is the observa-
tion that in the lowest energy state of the protein, the fu-
sion peptide and the TM domain are predicted to be very
closely opposed (Chen et al., 1999). A fourth line of indi-
rect evidence is that studies on the topology of synthetic
versions of the HA fusion peptide as well as studies with
HAs s containing mutations in the fusion peptide are consis-
tent with the notion that the first 18 residues of the fusion
peptide embed in the target bilayer and are important for
fusion (Gray et al., 1996; Macosko et al., 1997; Danieli, T.,
and J.M. White, unpublished data). Hence, the two mem-
brane-interactive domains of HA may have similar length
requirements (~17 amino acids) to efficiently promote full
fusion.

Sequence Requirements of the TM Domains of Other
Viral Fusion Proteins

We have not observed any specific sequence requirements
within the X:31 HA TM domain for full fusion. However,
other investigators have suggested that there are specific
sequence requirements for fusion within the TM domain
of other viral fusion proteins. As discussed above, specific
TM domain sequence requirements have been suggested
for the VSV G glycoprotein (Cleverley and Lenard, 1998)
and the HA from the Japan strain of influenza (Melikyan,
et al., 1999). In addition, mutation of a specific proline res-
idue within the Moloney murine leukemia virus envelope
glycoprotein, to either alanine, glycine, or valine, dimin-
ished syncytia formation (Taylor and Sanders, 1999). Fi-
nally, mutation of a conserved arginine residue to leucine
within the TM domain of the HIV gp160 eliminated HIV-1
envelope-mediated syncytia formation (Owens et al.,
1994). These findings suggest that for some viral fusion
proteins, specific TM domain sequences may be important
for fusion. Even for cases where there are specific se-
quence requirements, we propose that the length of the
TM domain will be a critical determinant of fusion for all
viral fusion proteins.
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Possible Relevance to SNARE-mediated Fusion

Recent structural and biochemical data indicate that the
SNARE (soluble N-ethylmaleimide—sensitive factor [NSF]
attachment protein receptor) complexes, key players in in-
tracellular fusion events, share similarities with many viral
fusion proteins (Hanson et al., 1997; Hohl et al., 1998; Poir-
ier et al., 1998; Skehel and Wiley, 1998; Sutton et al., 1998).
Formation of a “SNAREpin” structure consisting of a
four-helix coiled coil domain is thought to force the fusing
membranes together (Katz et al., 1998; Weber et al., 1998).
The v- and t-SNARE proteins are each anchored into their
respective membranes by a TM domain (21-24 residues in
length; Fig 9 B, bottom). It may therefore be the case that
the TM domain of one SNARE performs a function simi-
lar to that of the viral fusion peptide while the TM domain
of the other SNARE acts in an manner equivalent to the
TM domain of the viral fusion protein (Fig. 9 B). There-
fore the length of SNARE TM domain anchors may be a
critical determinant of fusion. Recent evidence suggests
that this may indeed be the case. An analysis of the behav-
ior of Caenorhabditis elegans mutants has suggested that
the TM domain of the t-SNARE, unc-64, must span its bi-
layer to function properly (Saifee et al., 1998). And, very
recently McNew et al., using lipid anchors of varying
length, provided evidence that the TM domain of the
v-SNARE must be anchored in both bilayer leaflets to
promote fusion (in this case, lipid mixing; McNew et al.,
2000). Hence, it seems likely that the length of the TM do-
mains of both viral fusion proteins and SNARESs will be an
important determinant of fusion, and in some cases, of the
hemifusion to fusion transition (Fig. 9 B).
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