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S u m m a r y  

The present study examined self-tolerance for T cell receptor (TCIL)cil3 intestinal intraepithe- 
lial lymphocytes (ilELs) using the 2C transgenic (Tg) mouse model specific for a peptide anti- 
gen (Ag) presented by the class I major histocompatibility complex H-2L d. Although Tg + T 
cells were largely deleted from the periphery of Ag + mice, equivalent numbers of  Tg ilELs 
were present in Ag + compared to Ag- mice. Tg ilELs in Ag- mice contained CD8otl3, CD8otot, 
and CD4-CD8-  subsets, whereas only CD8ota and CD4-CD8-  Tg ilEL subsets were detected 
in Ag + mice. Analysis of surface markers revealed that Tg ilELs in Ag § mice expressed de- 
creased levels of Thy-1 and increased CD45tL/B220 as compared to Ag- Tg ilELs, In response 
to activation with exogenous peptide or immobilized anti-TCiL mAb, ilELs from Ag- mice 
proliferated at high levels and produced interleukin (IL)-2 and interferon (IFN)-~/, while Tg + 
ilELs from Ag + mice proliferated at low levels and failed to produce detectable IL-2 or IFN-',/. 
Activation of  sorted ilEL subsets from Ag- mice revealed that CD8otel and CD 4 -C D8-  sub- 
sets produced low levels of IL-2 and IFN-~/in response to activation with antigen-presenting 
cells and added peptide or immobilized anti-TCR mAb, while CD8ot[3 + ilELs responded to 
endogenous levels of peptide. In response to APC and exogenous peptide, sorted ilEL subsets 
from Ag + mice produced IL-2 and IFN-~/, and proliferated at greatly reduced levels compared 
to corresponding subsets from Ag- mice. Analysis of cytokine mR.NA levels revealed that acti- 
vation in vitro induced IL-2 mtLNA only in Ag-, but not Ag + ilELs, whereas a high level of  
IL-4 mKNA induction was detected in Tg § ilELs from Ag + mice, and to a lesser degree, from 
Ag- mice. These data suggest that tolerance for Tg + ilELs resulted in the deletion of CD8c~13 + 
subsets and the persistence of Tg § ilEL subsets with decreased sensitivity to endogenous levels 
of self-peptide. A comparison of  the cytokine profiles expressed by Tg + ilEL subsets in Ag- 
and Ag + mice suggested that tolerance induction had involved the functional deviation of cells 
from TC1 (T helper-l-like) to a less inflammatory TC2 (T helper-2-1ike) phenotype capable 
of mediating humoral immune responses in the mucosa. 

T he mucosal immune system provides the first line of 
defense for the elimination of enteric pathogens. It is, 

therefore, essential that a vigorous immune response be de- 
livered at the mucosal surface to combat infectious agents. 
To maintain protective immunity at the mucosal surface, T 
lymphocytes and antibodies are potent and prearmed. For 
example, intestinal intraepithelial lymphocytes (ilELs) 1 ex- 
pressing o~13 or ~/8 TCtLs exhibit spontaneous cytolytic ac- 
tivity against infected target cells (1-3). TCR0tl3 ilELs also 

1 Abbreviations used in this paper: HPRT, hypoxanthine-guanine phophori- 
bosyltransferase; ilEL, intestinal intraepithelial lymphocyte; PLN, periph- 
eral lymph node; Tg, transgenic. 

display a diverse T C R  repertoire capable of recognizing a 
broad array of foreign peptides in an MHC-restricted fash- 
ion (4-6). In addition, TCR~/8 ilELs recognize, in part, a 
unique set of antigens as whole proteins in an MHC-inde-  
pendent manner (7-10). These findings suggest that the 
mucosal immune system exists in a dynamic state of  activa- 
tion prepared for the constant assault of pathogens. How- 
ever, exposure of  the mucosal immune system to antigenic 
stimuli may induce dysfunctional levels of inflammation, as 
seen in inflammatory bowel disease. Therefore, the control 
of lymphocyte reactivity is essential. 

Studies by our laboratory (11) and others (12-14) have 
suggested that tolerance of  ilELs to self-Ag in the mucosal 
system may be regulated differently from T cells in periph- 
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eral lymphoid tissue. Previously, we used a T C R y 8  trans- 
genic mouse (G8) specific for a nonclassical class I mole-  
cule, H-2T10  b, to show that transgenic (Tg) ilELs in Ag + 
mice were present but functionally tolerant, as evidenced 
by a decrease in proliferation and IL-2 production (15). 
Transgenic T C R y 8  ilELs resident in Ag + mice expressed 
distinct surface phenotypes compared to Tg ilELs from 
syngeneic mice (11). The Tg ilELs in Ag + mice expressed 
decreased levels o f  Thy-1 and increased levels o f  C D 4 5 R /  
B220, as compared to ilELs in As -  mice. Results from 
other models where tolerance of  TCRoLI3 ilELs was exam- 
ined confirmed that, although thymic deletion predomi- 
nated in peripheral lymphoid tissue o f  As-bearing hosts, 
nondeletional mechanisms operated to allow persistence o f  
potentially self-reactive T C R  ilEL populations. In mice 
expressing the Mls-1 a and M M T V  Ass, V~6-, V138.1-, and 
VI311-expressing lymph node and splenic T ceils were de- 
leted intrathymically. Potentially reactive Vl3-bearing ilELs 
persisted in these same mice (13, 14). Likewise, ilELs ex- 
pressing self-reactive T C R  were detected in male H-Y  
T C R  Tg mice (12). In Ag + male H-Y  mice, CDSoLe~ and 
CD4+CD8 + self-reactive ilELs persisted, while reactive 
CD4 + and CDSotI3 ilELs were deleted. In addition, results 
suggested that potentially self-reactive ilELs that persisted 
in these models were functionally unresponsive to activat- 
ing stimuli. These studies raised the issue o f  whether ilEL 
subsets in Ag + mice were unresponsive because o f  antigen- 
induced tolerance or developmental immaturity (16-18). 

In the present study, we used the 2C T C R  Tg mouse 
strain to investigate the tolerizing effects o f  a ubiquitously 
expressed class I M H C  antigen on peripheral and intraepi- 
thelial T cells. The 2C Tg  mouse strain was derived from a 
CD8 + T cell clone positively selected by the class I M H C  
protein, H-2K b, and specific for a H-2Ld-restricted self- 
peptide derived from cx-ketoglutarate dehydrogenase pro- 
tein (19, 20). The use o f  the 2C T C R  Tg system provided 
several advantages: (a) a TCR-specific mAb, 1B2, was 
available for monitoring Tg + T cells (21); (b) the T cell 
clonotype was derived from a CD8 + clone, a phenotype 
expressed by a large percentage o f  ilELs; and (c), the pep- 
tide sequence was defined, and unlike the H-Y  Ag (the tar- 
get o f T C R  Tg mice used in previous studies), the cx-keto- 
glutarate dehydrogenase protein is expressed ubiquitously 
in the gut (20, 22). 

The present studies demonstrate that 2C A s -  (H-2 u) 
mice develop large numbers o f T g  + C D 4 - C D 8 - ,  CD8oq3, 
and CD80te~ ilEL. In contrast, the Tg + CD80r ilEL were 
deleted in Ag + (H-2 u/d) mice. In addition, the presence 
o f  Ag affected functional responses o f  C D 4 - C D 8 -  and 
CD8c~0~ H-2 u/d ilELs, as reflected by proliferation, cyto- 
kine production, and expression of  surface activation mark- 
ers, suggesting that Tg ilELs had undergone immune devi- 
ation in Ag + hosts rather than persisting as functionally 
immature subsets. In fact, Tg ilELs residing in Ag + mice 
expressed an activated, IL-4--producing, TC2-1ike pheno-  
type as, described by Mosmann and colleagues (23). Thus, 
tolerance ofilELs in the 2C Tg model involved deletion o f  
CD8~x[3 + Tg T cells in the periphery and intestine. For 

C D 4 - C D 8 -  and CD8otot-expressing ilEL subsets, toler- 
ance involved functional differentiation to less inflamma- 
tory cell types capable o f  participating in local humoral im- 
mune responses. 

Materials and Methods  
Mice. Adult H-2 b and H-2 b/~ Tg mice (As- and Ag ~, respec- 

tively) were generated by breeding a 2C Tg + H-2 b male (a gift 
from Dr. Dennis Loh, Nippon Research Center, Kanagawa, Ja- 
pan) to either C57BL/10 or BALB/c females obtained from the 
National Cancer Institute (Frederick, MD) animal stock. Animals 
were raised under specific pathogen-free conditions in the Veter- 
ans Administration Lakeside Medical Center, Medical Science 
Building. 

Culture Medium. Culture medium consisted of DME, 10 n~Vl 
Hepes, 5% FCS, 2-ME, glutamine, antibiotics, and nonessential 
amino acids, as previously described (24). 

Cell Isolation. Inguinal, axillary, and mesenteric LN cells were 
mechanically disassociated and fat was eliminated by passage of 
the cell suspensions through a nylon mesh. Cells suspensions were 
washed, pelleted, and resuspended in 5% DMEM and stored on 
ice. Intestines were removed from 6-8-wk old mice, and ilELs 
were isolated as described previously (24), with minor modifica- 
tions. Briefly, small intestines were removed and flushed with 
cold PBS. Intestines were opened longitudinally and cut into 1-cm 
pieces. After muhiple rinses with cold PBS and brief vortexing, 
the pieces were resuspended in 50 ml digestion buffer containing 
10% newborn calf serum (GIBCO BILL, Gaithersburg, MD), 0.3 
rag/nil dithioerythritol (GIBCO BILL), with 5 mM EDTA in 
PBS. Pieces, suspended in this buffer, were gently agitated at 40- 
50 rpm in a closed 75-ml digestion flask (Fisher Scientific, Itasca, 
IL) with a stir bar at 37~ for 40 rain. Pieces were washed with 
cold PBS, and the supernatant was collected and pelleted. Pellets 
were resuspended in 5% DMEM and kept at 4~ overnight. The 
cells were resuspended in 50% Percoll (Pharmacia, Piscataway, 
NJ) and 0.3 mg/ml DTT, layered onto a discontinuous Percoll 
gradient (75% density), and centrifuged for 20 min at 20~ at 400 
• g. The cells concentrated at the interface of the 50 and 75% 
layers, and were then pipetted off and washed in 4 vol of PBS. 
The purity of Tg ilELs within preps was assessed by flow cytom- 
etry on the basis of forward angle and 90 ~ light scatter, as well as 
using the fluorochrome-coupled Tg clonotypic mAb, 1B2. 

Antibodies, Three-color Immunofluorescence, and Immunofluorescena" 
Anal)sis. The following mAbs coupled to FITC, PE, or biotin 
were used: anti-Thy-1, anti-CD8~x, anti-CD8[3, anti-CD45iL/ 
B220, and anti-CD44 (Pharmingen, San Diego, CA) and 1B2 (a 
gift from Dr. Dennis Loh) (21). Biotin-labeled Abs were followed 
by streptavidin-CyChrome or streptavidin-PE (Pharmingen). 
Dead cells were excluded from analysis on the basis of forward 
and side angle scatter, and in some cases, by propidium iodide 
(Sigma Chemical Co., St. Louis, MO). Approximately 5 • 105 
cells were stained per sample for 20 min with a concentration of 
mAb titered to maximize specific staining and limit background. 
A total of 10,000 gated events were collected for analysis. Acqui- 
sition of FCM data was perfomaed on a FACScan | (Becton 
Dickinson & Co., Mountain View, CA), and cell sorting was 
performed on a FACStarPlus | (Becton Dickinson). Data were 
analyzed using the CellQuest program (Becton Dickinson). To 
purify CD8cq3, CD8cto~, and CD4-CD8-  IEL subsets, cells were 
simultaneously stained with 1B2-FITC, anti-CD8oL-PE, and 
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anti-CD813-biotin, and counterstained by streptavidin-CyChrome. 
This sorting resulted in > 9 8 %  pure subsets (data not  shown). 

Proliferation Assays. Isolated iIELs or LN cells were cocul- 
tured in triplicate with  splenic APC. For each condition, 3 X 10 s 
irradiated, ant i -Thy-1  mAb (AT83A, a gift from Dr. F. Fitch, 
University of  Chicago, Chicago, IL) plus C ' - t rea ted  splenic APC 
from H-2  b or H-2  a mice were cocultured with 10 s responder Tg 
iIELs or LN T cells in 96-well round-bo t tomed  microtiter plates 
in triplicate. In some experiments, T cells were stimulated with 
immobilized 1B2 mAb coated overnight on the microtiter wells 
at 4~ with the mAb. Coated wells were washed three times with 

PBS before use. Exogenous p2Ca peptide was added to some ex- 
periments using H-2  a APC. The  p2Ca peptide sequence used was 
LSPFPFDL (19, 20) (Bio-Synthesis, Lewisville, TX). Exogenous 
human  rlL-2 (50 U / m l ;  Genzyme, Cambridge, MA) was added 
when  indicated on  day 1 of  culture. At 48 h, cultures were pulsed 
for 18 h with [3H]thymidine (1 IxCi/well). Cells were harvested 
and analyzed with a liquid scintillation counter  (Packard Instru- 
ment  Co., Meriden,  CT). 

Lymphokine Assays. Isolated ilELs and LN cells were isolated 
and cultured in 96-weU plates, as described above. After 48 h, su- 
pematants were harvested and analyzed for IL-2, IL-4, and IFN-% 
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Figure 1. Transgenic T cell 
subsets in 2C mice. Peripheral 
and ilEL populations were ana- 
lyzed by FCM for Tg TCIL (1B2) 
expression vs. CD8(x (A-D), gat- 
ing on all lymphocytes by stan- 
dard forward- and side-scatter 
values. To assess CD8ct vs. CD813 
expression by Tg cells (E-H), 
cells stained with anti-CD8ct-PE 
(y-axis), 1B2-FITC and anti- 
CD813-biotin followed by strepta- 
vidin-CyChrome were gated for 
1B2-FITC-posidve cells. Quad- 
rants were determined on the basis 
of control staining and percent- 
ages of positively stained cells in 
each quadrant are shown. 



using murine cytokine ELISA MiniKits (Endogen, Cambridge, 
MA). The sensitivity of these ELISAs were as follows: > 10 pg/ml 
for IL-2, >10 pg/ml for IL-4, and >100 pg/ml for IFN-~/. 

Competitive Reverse Transcription (RT-PCR). Total ILNA from 
10-20 • 104 ilEL/sample was extracted in TiLIzol according to 
the manufacturer's directions (GIBCO BILL). Reverse transcrip- 
tion was performed using murine Moloney leukemia virus re- 
verse transcriptase (GIBCO BILL) and oligo dT primers (GIBCO 
BILL) as described (25). Qualitative PCIL (Q-PCR) was per- 
formed using a multiple cytokine-containing competitor con- 
struct (PQR.S) as described previously (25). Briefly, aliquots of 
cDNA were assayed for levels of a constitutively expressed 
miLNA, hypoxanthine-guanine phosphoribosyltransferase (HPILT), 
by using a range of concentrations of the PQILS mimic and a 
constant dilution of 1/100 of the cDNA samples. After gauging 
the relative concentration of the experimental cDNA for HPR.T 
by comparing with the competitor band intensity range, experi- 
mental samples of cDNA dilutions were adjusted to yield the 
equivalent of 50 fg/reaction. For assessment of cytokine miLNA, 
parallel samples were diluted based on relative levels of HPILT. 
The competitor PQILS cDNA was kept constant at 20 fg/reac- 

tion. Amplification products were separated on a 2.0% ethidium 
bromide-stained agarose gel. Imaging of the gels was performed 
using an Eagle Eye II imager (Stratagene, La Jolla, CA) and 
Adobe Photoshop software. 

Results 

Phenotype of Tg ilELs in Syngeneic and Ag-bearing Mice. 
The distribution and surface phenotype  o f  T cells in A g -  
and Ag § mice was examined to determine the effect ofself-  
Ag on the development  and activation state o f  Tg + T cells. 
Consistent with previous reports (26-28), the results in Fig. 
1 indicate that Tg + T cells populated the peripheral LN 
(PLN) in high numbers and expressed the CD8c~[3 het-  
erodimer  on a majority o f  the Tg T cells (Fig. 1, A and E). 
Total  CD4  + PLN and ilEL T cells were < 2 %  of  Tg + cells 
in H-2  b and H-2  b/d mice (data not  shown). Similar popula-  
tions were observed for Tg + ilELs in H-2  b (Ag-)  mice. 
The largest subset o f T g  + ilELs in A g -  mice were CD8e~[3. 
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Figure 2. Differential expression of Thy-1 by LN and ilEL in Ag- and Ag + Tg mice. LN and ilEL cells were gated on the basis ofTg TCR expression 
using 1B2-FITC, and the results for staining with anti-Thy-l-PE are shown. Control staining with an irrelevant rat-PE mAb is indicated by the dotted line. 
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The remaining ilELs were either CD8cxcx (36%) or CD4-  
CD8-  (16%) (Fig. 1 F-). By comparison, CD8cx[3 + Tg T cells 
in the periphery and intestines of  Ag + mice were deleted. 
In PLNs, deletion of CD8et[3 + Tg T cells correlated with 
an overall decrease in Tg + T cell yields. The few Tg + 
T cells remaining in PLNs were either CD8otet or CD4-  
CD8-  (Fig. 1, C and G). In contrast to PLNs, there was no 
decrease in Tg + T cell yield from the intestinal epithelial 
compartment of  Ag + compared to Ag- mice (data not 
shown). Although the CD8et~ Tg ilELs were absent in 
Ag + mice, a compensatory increase in the percentages and 
absolute numbers of  CD4-CD8-  and CD8etoL ilELs were 
observed (Fig. 1, D and H). 

Previous results from the G8 TCR~/8 Tg model sug- 
gested that Thy-1 downregulation and CD45R/B220 up- 
regulation correlated with tolerance for Tg + ilELs (2, 11). 
Similarly, Tg + ilELs isolated from 2C Ag + Tg § mice ex- 

pressed decreased levels of Thy-1 (Fig. 2). The pattern of 
Thy-1 expression did not differ between CD8oLet and 
CD4-CD8-  subsets in Ag + mice (data not shown). In con- 
trast, Thy-1 was expressed at uniformly high levels on Tg + 
PLN and ilEL from Ag- mice (Fig. 2), as well as the few 
remaining Tg + PLN T cells in Ag-bearing mice (Fig. 2). 
Thus, the presence of Ag in 2C mice correlated with re- 
duced levels of  Thy-1 expression on Tg + ilELs, but normal 
Thy-1 expression on residual PLN Tg + T cells. 

It has been suggested by others (14, 29, 30) that ilELs 
expressing low levels of  Thy-1 represent an immature pop- 
ulation. Thus, one interpretation of the Thy-1 staining of 
Tg + ilELs in Ag + mice was that these cells were an imma- 
ture population ofilELs incapable of  responding to Ag. An 
alternative explanation was that the cells had been exposed 
to Ag and had downregulated Thy-1. In addition to Thy-1 
modulation upon exposure to Ag, several systems have 
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shown that the expression of  C D 4 5 R / B 2 2 0  on T cells cor- 
relates with the degree o f  T cell activation (11, 31, 32). As 
shown in Fig. 3, LN T cells and ilELs isolated from Ag-  
mice were B220- ,  a typical phenotype for resting naive pe- 
ripheral T cells. In contrast, Tg + ilELs from Ag + mice ex- 
pressed C D 4 5 R / B 2 2 0  at higher levels overall compared to 
Ag-  mice (Fig. 3; mean fluorescence index (MFI) = 90 
compared to 6, respectively). The pattern o f  C D 4 5 R / B 2 2 0  
expression did not differ between CD8oto~ and C D 4 - C D 8  
subsets in Ag + mice (data not shown). Together, these 
results suggested that Tg ilELs in Ag + mice had responded 
to self-Ag in vivo. 

Proliferative Responses of Tg Cells from LN and IEL of Ag- 
and Ag + Mice. Since Tg LN and ilEEs from Ag + mice ex- 
pressed surface phenotypes consistent with previous expo- 
sure to Ag, we assessed the relative proliferative responses 
o f  these subsets to stimulation with Ag or immobilized 
an t i -TCR mAb. Proliferative responses were assessed for 
Tg + T cells cultured with Ag-bearing APCs and increasing 
levels o f  exogenous peptide Ag. As seen in Fig. 4, addition 
o f  exogenous peptide to Ag + APC augmented proliferation 
for ilELs and LN from Ag-  mice (Fig. 4 A). However,  
proliferative responses o f  Tg LN and ilELs from Ag + mice 
were reduced by 58 and 95%, respectively. Response to a 
control peptide for all four groups showed no proliferation 
(data not shown), and all cultures were normalized for Tg + 
T cells. 

To assess the relative proliferative responses o f  distinct 
ilEL subsets, CD80r CD8oLot, and C D 4 - C D S - ,  Tg ilEL 
populations were purified by cell sorting and stimulated 
with Ag + APC with and without exogenous peptide (1 
b~g/ml). O f  the three subsets detected in Ag-  mice, only 
the CD8o~[3 + Tg ilELs responded to Ag § APC without ex- 
ogenous peptide. None  of  the Tg + T cells isolated from 
Ag + mice proliferated to Ag § APC, however, addition o f  
exogenous peptide induced proliferation on all T cell sub- 
sets from Ag-  mice. Interestingly, addition o f  peptide in- 
creased proliferative responses for CD8otot and C D 4 - -  
C D 8 -  ilELs from Ag-  mice, but not CD8~[3 ilELs. This 
was not caused by the increased I F N - y  produced by this 
CD8ot[3 subset, since proliferative responses were not en- 
hanced with the addition o f  blocking mAb to IFN-y.  
C D 4 - C D 8 -  Tg ilELs from Ag + mice proliferated in re- 
sponse to APC and peptide (Fig. 5 B), whereas CDSotot 
ilELs from Ag + mice remained unresponsive to Ag + APC 
despite the addition o f  high doses o f  peptide. These results 
indicated that unresponsiveness was quantitative with in- 
creased proliferative responses evident for Tg ilELs from 
Ag + mice activated with allogenic M H C  containing high 
levels o f  peptide. 

To confirm that the inability of  ilELs from Ag + 2C Tg + 
mice to respond was not caused by lack o f  CD8 expression, 
the proliferative responses of  the ilELs to immobilized anti- 
T C R  mAb were assessed. Tg ilELs from Ag + mice re- 
sponded 25-fold less well to 1B2 mAb compared to ilELs 
from Ag-  mice (Fig. 4 B). Interestingly, the few residual 
Tg + PLN cells in Ag + mice (closed squares) responded simi- 
larly to 1B2-induced signals, suggesting that the residual 
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Figure  4. Differential proliferative responses by Tg § LN and ilEL from 
Ag- and Ag + mice. Proliferative responses were measured for Tg + ilELs 
and LN T cells in response to Ag + APC and increasing levels of exoge- 
nous peptide (A) or to increasing concentrations of immobilized 1B2 
mAb (B). All measurements were performed in triplicate, and the data are 
expressed as the mean with an SE <15%. The data shown are representa- 
tive of three experiments. --[~-, H-2 t' LN; q~-, H-2 b ilEL; --E--, 
H-2 I'/d LN; --t ' - ,  H-2 b:'~ ilEL. 

cells (although CD8- )  could respond to antigenic stimuli 
(Fig. 4 B). Finally, the addition o f  rlL-2 (50 U/ml)  did not 
reconstitute the proliferative responses of i lEL isolated from 
Ag + mice (data not shown). Thus, whole populations o f  
Tg + ilELs isolated from Ag + mice appeared significantly 
less responsive as compared to ilELs isolated from Ag- 
mice. Taken together with the results o f  Fig. 5, these find- 
ings suggest that although some subsets may not have 
downregulated proliferative responses during tolerance in- 
duction (e.g., C D 4 - C D 8 - ) ,  proliferative responses were 
decreased overall in Ag + mice. 

Cytokine Production by Ag and Ag + LN and IEL in Re- 
sponse to PeptideAg. Although proliferative responses o f  
ilELs from Ag + mice were diminished, it was possible that 
they were functionally competent, as measured by criteria 
such as cytokine production. Cytokine production was as- 
sessed after stimulation with increasing concentrations o f  
exogenous peptide to ensure maximum responses. The re- 
sults in Fig. 6 A indicate that Tg + LN and iIEL from Ag 
but not Ag + mice produced IL-2 in response to addition o f  
peptide to Ag + APC. Increasing concentrations o f  peptide 
resulted in high IL-2 production for the Ag-  PLN Tg + T 
cells, while ilELs produced modest levels o f  IL-2 only at 
the highest concentrations. For IFN-y  production, Tg 
PLN cells in Ag + mice produced equivalent levels corn- 
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Figure 5. Ag + ilEL subsets require high levels of exogenous peptide for 
proliferative responses. Intestinal ilEL subsets were sorted on the basis of 
staining with 1B2, CD8ct, and CD8J3, attaining a purity of >98% for the 
subsets of Tg + iIEL indicated. Proliferative responses to APC without ex- 
ogenous Ag (A) and with l ~tg/ml added exogenous Ag (/3) were mea- 
sured. All measurements were performed in triplicate, and the data are ex- 
pressed as the mean with an SE <15%. NP, not present. The data shown 
are representative of three experiments. 

pared to those from Ag- mice (Fig. 6/3). In contrast, ilEL 
populations of  Tg + cells from Ag + mice failed to produce 
either IL-2 or IFN-% even at high levels of  peptide plus 
APC. Taken together, these data suggested that tolerance 
led to decreased IL-2 production for both PLN and ilEL 
populations, but decreased IFN-~/ production for only 
ilELs. 

To maximize the ability to detect small amounts ofcyto-  
kines produced by the individual ilELs subsets, ilEL popu- 
lations were sorted to >98% purity before stimulation in 
vivo, and cytokine production was assessed for each sub- 
population. In comparison to results with whole ilELs, low 
levels of  IFN-y  and IL-2 were detected from Tg ilEL sub- 
sets from Ag + mice (Fig. 7). Addition of peptide increased 
IL-2 and IFN-y production for ilELs from Ag + mice, but 
failed to induce levels comparable to those observed for 
ilEL subsets from Ag- mice. Thus, tolerance led to de- 
creased production of both IL-2 and IFN-y for CD8cx0~ 
and C D 4 - C D 8 -  Tg + ilEL subsets detected in Ag + mice. 

Assessment of Cytokine mRNA by RT-PCR. One inter- 
pretation for the decreased proliferation and cytokine pro- 
duction by the Ag + ilEL subsets was that they had been 
rendered anergic by the presence of  Ag. Alternatively, Tg + 
ilELs in Ag + mice may have altered their cytokine profile 
subsequent to encounter with Ag. Downregulation of IL-2 
and IFN-',/production may have been accompanied by up- 
regulation of  IL-4 production. Our  assessment of  IL-4 lev- 
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Figure 6. Effect ofself-Ag on IL-2 and IFN-~/production in 2C nfice. 
Equivalent Tg + numbers of T cells from LN and ilEL of Ag and Ag + 
mice were stimulated with endogenous antigen presented by irradiated 
Ag + APC (/-/-2 d) or increasing doses of added peptide. Culture superna- 
tants were collected at 48 h, and levels oflL-2 (A) and IFN-~/ (/3) were 
measured by ELISA. The data shown are representative of three experi- 
ments. [ ]  , H-2 b LN; " O - ,  H -2b iIEL; - ~ - - ,  H-2 b/d LN; --O'-, 
H-2 b/d ilEL. 

els using ELISA assays were variable from experiment to 
experiment, so we assessed IL-4 cytokine responses by 
measuring m R N A  by competitive R T - P C R .  As seen in 
Fig. 8, Tg + ilELs from Ag- mice responded to in vitro 
stimulation with induction of IL-2, but limited IL-4 
mRNA.  In contrast, stimulation of  Tg + ilELs from Ag + 
mice failed to induce IL-2 mRNA.  These results were 
consistent with in vitro results (Figs. 6 and 7), and sug- 
gested that tolerance to self-Ag had effectively downregu- 
lated activation-induced IL-2 gene expression. An exami- 
nation of IL-4 m R N A  levels revealed that activation 
induced high levels of  IL-4 for Tg + ilELs from Ag + mice, 
with a lesser induction observed for Tg + ilELs from Ag- 
mice. These results suggested that Tg + ilELs in Ag + mice 
had differentiated to express TC2 (Th-2-1ike) cytokines. 

Discuss ion  

The purpose of this study was to determine the mecha- 
nisms responsible for the maintenance of self-tolerance of 
TCR~x~ ilEL subsets. To address this question, we used 
the 2C T C R  Tg model, which allowed us to examine the 
responses of  T cells specific for a known antigen. The data 
suggested that tolerance for Tg + T cells involved deletional 
or nondeletional mechanisms, depending on expression of  
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Cytokine production by Tg + iIEL subsets. Sorted ilEL sub- 
sets from Ag- and Ag + mice were stimulated with endogenous antigen 
presented by irradiated Ag + APC without or with 1 ~g/ml added pep- 
tide. Culture supematant were collected at 48 h, and levels of IL-2 (A) 
and IFN-~/(B) were measured by ELISA. The data shown are representa- 
tive of three experiments. NP, not present. 

CD8(xl3 molecules. In Ag § mice, CD8otl3 + Tg + T cells 
were absent, suggesting that this population had been de- 
leted. This resulted in decreased numbers o f  Tg  + T cells in 
the periphery o f  2C mice. However,  Tg  + ilEL numbers 
were equivalent between Ag-  and Ag § mice. The mainte- 
nance o f  Tg § numbers in Ag + mice despite the absence o f  
CD8otl3 iIELs may have resulted from downregulation o f  
CD813 expression; however, no intermediate CD813 dull 
cells were observed. Another possibility was that the re- 
maining CD8etct and C D 4 - C D 8 -  subsets had expanded. 
Nondeletional mechanisms of  tolerance were observed for 
ilEL subsets which did not express CD8otl3. Effects o f  self-Ag 
on CD8oLot and C D 4 - C D 8 -  ilEL subsets were indicated 
by modulation o f  surface activation markers and deviation 
o f  cytokine profiles. Transgenic ilELs in Ag + mice ex- 
pressed decreased levels o f  T h y - I  and increased C D 4 5 R /  
B220 compared to ilELs from Ag-  mice. Functionally, 
ilELs in Ag + mice produced lower levels o f lL-2  and IFN-~ 
compared to Ag-  mice. The  decreased IL-2 and IFN-~/ 
production correlated with the induction o f  IL-4 m R N A  
for Tg ilELs in Ag + mice, suggesting that tolerance in- 
volved the transition from IL-2-producing to an IL-4-pro-  
ducing phenotype. Interestingly, IL-4 production by ilELs 
from normal mice has been reported by Kiyono and col- 
leagues (33). Taken together, these data suggest that toler- 

Figure 8. IL-4 and IL-2 cytokine mRNA expressed by activated Tg + 
iIEL in Ag § mice. Purified Tg § ilELs from Ag + and Ag- mice were cul- 
tured for 3 h at 37~ in wells coated with clonotypic anti-TCR mAb, 
1B2 (10 p.g/ml) (+). or PBS only (-). The I~NA was extracted, reverse 
transcribed, and analyzed for cytokines using competitive PCR. with the 
PQIq.S cytokine mimic. Samples were normalized based on levels ofmRNA 
for HPRT. The data shown are representative of three experiments. 

ance involved distinct mechanisms for Tg  + T cell popula- 
tions in peripheral lymphoid and intestinal epithelial tissues. 
Whereas CD8otl3 + Tg  + T cells were absent from both 
populations, tolerance for CD8ot(x and C D 4 - C D 8 -  ilELs 
involved nondeletional mechanisms leading to the survival 
o f  functionally distinct subsets that expressed Th-2-1ike cy- 
tokines. 

The distinct effects o f  tolerance observed for populations 
o f  Tg § ilELs may have been directly related to the differ- 
ential sensitivities o f  ilEL subsets to self-Ag. Intestinal IEL 
subsets expressing surface CD8(x~, but not C D 4 - C D 8 -  
and CD8etet, responded to Ag-bearing splenocytes (Fig. 5). 
CD8etl3-expressing ilELs also produced greater IL-2 and 
IFN-~/ to added peptide compared to C D 4 - C D 8 -  and 
CD8otot ilELs in Ag-  mice. Previous reports have shown 
that CD8ot~ molecules support adhesion and signaling for 
T cell responses to class [ MHC-restr ic ted antigens (34- 
36). During thymic development, increased levels o f  CD8 
led to negative selection (37, 38). Thus, expression of  
C D 8 c ~  molecules by Tg  § ilELs may have influenced the 
effect of  tolerance induction by increasing the sensitivity of  
this subset to endogenous levels ofself-Ag. 

In models o f  self-tolerance for ilELs, it has been difficult 
to distinguish functionally immature from mature pheno-  
types. This issue is particularly relevant when addressing ef- 
fects of  tolerance for CD8otot iIEL. Poussier and Julius have 
found that ilELs from normal and Tg mice expressing the 
CD8aot  phenotype were unresponsive to stimulation by 
an t i -TCR mAb (H597), suggesting that this subset was im- 
mature or required factors for activation not provided in 
vitro (13). These results raised the issue o f  whether self- 
reactive CD8aot  iIELs in mice expressing Mls-P or the 
male H-Y antigen had been tolerized to self-Ag or had per- 
sisted because o f  a failure in TCR-media ted  signaling. We 
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addressed this issue by examining the responses of  CD8~m 
and C D 8 -  Tg ilEL subsets in Ag- and Ag § mice. The re- 
suits showed that, in fact, CD8etet ilELs mice were respon- 
sive to Ag, as assessed by proliferation and cytokine pro- 
duction, suggesting that Tg + CD8otc~ ilELs were not 
immature. In contrast, the corresponding CD8ctot ilEL 
subsets in Ag + mice were unresponsive, even when cul- 
tured with exogenous peptide Ag. A comparison of  re- 
sponses by ilELs in Ag- and Ag + mice suggested that the 
CD8etcx subset in Ag + mice was a functionally mature pop- 
ulation that had been tolerized to self-Ag. 

Local environmental factors in the intestine may have 
been involved in tolerance induction for ilELs. Epithelial 
cells providing low levels of  stimulation (39, 40) for Tg + 
ilELs may have contributed to the poor proliferative re- 
sponses and the decreased IL-2 and IFN-~/production that 
was observed. Previous studies using Th-1 T cell clones 
have suggested that self-Ag presented by APCs with poor 
costimulatory function induced decreased IL-2 production 
in vitro (41-43). Thus, chronic, low levels of  stimulation 
provided by intestinal epithelial cells may have helped to 
decrease some of  the functional responses (IL-2, IFN-~/) 
observed for Tg + ilELs in Ag + mice. However, our results 
with ilEL from Ag + mice indicated that these cells were 
not completely unresponsive, but rather produced IL-4 in 
response to stimulation. These data suggested that exposure 

to self-Ag had induced the differentiation of  Tg + ilELs to 
Th-2-1ike cells. CD8 + T cells producing a cytokine profile 
typical of  CD4 + Th-2 cells have been described by others 
(44-46) and referred to by Mosmann and colleagues as 
TC2 cells (23). In the present model of  self-tolerance in 2C 
mice, differentiation of  ilELs in Ag + mice may have been 
directed down a TC2 pathway of differentiation in re- 
sponse to local cytokines as well. We have found (Barrett, 
T.A., unpublished observations), as well as others (33, 47-  
49), that CD4 + lamina propria T cells and CD8 + ilELs 
produce IL-4 and IL-5 cytokines. In addition, mucosal 
mast cell populations releasing IL-4 in response to stimula- 
tion may contribute to local levels of  the cytokine (50). In- 
testinal epithelial cells also have the ability to make IL-10, 
which may be an important regulator of  ilEL functional 
development (51). In recent reports by Forsthuber et al. 
and Ridge et. al. (52, 53), it has been suggested that con- 
version of tolerant populations of  peripheral T cells down 
Th-2 /TC2  pathways of differentiation may be an impor- 
tant mechanism for neonatal tolerization in vivo. These re- 
ports suggested that immune deviation was determined by 
the conditions under which Ag was presented. Thus, im- 
mune deviation for ilELs in Ag + mice may have occurred 
because of  developmental pressures that eliminated TC1 
precursors (CD80t[3 + ilELs) and local factors that promoted 
TC2 differentiation. 
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