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Abstract

A subpopulation of peripheral human CD4*CD25" T cells that expresses CD45R O, histo-
compatibility leukocyte antigen DR, and intracellular cytotoxic T lymphocyte—associated anti-
gen (CTLA) 4 does not expand after stimulation and markedly suppresses the expansion of
conventional T cells in a contact-dependent manner. After activation, CD4"CD25" T cells
express CTLA-4 on the surface detectable for several weeks. These cells show a G1/GO cell cy-
cle arrest and no production of interleukin (IL)-2, IL-4, or interferon (IFN)-y on either pro-
tein or mRINA levels. The anergic state of CD4*CD25* T cells is not reversible by the addi-
tion of anti-CD28, anti-CTLA-4, anti—transforming growth factor B, or anti—IL-10 antibody.
However, the refractory state of CD47CD25" T cells was partially reversible by the addition of
IL-2 or IL-4. These data demonstrate that human blood contains a resident T cell population
with potent regulatory properties.
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Introduction

The adaptive immune response represents a highly effective
and dynamic system that can protect a host from pathogens.
However, the process involving the generation of patho-
gen-specific T eftector cells intrinsically bears a high risk for
the development of autoreactive T cells. Central tolerance
mechanisms have been classically ascribed to clonal dele-
tion in the thymus. Furthermore, it was found by using
transgenic mouse models that in the periphery the induc-
tion of anergy prevents the development of autoreactive T
cells (1). Moreover, there is accumulating evidence from
various animal models for an additional active mechanism
of immune suppression whereby a distinct subset of T cells
inhibits the activation of “conventional” T cells in the per-
iphery (2, 3). The phenotype of these so-called regulatory
T cells in mice has been determined as CD4*
CD25TCD45RBP T cells (4-6). This population of T
cells from syngeneic healthy donors can prevent the devel-
opment of autoimmunity upon transfer to lymphopenic re-
cipients (7), indicating that the normal immune system
contains a population of “professional” regulatory T cells
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that actively suppresses autoreactivity. Functional analysis
of murine CD4*CD25" T cells showed that these cells fail
to proliferate or secrete cytokines in response to polyclonal
or antigen-specific stimulation but inhibit the activation of
conventional responsive T cells (5). Detailed characteriza-
tion in vitro revealed that their suppressive capacity is me-
diated by direct T cell-T cell contact, but not by cytokines
like IL-10 and TGF-B (5, 8, 9).

Results from studies applying neonatal thymectomy in-
dicated that regulatory T cells originate from the thymus
(3). However, it is still largely unknown how regulatory T
cells are activated and controlled in the periphery and what
kind of antigen they recognize.

Recently, we described the induction of human regula-
tory T cells by repetitive stimulations of cord blood—
derived naive CD4" T cells with immature monocyte-
derived dendritic cells (DCs)' (10). These regulatory T
cells showed several similarities to murine CD4*CD25% T
cells. They inhibit the activation of conventional T cells in
a contact-dependent and cytokine-independent manner
(11). In contrast to murine regulatory T cells, human regu-

VAbbreviations used in this paper: CTLA, cytotoxic T lymphocyte—associ-
ated antigen; DC, dendritic cell; HLA, histocompatibility leukocyte anti-
gen; HSA, human serum albumin; RT, reverse transcription.
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latory T cells induced by immature DCs produced high
amounts of IL-10. Since these human regulatory T cells
were generated in vitro, we subsequently investigated
whether regulatory T cells can also be found in vivo and
isolated from human peripheral blood.

Here, we demonstrate that freshly isolated human
CD4*7CD25" T cells contain T cells with regulatory prop-
erties. These T cells are nonproliferating and suppress the
activation of conventional CD4* T cells in a contact- and
dose-dependent, but antigen-nonspecific, manner. The an-
ergic state of these human regulatory T cells was partially
reversed by the addition of IL-2 or IL-4, but not by anti-
CD3 or anti-CD28 Ab.

Materials and Methods

Culture Medium. X-VIVO-15 supplemented with 1% autol-
ogous plasma was used for the culture of DCs and without plasma
for culture of T cells (BioWhittaker).

Cytokines.  All cytokines used in this study were recombinant
human proteins. Final concentrations were the following: 800
U/ml GM-CSF (Leukomax™; Sandoz), 1,000 U/ml IL-4 and
IL-6 (Strathmann Biotech GmbH), 10 ng/ml IL-1$ and TNF-a
(Strathmann), and 1 pg/ml prostaglandin E, (Minprostin; Phar-
macia-UpJohn). For culture and expansion of T cells, 25 or 200
U/ml IL-2 (Proleukin; Chiron Corp.) and/or 500 U/ml IL-4
were used as indicated.

Abs.  The tollowing Abs were used. Mouse IgG: anti-CD2
(6F10.3); anti-CD14 (RMO52); anti-CD19 (J4.119); anti-CD40
(5C3); anti-CD58 (AICD58); anti-CD80 (MAB104); anti-CD86
(BU63); anti-CD83 (HB15A); and anti-CD152 (anti—cytotoxic T
lymphocyte—associated antigen [CTLA]-4, BMI3). Rat IgG (from
Beckman Coulter/Immunotech): anti-histocompatibility leuko-
cyte antigen (HLA)-DR (YE2/36HLK) (Serotec/Camon); and
mouse and rat subclass-specific isotypes (Beckman Coulter/Im-
munotech). Conjugated secondary reagents: FITC-conjugated
goat anti-mouse-IgG; and PE-conjugated goat anti—rat IgG (Jack-
son ImmunoR esearch Laboratories). Staining of MACS®-sorted T
cells: FITC- or PE-conjugated anti-CD3 (UCHT1); anti-CD4
(RPAT4); anti-CD25 (M-A251); anti-CD28 (CD28.2); anti-
CD45RA (HI100); and anti-CD45RO (UCHL1) anti-CTLA-4
(BNI3) (all from BD PharMingen); anti-HLA-A2 (BB7.2; Ameri-
can Type Culture Collection); anti-TCR-a/3 (BMAO031); anti—
TCR~y/8 (Immu510); and FITC- and PE-conjugated mouse IgG
from Beckman Coulter/Immunotech. The anti-TGF-B (R&D
Systems, used according to the manufacturer’s instructions) and
anti-IL-10 mAb (JES-19F1.1.1, blocking capacity tested in prolif-
eration assays using IL-10 receptor transfected—Baf3 cells; Ameri-
can Type Culture Collection), anti-CTLA-4 (BNI3, blocking Ab
used according to the manufacturer’s instructions), and anti—
CTLA-4 F(ab"), (ANC152.2/8H5, blocking Ab, used according
to the manufacturer’s instructions; Ancell) were used for blocking
experiments. For T cell activation the stimulatory Abs anti-CD3
(OKT-3, purified supernatant; American Type Culture Collec-
tion) and anti-CD28 (CD28.2) were used as indicated.

Cytokine Assays. 10° T cells were stimulated with allogeneic
DCs (10°%) in 24-well plates in 1 ml X-VIVO-15. Cytokine syn-
thesis was determined by analysis of supernatants 48 h after stimu-
lation. The commercially available ELISA kits for the human cy-
tokines IFN-y, IL-2, IL-4, IL-5, and IL-10 (BD PharMingen)
were used as indicated by the manufacturer. For intracellular anal-
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ysis of cytokine production, anti—IL-2—PE, anti-IL-4-PE, anti—IL-
5-PE, anti-IL-10-PE, anti-IFN-y—PE mAb, and FITC- and PE-
conjugated isotypic mAb (BD PharMingen) were used according
to manufacturer’s instructions. In brief, 10° T cells were activated
with 2.4 pg/ml PHA plus 1 ng/ml PMA for 6 h. 1.3 pM/ml
monensin was added for the last 4 h, cells were collected, washed,
fixed/saponin-permeabilized (perm/fix solution; BD PharMin-
gen), and stained with 0.5 pg/test of cytokine-specific Abs.

Generation of DCs.  DCs were generated from buffy coats as
described previously (12). In brief, PBMCs were isolated by Fi-
coll density gradient centrifugation. Monocytes were isolated by
plastic adherence and cultured in X-VIVO-15 plus 1% heat-inac-
tivated autologous plasma including 800 U/ml GM-CSF and
1,000 U/ml IL-4. At day 7, nonadherent cells were rinsed off,
washed once in PBS, and transferred to fresh six-well plates at
7 X 10° cells in 3 milliliter per well. For differentiation into ma-
ture DCs, cells were additionally stimulated with 10 ng/ml IL-1(3,
10 ng/ml TNF-a, 1,000 U/ml IL-6, and 1 pg/ml prostaglandin
E,. At day 9 mature DCs were used for T cell stimulation.

Flow Cytometric Analysis. Immunofluorescence staining was
performed after washing the cells twice with PBS plus 0.5% hu-
man serum albumin (HSA). Cells were incubated for 20 min at
4°C with each mAb (5 pg/ml, 105 cells per test). After washing
with cold PBS/HSA the indirectly labeled cells were incubated
with FITC- and PE-conjugated second-step mADb for 20 min at
4°C, washed three times, and analyzed by flow cytometry (FACS-
calibur™, CELLQuest™ software; Becton Dickinson). Necrosis
versus apoptosis was determined by propidium iodide and an-
nexin V staining according to the manufacturer’s instructions (BD
PharMingen).

Lsolation of T Cell Subpopulations. CD4% T cells were puri-
fied from buffy coats using CD4 MACS® MultiSort beads (Mil-
tenyi Biotec) as described previously (10, 12). After detaching,
CD4" T cells were washed once in PBS plus 0.5% HSA plus 3
mM EDTA, and stained with anti-CD25 beads (3 wl per 107
cells; Miltenyi Biotec). Alternatively, cells were stained with
FITC-conjugated anti-CD25 mAb (10 pg per 100 X 10 CD4*
T cells) for 15 min on ice, washed two times, and incubated for
an additional 15 min with anti-FITC MultiSort beads (3 pl per
107 cells; Miltenyi Biotec) and positively selected according to the
manufacturer’s instructions. After detaching, CD47CD25* T
cells were washed once and stained with anti-CD45RO beads
(3 pl per 107 cells; Miltenyi Biotec) for separation of CD4%
CD25*CD45RO™ T cells and CD4*CD25*CD45RO™~ T cells.
CD4*, CD25-depleted T cells (named as CD4% T cells in the
following), CD4*CD25%" T cells, and the CD45RO" and
CD45RO™ T cell subpopulations of CD4*CD25" T cells were
used immediately after isolation.

T Cell Stimulation Assays.  Stimulation with allogeneic DCs.
For an optimal stimulation of freshly isolated T cell populations
in an antigen-specific (alloantigen) manner, mature DCs from al-
logeneic donors were used for stimulation. Freshly isolated T cells
(2 X 103 cells per well) were used for primary proliferation assays
in the presence of different numbers of allogeneic DCs in 96-well
plates (200 wl per well) as indicated in the figure legends. T cell
proliferation of primary cultures was measured after 4 d of incu-
bation and an additional 16-h pulse with [*H]|Tdr (37 kBq per
well) using a liquid scintillation counter. For secondary stimula-
tion assays, T cells (10° cells per well) were primarily stimulated
with 10° allogeneic DCs (10° cells per well) in 24-well plates. 25
U/ml IL-2 was added once at day 5 of culture.

10 d after the onset of the primary culture, T cells were har-
vested and used for secondary proliferation assays.
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All secondary proliferation assays were performed with 5 X
10* T cells per well in the presence of different ratios of alloge-
neic DCs. T cell proliferation of secondary proliferation assays
was measured after 2 d of incubation and an additional 16-h pulse
with H[Tdr].

Polyclonal anti-CD3 stimulation. Alternatively to allogeneic
stimulation, CD4* and CD47CD25" T cells (10° cells per well)
were primarily activated with anti-CD3 mAb (2 wg/ml, OKT-3)
in the presence of 4 X 10° irradiated (4,000 rads) syngeneic PBMCs
in 24-well plates. IL-2 was added at days 2, 5, and 7 after primary
stimulation. At day 10 the CD4* and CD47CD25" T cells were
harvested and used in a secondary anti-CD3 stimulation with
identical conditions, but in the presence of syngeneic irradiated
PBMC:s in 96-well plates as indicated in the figure legends. T cell
proliferation in anti-CD3 assays was measured after 2 d of incuba-
tion and an additional 16-h pulse with [*H]Tdr (37 kBq per well)
using a liquid scintillation counter.

Cocultures of CD4" and CD47CD25% T cells (primary stim-
ulation as well as secondary stimulation) activated with allogeneic
DC:s or anti-CD3 plus syngeneic PBMCs were also performed to
analyze the influence of CD4*CD25* T cells on the proliferation
and cytokine production of conventional CD4% T cells. A con-
stant number of CD4% T cells was cocultured with different
numbers of CD4*CD25* T cells as indicated in the figures, and
both T cell populations were activated with either allogeneic
DCs or anti-CD3 plus syngeneic PBMCs.

Transwell Experiments. Transwell —experiments were per-
formed in 24-well plates as described previously (13). In brief,
CD4* T cells (10 cells per milliliter) and CD47CD25* T cells
(100 cells per milliliter) were separately stimulated with allogeneic
DCs (10° cells per milliliter). Additionally, CD4TCD25% T cells
stimulated with allogeneic DCs were cocultured and activated
with CD4* T cells in the same well or were placed in transwell
chambers (Millicell, 0.4 pwm; Millipore) in the same well. For
some coculture experiments, additional inhibitory Abs were
added as indicated in the figure legend. After 2 d of culture, 3 X
200 pl per well (containing 2 X 103 T cells) of each culture were
transferred to three individual wells of 96-well plates. Prolifera-
tion was measured after an additional 16-h pulse with [°*H]Tdr
using a liquid scintillation counter.

Cell Cycle Analysis.  Cell cycle analysis of each T cell popula-
tion was performed as described by determination of the DNA
content using propidium iodide staining (14). 24-96 h after re-
stimulation T cells were washed in PBS and fixed in 70% ethanol
for 2 h at —20°C. After incubation, cells were treated with PBS
containing 1% glucose, 2 mg/ml RNAse, and 0.05 mg/ml pro-
pidium iodide (Sigma Aldrich) for 30 min at room temperature.
DNA content of stained cells was analyzed by flow cytometry.

mRNA Detection. RINA was isolated as described previously
(15) and used for reverse transcription (RT) with SUPERSCRIPT
RnaseH™ following the recommendations of the supplier (Life
Technologies). RT-PCR was performed using the following oli-
gonucleotides: B-actin forward: GAGCGGGAAATCGTGCGT-
GACATT; B-actin reverse: GAAGGTAGTTTCGTGGATGCC
(225 bp); IL-10 forward: ATGCCCCAAGCTGAGAACCAA-
GAC; IL-10 reverse: CCCAGAGCCCCAGATCCGATTTTG
(227 bp); IL-4 forward: CTGCTTCCCCCTCTGTTCTTCC;
IL-4 reverse: TCTGGTTGGCTTCCTTCACAGG (379 bp); IL-2
forward: ATGTACAGGATGCAACTCCTGTC; IL-2 reverse:
GTCAGTGTTGAGATGATGCTTTGAC (458 bp); TGF-p1
forward: GACATCAACGGGTTCACTACCGG; TGF-B1 re-
verse: GAGGCAGAAGTTGGCATGGTAGC (267 bp); IFN-y
forward: CTGTTACTGCCAGGACCCATATG; and IFN-y re-
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verse: GAACCATTACTGGGATGCTCTTCG (448 bp). Oligo-
nucleotides were chosen to span at least one intron or to include
sequences of two adjacent exons at the level of genomic DNA.

Results

Freshly Isolated Human CD4*CD25* T Cells Are Anergic
and Do Not Proliferate after Allogeneic or Polyclonal Activa-
tion. To analyze the functional properties of human
CD4* T cell subpopulations, we isolated CD4% T cells
from buffy coats of randomly selected healthy volunteers.
In the next step, CD4TCD25" T cells were positively se-
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Figure 1. Phenotype of freshly isolated and stimulated CD4* and

CD4*CD25" T cells. CD4* and CD4*CD25" T cells were isolated
from buffy coats of healthy volunteers by positive selection using para-
magnetic beads as described in Materials and Methods. (A) The figure
shows the surface expression of freshly isolated T cells, representative of
10 independent experiments. (B) Phenotype of CD4"CD25" T cells 10 d
after stimulation with allogeneic DCs.



lected from isolated CD4* T cells. Both populations
showed a purity of >95% (CD4*CD25~ or CD4*CD25%;
Fig. 1 A). Analyzing 17 different bufty coats from healthy
donors, we observed a resident population of CD4*
CD25% T cells that represented ~0.7-5.5% of total
PBMCs. CD47CD25~ (in the following, abbreviated as
CD4* T cells) and CD47CD25* T cells expressed CD4,
TCR-a/B, and CD3 molecules in comparable amounts.
However, the CD4"CD25* T cell population contained
significantly more cells, which expressed CD45RO and
HLA-DR, a phenotype characteristic for differentiated or
activated T cells (Fig. 1 A). After activation with allogeneic
DCs, the CD47CD25" T cells showed an upregulation of
CD25 and HLA-DR (Fig. 1 B) comparable to conven-
tional CD4" T cells (data not shown).

Recently, it was shown that resting murine regulatory
CD4*CD25" T cells intracellularly express CTLA-4 (9, 16).
To investigate the CTLA-4 expression of human T cells, we
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analyzed intracellular and surface expression of this marker
on freshly isolated and activated CD4" and CD4*CD25" T
cells. As shown in Fig. 2, no surface expression of CTLA-4
was observed on freshly isolated T cells of both populations.
However, a subpopulation of CD4*CD25* T cells, the
CD45R O™ population, constantly expressed CTLA-4 intra-
cellularly (Fig. 2 A). Furthermore, CTLA-4 expression was
detectable early after activation by allogeneic DCs (16 h)
solely on the surface of CD4+*CD25* T cells but not on the
surface of conventional CD4* T cells (Fig. 2 B). This strong
upregulation of CTLA-4 on a subpopulation of CD4*
CD25" T cells was also observed 6 h after primary activation
with anti-CD3 or PHA and then detectable for at least 21 d
after priming (data not shown).

Both T cell populations were primed and restimulated
with potent immunostimulatory allogeneic DCs in difter-
ent DC/T cell ratios to induce maximal activation of al-
loantigen-specific T cells. As shown in Fig. 2 C, the pri-
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dition of [PH]Tdr after 4 (primary
culture) or 2 d (restimulation) of
culture for 16 h. Similar results were
obtained in five independent experi-
ments. (D) Cell cycle analysis of al-
loreactive CD4% and CD4*CD25*
T cells 4 d after the first restimula-
tion with allogeneic DCs. Similar
results were obtained in five inde-
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mary stimulation of CD4" T cells resulted in a strong and
dose-dependent proliferation, whereas only low rates of
proliferation were observed after primary stimulation of
CD47CD25" T cells. Furthermore, this weak proliferative
capacity of CD47CD25" T cells further decreased after re-
stimulation and could not be enhanced by the addition of
allogeneic PBMCs, anti-CD3, anti-CD28 Abs, or PHA
(data not shown). By contrast, the respective CD4* T cell
population showed a considerably high alloreactive prolif-
eration after restimulation. As shown in Fig. 2 D, alloanti-
gen-activated CD47CD25" T cells showed a cell cycle ar-
rest in the G1/GO phase.

Anergic Human CD47CD25% T Cells Do Not Produce
IL-2, IL-4, IFN-7y, or IL-10 after Activation. Next we ana-
lyzed the cytokine profiles of alloreactive CD4% and
CD47CD25" T cells stimulated twice with allogeneic ma-
ture DCs. It has been shown that mature DCs induce the
polarization of naive CD4% T cells towards Th1 cells with
a high production of IFN-y and IL-2 in the absence of
IL-4 or IL-10 (10, 12). This cytokine profile could also be
observed for alloreactive peripheral CD4* T cells after two
stimulations (Fig. 3). In contrast, CD4TCD25" T cells
showed only marginal synthesis of IL-2, IL-4, IL-10, and
IFN-vy after two stimulations with allogeneic DCs or poly-
clonal restimulation.

It has been demonstrated that murine CD4*CD25% T
cells do not produce detectable amounts of cytokines on

A CD4* CD4*CD25*

the protein level but show enhanced cytokine mRINA syn-
thesis after activation (5). Here we show, using RT-PCR
for cytokine mRNA analysis of human CD4*CD25% T
cells, that only mRNA signals for TGF- and IL-10 were
detectable in resting and activated CD4TCD25" T cells.
Neither IL-2 and IFN-y nor IL-4 could be detected at the
level of mRINA expression under such conditions (Fig. 3
C). In contrast, CD4* T cells showed a strong upregulation
of T cell-associated cytokines IL-2, IL-4, and IFN-y after
activation. It is important to note that no significant in-
crease of apoptosis or necrosis measured by annexin V and
propidium iodide staining could be observed in activated
CD4% or CD47CD25" T cells (data not shown).

The Anergic State of Human CD4*CD25" T Cells Can Be
Partially Reversed by the Addition of IL-2 and/or IL-4. To
analyze the anergic state of human CD4*CD25% T cells in
more detail we activated freshly isolated CD4*CD25% T
cells in the presence or absence of blocking/stimulatory Abs
or T cell growth factors. The suppressed proliferative capac-
ity could not be reversed by the addition of blocking Abs
directed against TGF-$3, IL-10, or CTLA-4 (Fig. 4). Fur-
thermore, addition of stimulatory anti-CD3 or anti-CD28
Abs could not reverse the anergic state of human
CD4*CD25" T cells. However, this refractory state of
CD47CD25" T cells could be partially reversed by the ad-
dition of high amounts of IL-2 (200 U/ml) or IL-4 (500 U/ml)
and, even more pronounced, by a combination of both.
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Figure 3.

Cytokine profiles of alloreactive CD4% and CD47CD25" T cells after the first restimulation. CD4" and CD47CD25" T cells were primed

and restimulated with allogeneic DCs from the same donor. The figure shows the cytokine profiles of T cells after the first restimulation. (A) 6 d after the
first restimulation, T cells were activated with PHA/PMA in the presence of monensin. The cytokine profiles were detected by intracellular FACS®
staining 6 h later. (B) Cytokine profiles of T cells determined by ELISA 48 h after the first restimulation with allogeneic DCs. Black bars, CD4* T cells;
white bars, CD4"CD25" T cells. (C) The cytokine mRNA profile of T cells 2 h after restimulation with allogeneic DCs as detected by RT-PCR. A

representative result of four independent experiments is shown.
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Figure 4. The anergic state of CD47CD25" T cells is partially revers-

ible by exogenous IL-2 or IL-4. CD47CD25" T cells were primed and
restimulated with allogeneic DCs. T cell proliferation (5 X 10* T cells per
well plus 5 X 103 DCs per well, first restimulation) in the presence or ab-
sence of blocking Abs (2 wg/ml anti-TGF-f3 mAb, 10 pg/ml anti-1L-10
mADb, 20 pg/ml anti-CTLA-4 mADb) or additional stimulation with 2
pg/ml anti-CD3, 2 pg/ml anti-CD28, or cytokines (200 U/ml IL-2, 500
U/ml IL-4). [*H]Tdr was added after 2 d of culture for the final 16 h.
Proliferation of restimulated CD4* T cells served as a control. Similar re-
sults were obtained in seven independent experiments.

Proliferation and Cytokine Production of CD4™" T Cells Is In-
hibited by Coculture with CD4*CD25* T Cells. Next, we
analyzed the regulatory properties of human CD4*CD25*
T cells. Freshly isolated CD4" T cells were either immedi-
ately cocultured with CD4*CD25% T cells and stimulated
with allogeneic DCs or at first separately activated, and
such prestimulated CD4* and CD4*CD25" T cells were
subsequently used for cocultures. As shown in Fig. 5 A, in
both types of coculture experiments using freshly isolated
or prestimulated T cells, activated CD4*CD25% T cells
suppressed the proliferation of alloreactive CD4" T cells.
Analogous to the decreased proliferation of CD4*CD25%
T cells after restimulation (Fig. 2 C), the inhibitory capacity
of such cells is even more pronounced in secondary cocul-
tures. Furthermore, the inhibitory capacity of CD4*
CD25* T cells was dose dependent (Fig. 5 A). Finally,
CD4*CD25" T cells also markedly inhibited the cytokine
synthesis of CD4" T cells (Fig. 5 B).

The usage of allogeneic DCs as T cell stimulators may
result in the preferential selection of an alloreactive sub-
population of CD4*CD25" T cells. To prevent a potential
selection of a nonrepresentative CD47CD25*% T cell popu-
lation, freshly isolated CD4% and CD4*CD25" T cells
were polyclonally activated by anti-CD3 mAb. Such T
cells were subsequently restimulated alone or in cocultures
in the presence of anti-CD3 mAb and syngeneic PBMC:s.
Fig. 5 C demonstrates that the polyclonally activated CD4*
T cells showed a profound anti-CD3—induced prolifera-
tion, whereas the proliferation of CD47CD25* T cells was
rather low and the coculture of both populations led to a
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Figure 5. CD4*CD25* T cells inhibit dose dependently proliferation
and cytokine production of conventional CD4* T cells. (A, left) Freshly
isolated CD4* T cells (2 X 10° cells per well) were stimulated with allo-
geneic DCs (2 X 10* cells per well) in the presence of different numbers
of freshly isolated CD4+*CD25% T cells from the same donor. Prolifera-
tion was determined after 4 d of culture by the addition of [*H]Tdr for
the final 16 h. (Right) Coculture of separately primed CD4" and CD25*
T cells in a secondary stimulation assay. Proliferation was determined after
2 d of culture by addition of [*’H]Tdr for the final 16 h. (B) On the left,
the cytokine profile of CD4* T cells primed and restimulated with allo-
geneic DCs alone and on the right, the cytokine profile of CD4* T cells
restimulated with allogeneic DCs in the presence of CD4*CD25* T cells
are illustrated. A representative result of four independent experiments is
shown. (C) Anti-CD3 assay. CD4" and CD4+*CD25* T cells were stim-
ulated with 2 pg/ml anti-CD3 in the presence of irradiated syngeneic
PBMCs and were used for secondary anti-CD3 mAb proliferation assays
10 d after as described in Materials and Methods. The proliferative re-
sponse of CD4" and CD4*CD25"% T cells restimulated separately or in
coculture is shown. A representative result of three independent experi-
ments is shown.

Human Regulatory T Cells from Peripheral Blood



A
Ccb4*

LCD4*CD25*| + CD4*
CD4*CD25* + CD4*
+ anti-IL-10/anti-TGF-f
+antj-CTLA-4

+anti-CTLA-4 (Fab’),

Figure 6. The inhibitory effect of human regulatory
CD4*CD25" T cells requires cell—cell contact and is an-
tigen nonspecific. (A) CD4% and CD4*CD25% T cells
from the same donor were primed with allogeneic DCs.
After 10 d, the alloreactive T cells were restimulated
with mature DCs from the same allogeneic donor.
CD4*CD25" T cells (10° cells per well) and CD4* T
cells (10° cells per well) were placed and activated sepa-
rately in transwell chambers in the same well. Alterna-
tively, CD4*CD25% T cells were added directly to the
cocultures of CD4" T cells plus allogeneic DCs in the

presence or absence of inhibitory Abs as indicated (2 pg/
ml anti-TGF-, 10 pg/ml anti-IL-10, 20 pg/ml anti—
CTLA-4/CTLA-4 F(ab'), fragments or 2 pg/ml anti-
CD28). Proliferation of restimulated CD4% T cells
served as a control. (B) Syngeneic CD4% and
CD4*CD25" T cells were primed with allogeneic DCs

+anti-CD28
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from different donors (A or B). 10 d after, donor A—spe-
cific CD4" T cells (*\CD4") were restimulated in the
presence of donor B-specific CD47CD25" T cells
(BCD4+CD25") stimulated with allogeneic DCs (donor
A and/or B) as indicated. Additionally, BCD4*CD25" T
cells were preactivated with 0.5 pg/ml anti-CD3 at
37°C for 30 min, washed in PBS, and added to cultures
of activated ACD4% T cells. After 2 d of culture, acti-
vated T cells were transferred in 96-well plates to mea-
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considerable suppression of the CD4" T cell-based prolif-
eration. Thus, the fact that alloreactive CD4TCD25" T
cells and the polyclonally activated CD47CD25" T cells
have equivalent suppressive properties strongly argues for
the assumption that the alloreactive CD47CD25" T cell
population is representative for the whole regulatory
CD4+CD25" T cell population.

Human CD4*CD25% T Cells Inhibit the Activation of
Conventional CD4" T Helper Cells by Contact-dependent, but
Cytokine-independent Mechanisms. Transwell experiments
were performed to investigate whether cell—cell contact or
soluble mediators mediate the suppressive eftect of human
CD4*CD25" T cells. The inhibition of soluble factors
such as IL-10 or TGF-B, or blocking Abs against CTLA-4,

sure incorporation of [*H|Tdr for the final 16 h. Results
representative of five independent experiments are pre-
sented as mean cpm of triplicate determinations.

or anti-CTLA-4 F(ab'),~fragments, or the additional stim-
ulation by anti-CD28 mAb were not able to restore the
proliferation of CD4* T cells in coculture with CD4*
CD25* T cells. In contrast, separation of both T cell popu-
lations by a semipermeable membrane in transwell cham-
bers completely abolished the suppressive capacity of
CD4+CD25" T cells for the proliferation of conventional
CD47" T cells (Fig. 6 A).

To analyze the antigen specificity of this inhibitory eftect
of CD4*CD25* T cells, we primed syngeneic CD4* and
CD4*CD25" T cells with allogeneic DCs from different
donors (donor A or B). As shown in Fig. 6 B, donor
B—specific CD4*CD25* T cells suppressed the prolifera-
tion of donor A—specific CD4" T cells only after activation

CD4+

CD4+*CD25* CD45RO*

CD4+CD25* CD45RO-

Figure 7. Human CD4*CD25% T cell populations con-
tain regulatory and conventional T cells. Freshly isolated
CD4*CD25" T cells were separated into CD45R O™ and
CD45R O™ cells using anti-CD45RO beads as described
in Materials and Methods and separately primed with allo-
geneic DCs. 10 d after, the T cell populations were restim-
ulated under the same conditions or in coculture with
primed CD4* T cells. The proliferation of restimulated T

CD4* +
CD4+CD25* CD45R0O*
CD4* +
CD4+CD25* CD45RO-
0 25 50
cpm x 103
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cell populations is shown (2-d culture plus an additional
16-h [*H]|Tdr). The figure is representative for three inde-
pendent experiments.



with donor B DCs. Alternatively, the suppressive capacity
of CD4*CD25" T cells could also be induced by anti-
CD3—mediated stimulation. These results suggest that the
inhibitory properties of human CD4*CD25" T cells are
activation-dependent, but antigen-nonspecific, and do not
require the simultaneous presentation of the target antigen
on the same APC.

Freshly isolated CD4*CD25" T cells contain two sub-
populations, CD45RO™* and CD45R O™ T cells (Fig. 1 A).
To analyze the suppressive capacities of both subpopula-
tions independently, CD45RO beads were used for the
separation of both populations. As shown in Fig. 7, the
CD45R O™ T cell population showed a normal prolifera-
tion after activation with allogeneic DCs and in coculture
with CD4* T cells, only a weak inhibitory capacity for the
proliferation of conventional CD4* T cells. In contrast,
the CD45R O™ subpopulation was anergic and suppressed
the proliferation of conventional CD4" T cells. These data
suggest that peripheral human CD47CD25* T cells con-
tain two subpopulations, CD4*CD25*CD45R O regula-
tory T cells and CD4*CD25*CD45R O~ conventional T
cells.

Discussion

The delicate balance between pathogen-induced eftector
functions and endogenous tolerance-mediating mecha-
nisms is of vital importance for the integrity of a host in the
course of an immune response. In particular, with regard to
peripheral tolerance induction, there is increasing evidence
for a distinct population of regulatory T cells that controls
autoimmunity and transplant rejection in mice (3). Our re-
sults indicate that human peripheral blood also contains a
population of regulatory CD4*CD25" T cells that inhibits
the activation of CD4*CD25~ T effector cells significantly.
This resident human T cell population represents ~0.7—
5.5% of total PBMCs of randomly selected healthy donors.
Freshly isolated, these cells showed no significant prolifera-
tion or cytokine secretion after allogeneic activation with
mature DCs, or polyclonal stimulation with PHA or anti-
CD3 Abs. Nevertheless, in coculture these anergic T cells
after activation efficiently suppressed the proliferation and
cytokine production of CD4*CD25~ T cells in a dose-
and contact-dependent, but cytokine-independent manner.

These inhibitory properties of human regulatory CD4"*
T cells as outlined in this study suggest that these T cells
are the human analogue of a previously described popula-
tion of regulatory CD4*CD25" T cells in mice. Such cells
arise from the thymus (3), express CD4, CD25 (17), and
intracellular CTLA-4 (9, 16), and their activation via the
B7-CD28 pathway is essential for their induction and sur-
vival in the periphery (18). They comprise 5-10% of pe-
ripheral T cells and can not be induced to proliferate in
vitro upon polyclonal activation using anti-CD3 Abs (5).
Analogous to murine CD47CD25% T cells, the anergic
state of human regulatory T cells could not be reversed by
the addition of anti-CD28 Abs. However, besides striking
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similarities there are also some differences between murine
and human regulatory T cells. The suppressive activity of
murine CD4*CD25% T cells was overcome by the addi-
tion of anti-CD28 mAb (5), and the unresponsiveness and
suppressive activity of murine CD4*CD25% thymocytes
was abrogated by a combination of anti-CD3 and anti-
CD28 mAb (19). In contrast, coactivation of human regu-
latory T cells via CD28 could not reduce their inhibitory
capacity (Fig. 6 A). In addition, human regulatory T cells
showed no significant proliferation after stimulation with
mature DCs that expressed high amounts of costimulatory
molecules such as CD80, CD86, CD58, CD40 (12), and
cytokines IL-12 (20), IL-15 (21), and IL-18 (22). These
findings are in accord with an earlier observation that the
anergic state of human regulatory T cells, induced by re-
petitive stimulations of naive cord blood—derived CD4* T
cells with immature DCs, also could not be reversed by
mature DCs, or the addition of anti-CD3 or anti-CD28
Abs (10). Thus, the deficient proliferative response of hu-
man regulatory T cells is not the result of a lack of costim-
ulation.

It should be noted at this point that in contrast to freshly
isolated human CD47CD25" T cells, cord blood—derived
regulatory T cells induced by immature DCs secreted high
amounts of IL-10. The proliferation of these cells remained
refractory even in the presence of IL-2, whereas their sup-
pressive activities were abrogated by IL-2 (10). These func-
tional differences imply the existence of different subpopu-
lations of human CD47CD25" regulatory T cells.

A characteristic property of human and murine regula-
tory T cells is the constitutive and long-lasting membrane
expression of CTLA-4 after activation (9, 10, 16). How-
ever, the relevance of this marker for the function of this
regulatory T cell population is not defined in detail.
‘Whereas overwhelming evidence exists that CTLA-4 acts
as a negative regulator of T cell activation in vivo (23),
there have been contradictory results regarding the func-
tion of CTLA-4 for the suppressive activity of murine
CD4*CD25" T cells in vitro. Thornton and Shevach (5)
have reported that anti-CTLA-4 mAb did not abrogate
suppression, whereas Takahashi et al. (9) demonstrated re-
cently that the application of Fab anti-CTLA-4 mAb
completely removed the inhibitory capacity of murine
CD4*CD25" T cells. In agreement with Thornton and
Shevach (5), blocking of CTLA-4 by mAb or F(ab’), frag-
ments did not reverse the anergic state and the suppressive
properties of CD4*CD25* human regulatory cells (Figs. 4
and 6) and did not significantly affect the responses of hu-
man IL-10—producing regulatory T cells (10). These dis-
crepancies may be partially at least the result of the fact that
the anti-human CTLA-4 mAb and F(ab’), fragments have
a comparatively low neutralizing activity.

It has been described that murine CD4*CD25" regula-
tory T cells contain mRNA for IL-10, IL-4, and TGF-f3,
and that the level of IL-10 mRNA increases upon poly-
clonal activation (5). In contrast, human CD4*CD25%*
regulatory T cells only expressed mRNA for IL-10 and
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TGF-B, but not for IL-4. Additionally, it has been shown
that the anergic state of murine regulatory T cells was
completely reversed by the addition of IL-2 (5), whereas
we could demonstrate in this study that exogenous IL-2
and/or IL-4 only partially reversed the anergic state of hu-
man regulatory T cells. However, the combination of IL-2
and IL-4 completely restored the proliferation of these
cells.

Our data report on the first description of regulatory
CD4*CD25* T cells isolated ex vivo from human periph-
eral blood. As demonstrated for their murine analogues,
these cells may have profound influence on the control of
human autoimmune diseases. The continuous and constitu-
tive presence of this novel human T cell subset may regulate
autoaggressive T and B cells. Furthermore, physiological
immune responses may be terminated by the activation of
these regulatory T cells thereby preventing tissue damage
and harm to the human organism. Future studies will have
to define the molecular pathways that regulatory T cells use
to control immune responses. The better understanding of
the underlying mechanisms of regulation will then poten-
tially allow the application of these cells as therapeutic vehi-
cles for the control of human autoimmune diseases.
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