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Abstract

Langerhans cells (LCs) represent a subset of immature dendritic cells (DCs) specifically localized
in the epidermis and other mucosal epithelia. As surrounding keratinocytes can produce interleu-
kin (IL)-15, a cytokine that utilizes IL-2Ry chain, we analyzed whether IL-15 could skew
monocyte differentiation into LCs. Monocytes cultured for 6 d with granulocyte/macrophage
colony-stimulating factor (GM-CSF) and IL-15 differentiate into CD1a"HLA-DR*CD14"DCs
(IL15-DCs). Agents such as lipopolysaccharide (LPS), tumor necrosis factor (TNF)a, and
CD40L induce maturation of IL15-DCs to CD83", DC-LAMP™ cells. IL15-DCs are potent an-
tigen-presenting cells able to induce the primary (mixed lymphocyte reaction [MLR]) and sec-
ondary (recall responses to flu-matrix peptide) immune responses. As opposed to cultures made
with GM-CSF/IL-4 (IL4-DCs), a proportion of IL15-DCs expresses LC markers: E-Cadherin,
Langerin, and CC chemokine receptor (CCR)6. Accordingly, IL15-DCs, but not IL4-DCs, mi-
grate in response to macrophage inflammatory protein (MIP)-30/ CCL20. However, IL15-DCs
cannot be qualified as “genuine” Langerhans cells because, despite the presence of the 43-kD
Langerin, they do not express bona fide Birbeck granules. Thus, our results demonstrate a novel

pathway in monocyte differentiation into dendritic cells.
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Introduction

Skin, an efficient barrier against microbes, is composed of
two distinct layers: the dermis and the epidermis (1). The
dermis is composed of fibroblasts, dermal (interstitial) den-
dritic cells (DCs), and mast cells. The epidermis includes
keratinocytes, melanocytes, Merkel, and Langerhans cells
(LCs). LCs are immature DCs that are unique to Mal-
pighian epithelia. LCs are characterized by their Birbeck
granules (BGs; reference 1), their expression of Langer-
hans-associated granule (LAG)/Langerin (2), E-Cadherin
(3), and CC chemokine receptor (CCR)6 (4). As other im-
mature DCs, they are poised to capture antigens/patho-
gens, process them, and present their peptides to lympho-
cytes after their migration into draining lymph nodes (5, 6).
The lack of LCs in TGF-B17/~ mice (7) suggests an im-
portant role for this cytokine in LC development, a con-
clusion further strengthened by in vitro studies (8—11).
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Keratinocytes (KCs) form the epidermal sheet where the
LCs are embedded and produce various cytokines including:
(a) GM-CSF, which plays a key role in DC difterentiation
(12) and (b) IL-15 (13), a cytokine that binds to the receptor
component IL-2Ry common to several cytokine receptors
including IL-2, IL-4, IL-7, and IL-9 (14, 15). IL-15 is ex-
pressed by nonhematopoietic cells such as fibroblasts, endo-
thelial cells, KCs, and DCs (16, 17). This cytokine has the
ability to induce the proliferation of activated T cells. In
vivo studies have demonstrated that IL-15 plays an im-
portant role in the development of memory CD8* T cells
and NK cells (18, 19). In particular, IL-157/~ (20) and
IL-15Ra™’~ (21) mice display reduced numbers of T cells
and specifically lack NK and NK T cells.

Inasmuch as monocytes differentiate into immature DCs
in response to GM-CSF and IL-4, cytokines produced by
the dermal mast cells, we have explored whether the KC-
derived cytokines, GM-CSF, and IL-15 may control the
differentiation of LCs. Herein, we show that highly puri-
fied monocytes cultured in the presence of GM-CSF and
IL-15 yield functional DCs (IL15-DCs). Unlike IL-4, IL-15
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skews monocyte differentiation into cells that express
E-Cadherin, Langerin, and CCR6, as well as migrate in re-
sponse to macrophage inflammatory protein (MIP)-3a, a
phenotype of LCs.

Materials and Methods

Reagents. mAbs: CD2, CD11b, CD14, HLA-DR (Becton
Dickinson); CD86 (BD PharMingen); CD9 (Ancell), CD32,
CD36 (Caltag), CD40, HLA-ABC, CCR6 (R&D Systems),
CD1a (Dako), CD80, CD83, E-Cadherin, and Langerin (Coulter/
Immunotech), IL-2R7y chain, MIP-3a;, TGF-$1 (R&D Systems),
Cy5-coupled donkey anti-mouse Ab (Jackson ImmunoResearch
Laboratories). Recombinant human cytokines: rhGM-CSF (Leu-
kine; Immunex), rhIL-4 (R&D Systems or Schering-Plough),
thIL-15 (R&D Systems), TGF-B1, and TNFa (R&D Systems).
Complete RPMI medium consisted of RPMI 1640, 1% L-gluta-
mine, 1% penicillin/streptomycin, 50 mM 2-ME, 1% sodium-
pyruvate, 1% essential amino acids, and heat inactivated 10% FCS
(all from GIBCO BRL). LPS was from Sigma-Aldrich.

Cell Culture, Endocytic Activity, and Flow Cytometry. Mono-
cytes were isolated from blood mononuclear cells, after Ficoll-
Paque™ gradient, by depletion of T-, B-, NK cells, and CD1a™
DCs using purified anti-CD3, anti-CD19, anti-CD56, anti-gly-
cophorin A, and anti-CD1a Abs followed by immunomagnetic
depletion (Dynabeads). Enriched CD14* monocytes were cul-
tured in 6-well plates (10°/well) for 6 d in the presence of GM-
CSF (100 ng/ml)/IL-15 (200 ng/ml) or GM-CSF (100 ng/ml)/
IL-4 (20 ng/ml). In some experiments DCs were activated with
LPS (100 ng/ml). When necessary, 500 ng neutralizing anti—
TGF-1 Ab was added every other day to the monocyte cul-
tures. The endocytotic activity was determined by incubating
the DCs with 100 pg/ml FITC-Dextran for 30 min at 37°C. As
a control, a portion of DCs were incubated with FITC-Dextran
on ice. The cells were washed with cold PBS/FCS and analyzed
by flow cytometry. Membrane staining: 103 cells were incu-
bated for 30 min at 4°C with fluorochrome-conjugated mAb or
purified mAb (1:100 dilution). For indirect staining, FITC-
F(ab'), sheep anti-mouse Ig or Cy5-donkey anti-mouse Ig
were used. Cells are analyzed with the FACSCalibur™ (Becton
Dickinson)

Confocal Microscopy. Cells deposited on poly-L-lysin-coated
coverslips were fixed for 15 min with 4% paraformaldehyde in
PBS, washed twice in 10 mM glycine in PBS and twice in PBS,
and permeabilized with 0.5% saponin-1% BSA-PBS for 30 min.
Coverslips were incubated for 30 min at room temperature with
5 pg/ml anti-DC-LAMP or anti-Langerin (Coulter/Immuno-
tech as well as gifts from Drs. Lebecque and Saeland, Schering-
Plough, Dardilly, France). Cells were incubated for 30 min with
secondary-labeled donkey anti-mouse Abs coupled to Texas red
(Jackson ImmunoR esearch Laboratories), washed, incubated with
mouse serum for 30 min, washed again, and incubated for 30 min
with a second primary Ab anti-HLA-DR directly coupled to flu-
orescein (Becton Dickinson). Confocal microscopy was per-
formed using a TCS SP microscope equipped with argon and
krypton ion lasers (Leica).

Electron Transmission Microscopy. Langerin*DR™*  IL15-DCs
were first sorted using FACSVantage™ or positively selected by
anti-Langerin coupled with goat anti-mouse beads-IgG and after-
wards fixed with 2.5% glutaraldehyde in 0.1 M cacodylate buffer
(pH 7.4) and postfixed with 1% OsO,. After dehydration with
graded ethanol, they were embedded in Spurr’s plastic. Ultra-thin
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sections were stained with lead citrate and uranyl acetate, and
studied using a LEO 906E electron microscope (Germany).

T Cell Proliferation. DCs were cultured at graded doses with
105 freshly isolated CD4* or CD8* allogeneic T cells for 5 d in
cRPMI plus 10% human AB serum. To assay autologous T cell
proliferation, IL15-DCs or IL4-DCs were pulsed with tetanus
toxoid (TT; 4 LFU/ml) for 48 h and cultured at graded doses
with 10 autologous T cells. Cells were pulsed for the last 16 h
with 0.5 wCi [*H]thymidine per well (New England Nuclear).

Generation and Assessment of Antigen-specific CTLs.  On day 5,
IL15-DCs or IL4-DCs were induced to maturation using macro-
phage cytokines: GM-CSF, IL-1a (5 ng/ml), IL-6 (25 ng/ml),
and TNFa (10 ng/ml) for 16 h and pulsed with 0.1 pg/ml of Flu-
MP>8- for further 18 h CD8™" effector T cells (10°) were isolated
by magnetic beads separation and cocultured with either unpulsed
or Flu-MP pulsed DCs in 1 ml complete RPMI plus 10% human
AB serum. All cultures received IL-7 (10 ng/ml) at the onset and
IL-2 (10 UI/ml) on day 7 of culture. T cells were stimulated twice
with DCs and grown for 14 d as described earlier (22). For CTL
assay, effector cells (30 X 103/well) were plated in 96-well round-
bottom plates with T2 (10°/well) target cells pulsed with Flu-
MP> and labeled with >Cr (Amersham Pharmacia Biotech).
After 4 h, supernatants were harvested and chromium release was
measured using a y-counter (Packard Instrument Co.). Percentage
of specific lysis was then determined. For tetramer binding assay
after two stimulation cycles, T cells were labeled with anti-CD3
FITC (Becton Dickinson) and anti-CD8 PE Abs (BD PharMin-
gen) for 45 min at 4°C, washed and stained with APC-conjugated
Flu-MP/HLA-A*0201 class I tetramer (provided by National In-
stitute of Allergy and Infectious Diseases) for 10 min at room tem-
perature. After fixation in 1% PFA, samples were analyzed on
FACSCalibur™ (Becton Dickinson).

Immunoblotting.  Cell lysis and immunoblotting were per-
formed as described previously (12). Gels were transferred onto
Immun-Blot® PVDF membranes. The transferred proteins were
detected using anti-Langerin or IgG1 as control revealed with
ECL Western blotting detection system (Amersham Pharmacia
Biotech).

Chemotaxis Assay. Cell migration was determined by using a
chemotaxis microchamber. MIP-3a (1 pg/ml) was diluted in
RPMI plus 2% human serum, and was added to the lower wells
of the chemotaxis chamber. IL-15- or IL4-DCs (10°/80 .l) were
applied to the upper wells of the chamber, with a standard 5-pm
pore polyvinylyrrolidone-free polycarbonate separating the lower
wells. The chamber was incubated at 37°C for 3 h. Afterwards,
cells that had migrated to the lower side of the filter were col-
lected and counted using a light microscope. Each assay was per-
formed in triplicate and results were expressed as the mean * SD
of migrated cells per field.

Results and Discussion

Monocytes Cultured with GM-CSF and 1L-15 Yield DCs
(IL15-DCs).  As IL-4 and IL-15 receptors share the IL-
2Ry chain, we analyzed whether IL-15, just like IL-4,
may be involved in the differentiation of monocytes into
DCs. Highly purified monocytes (>98% of CD14* cells)
were cultured with IL-15 or IL-4 combined with GM-
CSF. Cells aggregated within 24 h, and within 6 d aggre-
gates revealed protruding veils suggestive of DCs (not
shown). Giemsa staining, after 6 d of culture, revealed cells
with a typical DC morphology (not shown). The cells har-
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vested from cultures of monocytes with GM-CSF/IL-15 CD14 (Fig. 1 A), similarly to GM-CSF/IL-4 cultures. DC
show the same forward/side scatter properties as those differentiation requires 4-6 d of culture (not shown).
from GM-CSEF/IL-4 cultures. Furthermore, large cells ac-  Thus, monocytes cultured with GM-CSF/IL-15 give rise
quire CD1a, express high levels of HLA-DR and have lost  to cells with a phenotype of DCs. For the sake of simplic-
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Figure 1. IL-15 and GM-CSF skew monocyte differentiation into DCs with features of LCs.

(A) Purified monocytes are cultured with GM-CSF/IL-4 (IL4-DCs) or with GM-CSF/IL-15

(IL15-DCs) for 6 d. Both cultures display similar SSC/FSC properties (left panels). IL15-DCs

acquire CD1a, lose CD14, and are HLA-DR ™ (right panels), similarly to IL4-DCs (not shown).

(B) IL15-DCs (bold line) acquire a mature DC phenotype (CD40"sh, CD83*, CD8O"eh,
CD86"eh and HLA-DRM#"), when cultured with LPS (100 ng/ml) (dotted line). Thin solid line shows isotype control. (C) Some IL15-DCs express intra-
cellular DC-LAMP, the expression of which is considerably upregulated by LPS-activation (confocal microscopy, field 130 X 100 pm). (D) IL15-DCs, but
not IL4-DCs, express the surface phenotype of LCs expressing E-Cadherin, CCR6, and Langerin. Conversely, IL4-DCs, but not IL15-DCs, express high
levels of CD9, CD11b, CD32, and CD36. Purified monocytes are cultured for 6 d, stained with indicated Abs and analyzed by flow cytometry. (E) Immu-
noblot-detection of Langerin in IL15-DCs. Proteins of SDS-gels were transferred onto Immun-Blot® PVDF membranes and these were stained using anti-
Langerin and ECL Western blotting detection system. Lane 1: T cells; lane 2: IL4-DCs; lane 3: IL15-DCs. (F) Monocytes cultured with GM-CSF/IL-15
display high Langerin expression when compared with monocytes cultured with GM-CSF/IL-4/TGF-1 (representative of four experiments).
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ity, we will subsequently call these cells IL15-DCs by con-
trast to IL4-DCs.

After 6 d, 10° monocytes yield 0.23 X 10° IL15-DCs
(mean of 12 experiments, SD = 0.41). The generation of
IL15-DCs is independent of endogenous IL-4 as daily ad-
dition of neutralizing anti-IL-4 Ab (400 ng/ml) does not
prevent DC generation (not shown). Conversely, adding
anti-IL-15 or anti-IL-2Ry chain Abs blocks significantly
the generation of CD1a*™ DCs in response to GM-CSF/
IL15 (not shown).

At day 6 of culture, IL15-DCs are immature with low or
no expression of CD40, CD80, and CD83 (Fig. 1 B).
However, unlike IL4-DCs, IL15-DCs contain some cells
(5-10%) that express DC-LAMP. Upon activation with
LPS (100 ng/ml), IL15-DCs show increased surface ex-
pression of HLA-DR, CD40, CD80, CD86, and CD83
(Fig. 1 B), as well as intracellular expression of DC-LAMP
(23; Fig. 1 C) consistent with DC maturation. Maturation
of IL15-DCs can be induced equally well with LPS or
CD40L (not shown). As expected, immature IL15-DCs ef-
ficiently capture soluble FITC-Dextran and particulate an-
tigen (e.g., killed tumor cells) and lose this capacity upon
maturation (not shown).

IL15-DCs Display the Sutface Phenotype of LCs.  CD34*
hematopoietic progenitor cells cultured with GM-CSF/
TNFa yield both interstitial DCs and LCs (24). A few
markers distinguish LCs from other DCs: (a) Langerin, a
C-type lectin uniquely expressed in LCs and possibly con-
trolling the formation of BGs (2), (b) CCRS6, the receptor
for MIP-3a/CCL20 and B-defensin, and (c) E-Cadherin,
an adhesion molecule allowing binding to KCs (3). IL15-
DCs express Langerin on their surface while IL4-DCs do
not (Fig. 1 D, and Table I). Western blot analysis reveals an
expected 43-kD band in IL15-DC lysate (Fig. 1 E, lane 3)
but not in lysates of IL4-DC and CD4 T cells (lanes 2 and
1, respectively). Moreover, a much larger proportion of
cells express Langerin in IL15-DCs when compared with
monocytes cultured with GM-CSF/IL-4/TGF-31 (Fig. 1
F, and Table I), a combination of cytokines earlier sug-

Table I. IL-15 Skews Monocyte Differentiation toward Langerin-
positive Cells

GM-CSF/  GM-CSF/  GM-CSF/
Culture conditions IL-4 IL-4/TGEB IL-15
Mean * SEM percentage
of Langerin-positive cells 1.7 = 0.4 9.6 £4.3 40 £8.7

Median 1 7.5 42
No. experiments with

>5% positive cells 0/11 6/8
Range 0-5 3-37

11/11
5-78

Percentages of Langerin-expressing cells in monocyte cultures with either
GM-CSF/IL-4, or GM-CSF/IL-4/TGF, or GM-CSF/IL-15 (day 6)
(average = SEM as well as median from indicated number of experiments).
Percentages of Langerin positive cells in total (nongated) population.
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gested to induce monocytes to become LCs (9). Daily ad-
dition of a neutralizing anti-TGF-B1 mAb inhibits Lan-
gerin expression on GM-CSF/IL4/TGF-31 cells, while it
does not affect the IL-15—induced expression of Langerin
(not shown). This suggests that the induction of DCs with
LC phenotype in response to GM-CSF and IL-15 is TGF-
B1 independent.

As shown in Fig. 1 D, IL4-DCs, but not IL15-DCs, ex-
press high levels of CD9, CD11b, CD32, and CD36. Con-
versely, IL15-DCs express E-Cadherin and CCR6 mole-
cules while IL4-DCs express neither. To determine
whether this chemokine receptor is functional, cells were
tested for their ability to migrate toward MIP-3a in a
chemotaxis microchamber. As shown in Fig. 2, IL15-DCs
but not IL4-DCs migrate in response to MIP-3a/CCL20.
Thus, the phenotype of IL-4 and IL-15 monocyte-derived
DCs is respectively comparable to that of DCs derived
from the CD14" and CD1a* subsets isolated from CD34*
HPCs grown with GM-CSF and TNFa (24).

A hallmark of epidermal LCs in situ is the presence of
BGs. However, IL15-DCs cannot be qualified as “genu-
ine” LCs because they do not express bona fide BGs, de-
spite the presence of the 43-kD Langerin. While a virally
transformed cell line (2) is induced to display BGs upon
transduction with Langerin, DCs expressing the Langerin
protein do not necessarily display BGs (this study and refer-
ence 9). Thus, Langerin expression does not fully correlate
with BG formation and additional signals must be necessary
to complete LC differentiation.

IL15-DCs Are Efficient Antigen-presenting Cells. The ca-
pacity to induce allogeneic T cell proliferation is a func-
tional in vitro hallmark of DCs. Thus, we compared the
allostimulatory capacity of monocytes cultured with GM-
CSF alone or in combination with IL-15, IL-4, or IL-4/
TGF-B1. As shown in Fig. 3 A, IL15-DCs are as efficient
in stimulating CD4" T cell proliferation as IL4-DCs. The
allostimulatory capacity of IL15-DCs is enhanced upon
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Figure 2. IL15-DCs migrate in response to MIP-3a/CCL20. MIP-3a
was added to the lower wells of the chemotaxis chamber. IL15- or IL4-
DCs (10°/80 wl) were applied to the upper wells of the chamber, with a
standard 5-pwm pore polyvinylyrrolidone-free polycarbonate separating
the lower wells. The chamber was incubated at 37°C for 3 h. Cells that
had migrated to the lower well were collected and counted. Each assay
was performed in triplicate and results are expressed as the mean = SD
number of migrated cells (representative of two experiments).
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Figure 3. IL15-DCs present antigens to CD4* T cells. (A) Allostimu-

latory capacity of monocytes cultured with GM-CSF/IL-15, GM-CSF/
IL-4, GM-CSF/IL-4/TGF-1, or GM-CSF alone. Proliferation of allo-
geneic CD4* T cells (10%) cultured for 5 d with graded dose of antigen-
presenting cells, is determined by thymidine uptake. (B) IL15-DCs pulsed
with TT (4 LFU/ml) induce proliferation of autologous CD4* T cells
(10%) as determined by thymidine incorporation at day 5. Representative
of three experiments.

maturation (not shown). Furthermore, IL15-DCs can
present antigens to autologous CD4* T cells and induce T
cell proliferation to either soluble antigens such as TT (Fig.
3 B) or particulate antigens such as killed tumor cells (not
shown). Interestingly, while immature IL4-DCs require an
exogenous maturation factor to induce CD8" T cell prolif-
eration, immature IL15-DCs can induce purified allogeneic
CD8* T cells to proliferate significantly (Fig. 4 A), a prop-
erty that is enhanced during their maturation. Finally,
IL15-DCs pulsed with Flu-MP peptide induce recall CTL
responses as demonstrated by (a) frequency of Flu-MP tet-
ramer positive CD8F T cells (Fig. 4 B), and (b) CTL activ-
ity against peptide-pulsed target (Fig. 4 C). Thus, IL15-
DCs are capable antigen-presenting cells that might be
more efficient than IL4-DCs in inducing primary CD8* T
cell responses.

Concluding Remarks. This study demonstrates that IL-
15, in conjunction with GM-CSF, induces highly purified
monocytes to differentiate into DCs. The cells generated
under these conditions are in many ways comparable to
DCs generated with GM-CSF/IL-4. They share: (a) the
basic DC phenotype; (b) the capacity to capture FITC-
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Figure 4. IL15-DCs present antigens to CD8" T cells. (A) Immature

IL-15 DCs induce substantial proliferation of allogeneic CD8" T cells.
CD8* T cells (10%) are cultured with graded doses of IL15-DCs and pro-
liferation is determined by thymidine incorporation. (B) IL15-DCs in-
duce higher frequency of Flu-MP tetramer-positive CD8" T cells. Autol-
ogous CD8* T cells are cultured with HLA-A201 plus activated IL15- or
IL4-DCs pulsed with Flu-MP peptide. After two stimulations (14 d of
culture, IL-7 in the first and IL-2 in the second week), CD8* T cells are
harvested and stained with anti-CD3 FITC, anti-CD8 PE, and Flu-MP
HLA-A201 class I tetramer-APC. Representative of three experiments.
(C) CTL activity of CD8" T cells cultured with HLA-A201 plus IL15-
or IL4-DCs pulsed with Flu-MP peptide. T cells are activated as de-
scribed above and tested in chromium release assay using Flu-MP pulsed
T2 cells as targets (percentage specific lysis). K562, unpulsed T2 cells, or
T2 pulsed with irrelevant peptide are used as controls.

Dextran; (c) the capacity to mature in response to various
stimuli; and (d) the ability to induce vigorous T cell prolif-
eration. However, a major difference between IL-4 and IL-
15 is that IL-15 cultures yield DCs with a surface pheno-
type of LCs.

Our study demonstrates that IL-15 acts directly on
monocytes. Although IL-4 and IL-15 mobilize a common
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receptor component, the IL-2R<y chain, they also induce
differentiation of two distinct DC subsets. Thus, the cyto-
kine specific receptor provides unique signals that control
monocyte differentiation.

The ability to generate DCs with LC phenotype from
monocytes will permit us to assess their unique biological
function in humans compared with interstitial DCs gener-
ated by culturing monocytes with GM-CSF and IL-4. Fi-
nally, the lack of T cells and NK cells observed in IL-157/~
and IL-15R ™/~ mice may now be reanalyzed in the con-
text of the possible effect of IL-15 on in vivo DC differen-
tiation in mice.
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