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Abstract

Integrin-associated protein (CD47) is a broadly expressed protein that costimulates T cells, fa-
cilitates leukocyte migration, and inhibits macrophage scavenger function. To determine the
role of CDA47 in regulating alloresponses, CD47%/* or CD47/~ T cells were infused into irra-
diated or nonconditioned major histocompatibility complex disparate recipients. Graft-versus-
host disease lethality was markedly reduced with CD47~/~ T cells. Donor CD47/~ T cells
failed to engraft in immunodeficient allogeneic recipients. CD47/~ marrow was unable to re-
constitute heavily irradiated allogeneic or congenic immune—deficient CD47%/* recipients.
These data suggested that CD477/~ T cells and marrow cells were cleared by the innate im-
mune system. To address this hypothesis, dye-labeled CD47~/~ and CD47*/* lymphocytes or
marrow cells were infused in vivo and clearance was followed. Dye-labeled CD477/~ cells
were engulfed by splenic dendritic cells and macrophages resulting in the clearance of virtually
all CD47~/~ lymphohematopoietic cells within 1 day after infusion. Host phagocyte-depleted
CDA47%/* recipients partially accepted allogeneic CD477/~ T cells. Thus, dendritic cells and
macrophages clear lymphohematopoietic cells that have downregulated CD47 density. CD47
expression may be a critical indicator for determining whether lymphohematopoietic cells will

survive or be cleared.
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Introduction

Integrin-associated protein (CD47) is a broadly distributed
glycoprotein expressed on all hematopoietic cells (1).
CD47 regulates leukocyte activation, chemotaxis, and mi-
gration (2—4). CD47 ligation can costimulate activated T
cells (3-6). Conversely, CD47 ligation can function as an
immune inhibitory signal which limits T cell responses (6,
7). Although CD47 ligation has been shown to deliver T
cell costimulatory signals in in vitro assays, there are no re-
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ports of the potential role of CD47 costimulation in vivo.
The counterreceptor for CD47 is the signal regulatory pro-
tein (SIRP)a, expressed on neutrophils and monocyte-
derived cells including dendritic cells (DCs; references 8 and
9). The binding of SIRPa to CD47 on T cells is associated
with T cell activation and induction of antigen-specific
CTL responses by DCs (9). Studies in CD47%/* recipients
infused with nonopsonized or opsonized RBCs obtained
from CD47%/* or CD477/~ (10) donors showed that RBC
CD47 must deliver an inhibitory signal via macrophage
SIRPa to prevent clearance and phagocytosis by splenic
macrophages (8, 11). The effects of CD47 expression on
the clearance of other cell types has not been reported.

To determine whether CD47 ligation would facilitate T
cell activation and expansion in vivo, we used an adoptive
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transfer system in which donor T cells expand and cause
target tissue injury known as GVHD in allogeneic recipi-
ents (12). Allogeneic CD477/~ T cells had a markedly re-
duced capacity to cause GVHD and virtually no CD47~/~
T cells were found in lymphoid tissues of CD47%/* recipi-
ents. Donor CD477/~ bone marrow (BM) was unable to
rescue irradiated congenic immunodeficient CD47%/* re-
cipients suggesting that the innate immune system might
be eliminating CD477/~ cells. Splenic macrophages,
CD11b", and especially CD11b~ DCs engulfed dye-labeled
CD477/7 LN cells and CD477/~ BM cells clearing these
cells within 24 h after infusion in marked contrast to
CD47%/* cells. The elimination of splenic macrophages
partially restored the capacity of donor CD47~/~ T cells to
engraft in allogeneic recipients, indicating that donor
CD47/~ T cells can expand in vivo. Thus, host DCs (and
macrophages) can receive negative signals delivered via
CD47 antigen expressed on donor BM cells or donor T
cells. The downregulation of CD47 antigen expression on
lymphohematopoietic cells during disease states may signal
these cells for clearance by host DCs and macrophages.

Materials and Methods

Mice. C57BL/6 severe combined immune deficient (B6
SCID), B6.129S7 recombination activating gene (Rag)ltmiMom
recombinase 1—deficient (B6-Ragl™"), C.H2"!' (bml),
C.H2bm12 (bm12), and B6.PL-Thy1?/Cy (termed B6-Thyl.1
congenic) mice were purchased from The Jackson Laboratory.
C57BL/6 (termed B6:H2P), B6-CD45.1 congenic, Balb/c SCID
(H29), and Balb/c wild-type (CD47%/*) mice were purchased
from the National Institutes of Health. B6-CD47 deletional mu-
tant (B6-CD477/7) and Balb/c CD47~/~ mice were generated
and backcrossed =10 generations (8, 10).

GVHD Generation and Quantification of T Cell Expansion In
Vivo. To determine the effects of CD47 expression on the sepa-
rate contribution of CD4% or CD8* T cells to the GVHD re-
sponse, bm12 or bm1 recipients were irradiated with 6.0 Gray
(*¥’Cesium) total body irradiation (TBI) and given CD4" T cells
(0.03—0.3 X 10° cells per recipient) or CD8" T cells (0.6 X 10°
cells per recipient) from CD47~/~ or CD47%/* donors (10). He-
matocrit (Hct) values were obtained to assess the degree of
GVHD manifested by BM destruction (13). Survival and weight
curves were monitored (13). To determine the eftects of CD47
expression on GVHD mediated by T cells administered under
noninflammatory conditions, nonconditioned Balb/c SCID mice
were depleted of NK cells by anti-asialo-GM1 antisera and given
B6-CD47%/* or CD477/~ T cells (0.5 or 2 X 10° cells per recip-
ient). To quantify the number of donor T cells present in the
spleen of allogeneic recipients, splenocytes from Balb/c SCID re-
cipients of B6-CD477/~ or CD47%/* T cells were analyzed on
days 67 after transfer. Cohorts were treated intravenously with
0.2 ml of liposomes loaded with dichloromethylene diphospho-
nate (liposomal DMDP; clodronate) on days 2 and 1 before allo-
geneic T cell transfer to deplete splenic phagocytes (8, 14). As an
additional indicator of donor T cell expansion, cannulae were in-
serted in the thoracic duct of other cohorts of recipients at the
time of peak proliferation (day 6) after BM transplantation
(BMT) and lymphocytes were collected over 18 h (13).

MLR Response.  B6-CD47%/* or CD477/~ T cells were
mixed with irradiated (30 Gray) T cell depleted Balb/c spleno-

cyte stimulators, plated in replicates of six into 96-well round-
bottomed plates containing 10> responders and 10° irradiated
stimulators, and incubated for 2—-8 d (13). Microtiter wells were
pulsed with tritiated thymidine (1 pCi) for 18 h before harvest-
ing and counted in the absence of scintillation fluid on a B-plate
reader.

Long-Term Engraftment Studies. To determine whether
CD477/~ recipients could reject donor BM grafts, B6-CD47~/~
or B6-CD47%/* recipients were irradiated (5.5 Gray TBI) and
infused with Balb/c BM cells (107). To determine whether
CDA477/~ or CD47%/* BM would engraft and provide long-term
hematopoietic reconstitution, B6 recipients were irradiated (5.5—
6.5 Gray TBI) on day 1 and were reconstituted with Balb/c
CDA47%/% or CD477/~ T cell depleted BM (107 cells) on day 0
(15). In other studies, B6-Thy1.1 recipients were irradiated (9.0
Gray TBI) and reconstituted with B6-CD45.2 CD47~/~ and B6-
CD45.1 CD47"/* BM cells (5 X 10° each). A cohort was sple-
nectomized 10 d pre-BMT. For chimerism assessment, peripheral
blood mononuclear cells were stained with anti-H2-PE and
anti-H2-FITC (BD PharMingen) and analyzed using a FACS-
calibur™ (Becton Dickinson). To preclude a host antidonor T
cell response against donor CD477/~ BM cells, CD47"/* B6-
Ragl™/~, or B6-CD477/~ recipients were irradiated (9.5 Gray
TBI) on day 0 and given 5 X 10° congenic B6-CD47/~ or
CDA47%/* BM cells.

Short-Term In Vivo BM Proliferation Assay. To  determine
the effect of CD47 expression on the short-term reconstitut-
ing capacity of CD477/~ BM, B6 recipients were irradiated
(9.5 Gray TBI) to eliminate host hematopoiesis and given 3 X
10 CD477/~ or CD47%/* BM cells on day 0 (16). To pre-
clude NK cell-mediated graft rejection, cohorts were injected
with anti-NK1.1 (PK136) mAb (200 pg) on day 2 to deplete
NK cells. Anti-NK1.1 mAb (100 pg) results in depletion by
day 1 and lasts for >14 d. On day 5, 3 wCi of ['**I]deoxyuri-
dine and 107! molar fluorodeoxyuridine (Amersham Pharma-
cia Biotech) was given. Spleens were harvested on day 6,
rinsed, and incorporated radioactivity determined using a vy
counter.

Kinetic Assessment of CD47~'~ Lymphohematopoietic Cell Clear-
ance in the Spleen of CD47*/* Recipients. Single cell suspen-
sions of LN cells were prepared from B6-CD47%/+ and CD47~/~
mice and labeled with carboxyfluorescein diacetate succinimidyl
ester (CFSE; Molecular Probes) according to the manufacturer’s
protocol. Cells were injected intravenously into unirradiated B6
recipients. Single cell splenocyte suspensions were prepared us-
ing 10 mM EDTA. Cells were incubated on ice with cychrome-
labeled anti-B220, cychrome-labeled anti-CD3, PE-labeled
anti-CD11c, and either allophycocyanin-labeled anti-CD11b or
biotin-labeled anti-F4/80 followed by allophycocyanin-labeled
streptavidin. Data were analyzed on a FACScan™ flow cytome-
ter (Becton Dickinson). A portion of the spleens was frozen in
precooled isopentane, sectioned (10 w), dehydrated in acetone,
rehydrated in PBS, and sequentially incubated with anti-FcR
mAb (2.4G2), avidin/biotin solutions (Vector Laboratories), bi-
otin-labeled anti-CD11c mAb (N418), streptavidin-labeled
horseradish peroxidase (NEN Life Science Products), and Cy5-
labeled tyramide (NEN Life Science Products). Confocal mi-
croscopy and image analysis were performed as described previ-
ously (17).

Statistical Analyses. Group comparisons of continuous data
were made by Student’s f test. Survival data were analyzed by life-
table methods using the Mantel-Peto-Cox summary of chi-
squared. P values < 0.05 were considered significant.
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Results

CD47/~ T Cells Have a Reduced Capacity to Mediate
GVH-induced Lethality and Fail to Expand In Vivo. To de-
termine whether the CD47 expression on donor T cells
was required for optimal alloresponses in vivo, noncondi-
tioned NK-depleted Balb/c SCID mice were given 0.5 or
2.0 X 10° purified LN T cells from B6-CD47%/* or
CD47-/~ donors (Fig. 1 a). All recipients of CD47~/~ T
cells survived long-term, while recipients of CD47+/* T
cells died by 3 wk after transfer.

To assess the potential effects of irradiation in supporting
GVHD lethality and to determine whether differences ex-
isted in the effects of CD47 expression on CD8% versus
CD4* T cell-mediated GVHD lethality, bm1 or bm12 re-
cipients were sublethally irradiated (6 Gray TBI) and given
purified CD87 or CD4* T cells, respectively, from B6-
CD47~/~ or CD47*/* donors. CD47+/* CD8* T cells
were rapidly lethal (Fig. 1 b). In contrast, 75% of recipients
of CD47~/~ CD8* T cells survived long-term. Day 14
mean Hct values were higher in recipients of CD47~/~
versus CD477/* T cells (25 vs. 9%, respectively; P =
0.066), reflective of less GVHD-induced tissue destruction
from CD47-/~ T cells. Recipients of CD4" T cells from
CDA47%/* donors had 25% survival versus 100% survival in
recipients of CD477/~ cells (Fig. 1 ¢). Day 14 mean Hct
values were significantly higher in recipients of CD47~/~
versus CD477/" T cells (40 vs. 16%, respectively). Titra-
tion studies revealed a >10-fold reduction in GVH lethal-
ity by CD47-/~ versus CD47"/* T cells. Thus, GVHD le-
thality mediated by either CD4* or CD8* CD47-/~ T
cells was markedly reduced even in the setting of irradia-
tion-induced tissue injury.

To investigate the mechanism(s) responsible for impaired
GVHD lethality observed with CD47~/~ T cells, MLR re-
sponses were analyzed. As compared with CD47%/* T
cells, B6-CD47~/~ T cells generated a comparable peak
proliferative response to Balb/c stimulator cells (mean *
SD 6,409 % 968 vs. 7,709 = 1,309 cpm [day 3]; 5,175 *
827 vs. 5,124 £ 512 cpm [day 4]; P values > 0.1]. These
data indicate that CD47 expression was not critical for in
vitro alloproliferation.

It is possible that reduced GVHD by CD47~/~ T cells
was due to a defect in the response of CD47~/~ T cells to
alloantigen-bearing cells in vivo which could not be un-
covered by in vitro studies. As another indicator of in vivo
alloresponses, we examined the capacity of host CD47~/~
recipients to reject allogeneic donor BM grafts, a process
which is predominantly T cell dependent. Sublethally irra-
diated (5.5 Gray TBI) B6-CD47%/* or CD47~/~ recipients
were given Balb/c T cell-depleted BM grafts. Donor chi-
merism levels at 6 wk after BMT revealed no significant
differences (P = 0.29) between CD47~/~ versus CD47%/*
recipients (39 £ 8% vs. 27 = 7%) (n = 18-20 per group).
Therefore, CD47~/~ host T cells do not have a major de-
tect in allogeneic BM graft rejection.

Because MLR results were similar with CD47~/~ versus
CDA47%/* T cells, we sought to determine whether the im-
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paired GVHD response was a result of poor T cell expan-
sion in vivo. NK-depleted Balb/c SCID mice were given
B6-CD47-/~ or CD47%/* T cells (10 cells per recipient).
On day 6, we observed a mean of =2.6 X 10° donor
CD47*/* T cells as compared with <0.05 X 10° donor
CD47-/~ T cells in recipient spleens (n = three per group
individually analyzed; P < 0.001). We found <0.05 X 10°
CD47-/~ T cells in the thoracic duct lymphatics of a sepa-
rate cohort of mice that received CD47~/~ T cells versus
0.6 X 10° T cells in mice given CD47%/* T cells (n = 6
per group individually analyzed; P << 0.001). Thus,
CD47-/~ T cells do not appear to expand efficiently in or
are eliminated by CD47%/7 allogeneic recipients.

CD47-/~ BM Cannot Reconstitute Lethally Irradiated
CD47*%'* Allogeneic or Congenic Recipients. The data sug-
gested that the reduction in GVHD by CD47~/~ cells in
CD47%/* allogeneic recipients may not be due to a pro-
found defect in generating an alloresponse. The reduced
GVH response in irradiated recipients could be due to the
clearance of CD47-/~ T cells by CD47%/* recipients. To
determine whether CD47~/~ BM cells would be elimi-
nated by CD47%/% recipients, irradiated (6.5 Gray TBI) B6
recipients were given Balb/c T cell-depleted BM grafts
from CD47~/~ or CD47%/* donors. CD47%/* BM infu-
sion resulted in 87% survival and a mean of 79% donor cells
in the peripheral blood at 2 mo after BMT. In marked con-
trast, recipients of CD47~/~ BM cells died between days
12-19 after BMT (Fig. 2 a). Consistent with the presumed
hematopoietic failure, recipients of CD47~/~ BM cells ex-
perienced a progressive severe (28%) body weight loss. To
determine whether the absence of CD47 expression was
responsible for impaired hematopoietic reconstitution in
the absence of an alloresponse, we infused congenic
CD47-/~ BM into CD47%/* recipients. To preclude a T
cell or B cell immune response to the donor graft, we used
lethally irradiated (9.5 Gray TBI) CD47%/*Ragl~/~ or
Rag1*/* mice as recipients of either CD47~/~ or CD47%/*
BM. CD47-/~ BM was able to rescue CD47~/~ recipients
from hematopoietic failure (Fig. 2 b). In contrast, CD47~/~
BM was not able to rescue lethally irradiated CD47+/*
Ragl1~/~ recipients. Day 14 Hct values indicated that the
Ragl™/~ mice given CD47~/~ but not CD47*/* BM were
dying of hematopoietic failure (13 & 2% vs. 41 = 1%; P <
0.001). Because congenic CD47~/~ BM is able to rescue
CDA47-/~ but not CD47%/* recipients, these data are most
consistent with a non-T cell, non-B cell immune—medi-
ated resistance of CD47%/" recipients to CD47~/~ BM.

Further evidence as to whether CD47~/~ BM cells
would be preferentially eliminated in CD47%/% recipients,
lethally irradiated (9.0 Gray TBI) B6-Thyl.1 were given
equal numbers of B6-CD47-/~ (CD45.2%, Thy1.2%) and
congenic B6-CD45.1 CD47%/*(Thy1.2%) BM cells. Long-
term peripheral blood chimerism indicated that only B6-
CD45.1 CD47%/* cells repopulated the recipient (n = 8
per group). Recipient splenectomy did not alter long-term
chimerism results, indicating that the spleen was not essen-
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Figure 1. CD477/~ T cells have a reduced GVHD lethality ca-
pacity. (a) Nonirradiated, NK cell-depleted Balb/c SCID recipi-
ents (n = 5 per group) were given B6-CD477/~ or CD47*/* T
cells. Cell doses X 107¢ are indicated in parentheses. Recipients
of 2 X 10° CD47~/~ T cells had a significantly (P = 0.0015)
higher survival rate versus those given 0.5 X 10° CD47%/* T
cells. (b) Irradiated (6.0 Gray TBI) bm1 recipients (n = 8 per
group) were given B6-CD477/~ or B6-CD47%/* CD8* T cells.
Recipients of CD477/~ T cells had a significantly higher survival
versus B6-CD47%/* T cells. (c) Irradiated (6.0 Gray TBI) bm12
recipients (n = 8 or 16 per group) were given B6-CD47%/*
CD4" T cells. Recipients of B6-CD47/~ CD4* T cells at a dose
of 0.3 X 10° had a significantly higher survival rate than recipients
of 10-fold fewer B6-CD47+/* cells.
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tial for the clearance of CD47-/~ BM cells. Together, these
data indicate that CD477/~ BM cells are preferentially elim-
inated by CD47%/* recipients.

Because long-term reconstitution could not be achieved
with CD477/~ BM, we used a short-term in vivo assay to
assess the proliferation of CD47~/~ BM cells in CD47%/*
recipients early after infusion. We considered the possibility
that NK cells were involved in graft resistance as has been
shown for congenic MHC class 17/~ BM cells. When
CD47-/~ BM is given to lethally irradiated (9.5 Gray TBI)
CD47-/~ recipients, we observed high proliferation by day
5 after BMT (Table I). In marked contrast, CD47-~/~ BM
was unable to proliferate in CD47%/7 recipients regardless
as to whether host NK cells were depleted. These data in-
dicate that CD47~/~ BM is able to home to the spleen and
proliferate in CD477/~ but not in CD47%/* recipients
early after BMT.

Host Macrophages Can Resist the Engraftment of CD47~/~
Donor Cells Transferred into Allogeneic CD47%'* Recipients.
To determine whether host CD47%/* macrophages would
clear CD47~/~ donor T cells, NK-depleted Balb/c SCID
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higher survival than B6-CD47"/*Ragl~/~ recipients
given B6-CD47~/~ BM.

recipients were given B6-CD47-/~ or B6-CD47%/* spleen
cells and analyzed 6 d after transfer (Table II). In marked
contrast to the fivefold expansion of CD47+/* T cells,
CD47-/~ T cells failed to reconstitute the spleen of alloge-
neic SCID recipients. Host macrophage and partial DC de-
pletion by clodronate reduced the expansion of allogeneic
T cells in controls, suggesting that host APCs supported the
expansion of CD47"/* T cells in CD47%/* recipients. In
contrast, APC depletion increased the absolute number of
donor CD4" and CD8* T cells in the spleen of SCID re-
cipients of CD47~/~ T cells, consistent with a partial resto-
ration of donor CD477/~ T cell engraftment.

Next, we sought to determine whether macrophage-
poor organs had a higher number of donor CD47-/~ T
cells as compared with macrophage-rich organs. As com-
pared with nonconditioned or sublethal irradiated recipi-
ents, lethally irradiated recipients may have an impairment
in the removal of donor CD47/~ T cells by CD47+/*
host cells. Therefore, we chose a lethal irradiation system
in which B10.BR recipients were prepared with lethal ir-
radiation (8.0 Gray TBI) to increase the likelihood of do-
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Table I. CD47/~ BM Cells Will Proliferate in CD47~/~ but not CD47"/* Recipients®

Experiment No. No. Analyzed Donor Recipient NK depletion Mean = SEM
1 6 —/= —/= no 142,645 £ 24,908
1 6 —/= +/+ no 484 = 114

1 6 —/= +/+ yes 4,225 £ 9,347
2 5 —/— —/—= no 125,453 * 22,089
2 5 —/—= +/+ no 331 + 47

2 5 —/= +/+ yes 407 = 99

3 4 —/= —/— no 146,057 £ 17,621
3 5 —/= +/+ no 532 * 248

3 5 —/= +/+ yes 518 = 95

B6-CD47+/* (termed */*) or B6-CD47 7/~ (termed ~/7) recipients were lethally irradiated (9.5 Gy TBI), and given B6-CD47~/~ BM cells. Co-
horts of recipients, as indicated, were depleted of NK cells prior to BM infusion. On day 5, ['*I|deoxyuridine and fluorodeoxyuridine were given.
Day 6 spleens were harvested and incorporated radioactivity was determined. Values are mean *1 SEM. No., number.

nor T cell infiltration into GVHD target organs. Cohorts
of mice were reconstituted with BM and either B6
CD47%/* or CD47-/~ T cells. Recipients of allogeneic
CD47-/= T cells uniformly succumbed to GVHD lethal-
ity, albeit significantly delayed as compared with recipients
receiving CD47%/* T cells (data not shown). Immunohis-
tochemistry was performed on tissue sections obtained
from known GVHD target organs (liver, colon, and skin)
in this model system. On day 14 after BMT, there were at
least 15-fold fewer donor T cells present in the liver of re-
cipients of CD477/~ versus CD47%/* T cells (mean values:
CD4* Tcells, 9 = 7 vs. 133 £ 11/mm?%, CD8" T cells: 7 =
2 vs. 122 * 32/mm?, respectively). The liver is a rich
source of Kupffer cells, macrophages which clear cellular
and particulate material. In lethally irradiated recipients of
MHC disparate donor T cells, 25% of Kupffer cells are of

Table II.
Allogeneic Recipients*

host origin as late as 2 wk after BMT (18). Thus, the liver
could function in part as a clearinghouse for CD47~/~ T
cells. In the skin, also a rich source of APCs, T cells were
present at fivefold lower frequency in recipients of CD47~/~
as compared with CD47%/* T cells (mean values: CD4"
T cells, 19 = 6 vs. 11 £ 1/mm?; CD8"' T cells: 36 = 18
vs. 0 = 0/mm?, respectively). In contrast, in other organs
not as rich in macrophages, such as the colon, donor T cell
infiltration in recipients of CD477/~ T cells was reduced
by only 63% as compared with recipients of CD47%/* T
cells (mean values: CD4" T cells, 91 = 41 vs. 322 £ 89/
mm?; CD8* T cells: 150 £ 17 vs. 350 * 35/mm?, respec-
tively). These data are consistent with a greater degree of
clearance of allogeneic CD47/~ T cells in macrophage-
rich as compared with macrophage-poor organs in
CD47%/* recipients.

CD477/~ T Cells Have Impaired In Vivo Engraftment As Compared to CD47*/* T Cells when Infused into Nonconditioned

Group DMDP Spleen No. CD4+ Total CD4™* CD8* Total CD8"
% %
+/+—>Balb/c SCID no 25*5 10 =1 24 *£05 205 50=* 1.6
+/+—>Balb/c SCID yes 3x; 13 £ 4 0.5 = 0.4 347 1.0 * 0.4
—/——-Balb/c SCID no x 2 0 =x 0 0.0 = 0.0° 0 =x 0 0.0 = 0.0°
—/——Balb/c SCID yes 2 *x 1 10 = 32 0.2 = 0.2b 28 = 18 0.4 £ 03¢

Nonconditioned, NK cell-depleted Balb/c SCID were given T cells (10° cells per recipient) from B6-CD47*/* or B6-CD47~/~donors as indicated.
Mice received either saline or liposomal DMDP injections on days 2 and 1. Four mice per group were individually studied on day 6 after transfer for
evidence of engraftment of donor T cells in the spleen of recipients. Data for lymphoid cell subsets are shown. All cell numbers are X10~¢. DMDP,

dichloromethylene diphosphanate (clodronate). No., number.
*P < 0.05 versus no DMDP group.

0.1 < P < 0.05 versus no DMDP group.

¢P < 0.05 versus CD47%/* donor T cells.
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Host CD47%/* Splenic DCs and Macrophages Rapidly En-
gulf Donor CD47/~ Lymphohematopoietic Cells In Vivo. In
contrast to the critical role of host macrophages in RBC
clearance (8, 11), these cells appeared to play only a partial
role in lymphohematopoietic cell clearance. To directly ex-
amine which host cell populations would engult CD47/~
lymphohematopoietic cells, B6-CD47%/* recipients were
given CFSE-labeled LN cells from B6-CD47~/~ or
CD47%/* donors. Splenocytes were analyzed at various
time periods after infusion to enumerate CD477/~ versus
CDA47%/* cells and determine whether there was evidence
that CD477/~ T cells were phagocytosed to a greater ex-
tent than CD477/* T cells. Flow cytometric analysis indi-
cated that a higher proportion of splenic CD11b~"CD11c”
DCs had phagocytosed CFSE-labeled CD477/~ than
CD47%/* congenic T cells by 1 h after infusion (5.5 vs.
1.0%, respectively; Fig. 3 a). Analysis of time kinetics re-
vealed that CFSE-labeled CD47~/~ versus CD477/* T
cells had been engulfed by a higher proportion of
CD11b=CD11ct DCs (1, 2, and 4 h after infusion),
CD11b*CD11c¢* DCs (1 h), and F4/80*CD11¢™ mac-
rophage populations (1 h; Fig. 3 b). Splenic sections ob-
tained 1 h after infusion showed that CFSE-labeled T cells

CD47+/+ LN cells

| 1.0% |

T L T T T

CD47-/- LN cells

% CFSE+

L/
5.5%

of both genotypes migrated to the periarteriolar sheath ar-
eas but approximately one-half of CFSE-labeled CD47-/~
and virtually no CD47%/* T cells could be found inside
host CD11c* DCs (Fig. 3 ¢). By 1 d after infusion, there
were no detectable CFSE-labeled CD47~/~ T cells present
in the spleen as determined by either flow cytometry or
splenic sections, in contrast to readily detectable CFSE-
labeled CD47/* T cells which were still present (data not
shown). Thus, CD11b~ DCs and to a lesser extent
CD11b* DCs and macrophages preferentially engulfed
CDA47-/~ versus CD47/* T cells.

Discussion

Our data show that CD47 expression is necessary to pre-
vent host CD47%/* splenic DCs and macrophages from
clearing CD47%/* lymphohematopoietic cells. In the ab-
sence of CD47 expression, donor BM reconstituting cells
are rapidly cleared in CD47%/" recipients indicating that
this antigen is expressed on short-term reconstituting BM
cells. Congenic or allogeneic donor T cells which do not
express CD47 are rapidly cleared by CD47%/* DCs and
macrophages. Thus, CD47 antigen on BM cells and T cells

Figure 3. CD477/~ lymph node cells are cleared by
APC in vivo. LN cells were isolated from B6-CD47%/*
or CD477/~ mice, CFSE-labeled, and injected (5 X
10° per mouse) intravenously into B6 recipients. Some
mice were left uninjected (time 0 h). Spleens from mice
were harvested 1, 2, and 4 h after injection (n = 3 per
time point) and stained with mAb (anti-B220, anti-
CD3, anti-CD11¢, anti-CD11b, or anti-F4/80) to

CFSE CD47+/+ LN cells, green
CD1l1c+ cells, red
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CFSE CD47-/- LN cells, green
CD11c+ cells, red

identify CD11b~ DCs (B220~, CD3~, CD1l1c"),
CD11b* DCs (B220~, CD3~, CD11c*), and F4/80"
macrophages (B220~, CD3~, CD11c™). A portion of
the spleens examined using confocal microscopic analy-
sis. (a) Representative histograms depicting CD11b~
DCs 1 h after injection of CD47%/* cells (center),
CD477/~ cells (bottom) or not injected (top) are
shown. (b) Kinetics of the appearance of
CESE*CD11b™DCs (squares) CD11b™ DCs (circles),
and F4/80" macrophages (triangles) after injection of
CDA47%/* (open symbols) or CD477/~ (closed symbols)
LN cells. The percentage of CFSE* cells contained
within the indicated cell population is listed on the y
axis. Values for standard error of the mean were all
=26% except for CD11b" DCs engulfing CD47*/* T
cells. At the indicated time points, there was a signifi-
cantly (P = 0.03) higher proportion of CD11b~
CD11c* (1, 2, 4 h) DCs, CD11b* DCs (1 h), and F4/
80" macrophages (1 h) which had engulfed CFSE-
labeled CD477/~ versus CD47%/% cells. (c) Photomi-
crographs of spleen sections from mice at 1 h after injec-
tion with CFSE-labeled CD47%/* (left) or CD47 '~
(right) LN cells (green). CD11c* DCs are red.
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can function as a negative regulator of the scavenger effects
of host DCs and macrophages in eliminating lymphohe-
matopoietic cells which fail to express this antigen.

CD47-/~ BM is able to proliferate and reconstitute le-
thally irradiated CD477/~ but not CD47%/* recipients.
These data are consistent with a clearing of CD47~/~ he-
matopoietic progenitor cells by the host as further evi-
denced by an almost complete absence of BM proliferation
early after transfer. Similarly, despite the pressure to gener-
ate effective alloresponses and for homeostatic expansion in
vivo, B6-CD477/~ T cells could not be detected in alloge-
neic Balb/c SCID CD47%/* recipients. Recently, we have
reported that CD47-/~ RBCs are cleared in CD47%/*
mice by splenic macrophages (8, 11). The macrophage re-
ceptor engaged by CD47 is SIRPa, a signal-regulatory
protein which inhibits tyrosine-kinase signaling pathways
(8, 11, 19). NK inhibitory receptors also recruit and acti-
vate the same tyrosine-kinase signaling pathways so that
NK cells won’t eliminate lymphohematopoietic cells that
express self-MHC class I antigens (20, 21). Conversely, tu-
mor cells that have lost or downregulated MHC class I an-
tigens could be removed by NK cells (19). In an analogous
fashion, splenic macrophages clear RBCs which lack MHC
antigens. Although an ovarian cancer cell line has been
shown to be CD47 deficient, it is possible that CD47 ex-
pression is downregulated on other types of tumors or
damaged lymphohematopoietic cells (22). In those in-
stances, a low level of CD47 expression may cause the host
to eliminate these cells.

Regulation of CD47 expression may be an important
mechanism for host macrophages to remove damaged
RBC:s since the clearance of opsonized RBCs is controlled
by CD47-SIRPa. For other lymphohematopoietic cells
such as T cells and BM cells, DCs appear to be more criti-
cal than macrophages in eliminating CD47~/~ cells in a
CDA47%/* microenvironment. We provide direct evidence
that both CFSE-labeled CD47-/~ and CD477/* T cells
initially localized to the splenic periarteriolar sheath but
that CD47-/~ T cells were engulfed by CD11b™ DCs and
to a lesser extent by CD11b* DCs and macrophages by 1 h
after infusion, resulting in complete clearance of CD47~/~
but not CD47*/* T cells within 1 d after infusion. In
contrast, RBCs normally stay within the macrophage-rich
red pulp area of the spleen, which is why macrophages are
the primary populations to eliminate CD47/~ RBCs.
Consistent with CFSE-labeled T cell data, the elimination
of host splenic CD11b*CD11¢* DCs and macrophages by
clodronate only partially inhibited CD47~/~ T cell clear-
ance by CD47%/* recipients. Because DCs are widely dis-
tributed throughout the body especially including DC-
rich tissues such as the liver, lung, LN, and skin as well as
the spleen, we hypothesize that the spleen may not be the
major site of clearance for CD47~/~ T cells or BM. In sup-
port of this hypothesis, irradiated, splenectomized recipi-
ents given equal numbers of congenic CD47~/~ and
CD47%/* BM cells had exclusively congenic CD47*/*
BM-derived cells present in the peripheral blood when an-
alyzed 1 mo later. Thus, CD47*/* DCs and macrophages

engulf and clear CD477/~ lymphohematopoietic cells, a
process which can occur both within or outside the spleen.
For lymphohematopoietic cells which express MHC anti-
gens, CD47 expression may represent a safeguard for elim-
inating abnormal cells that have not downregulated MHC
class I antigens.

We were unable to demonstrate a critical role for CD47
in regulating alloresponses. In vitro, MLR responses with
CD47-/~ T cells were similar to CD47%/* T cells. In vivo,
CD47-/~ recipients could reject allogeneic donor BM
grafts indicating that host antidonor responses by CD47~/~
T cells were not markedly impaired. Several investigators
have shown that CD47 can costimulate T cells that have
received TCR signals (3—7, 19). In nonirradiated or suble-
thally irradiated recipients, the donor T cells are rapidly
cleared and therefore not available to mediate lethality. Be-
cause under lethal irradiation conditions, recipients of allo-
geneic CD477/~ T cells eventually succumbed to GVHD
lethality, it is possible that heavy irradiation either elimi-
nated SIR Pa-expressing host cells or inhibited their func-
tion. Regardless, CD47~/~ T cells can cause lethality, pro-
viding evidence that CD47~/~ T cell alloresponses are not
markedly impaired in vivo.

In summary, we have found that CD47 expression is re-
quired to prevent clearance of lymphohematopoietic cells
by DCs and macrophages. This rapid response mechanism
may protect the host from damaged or defective cells that
downregulate CD47 antigen in disease states. Approaches
to reduce CD47 antigen expression on lymphohematopoi-
etic cells may provide a means of eliminating abnormal or
harmful cells in various disease settings.
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