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Abstract

The development of naive CD4* T cells into a T helper (Th) 2 subset capable of producing in-
terleukin (IL)-4, IL-5, and IL-13 involves a signal transducer and activator of transcription
(Stat)6-dependent induction of GATA-3 expression, followed by Stat6-independent GATA-3
autoactivation. The friend of GATA (FOG)-1 protein regulates GATA transcription factor ac-
tivity in several stages of hematopoietic development including erythrocyte and megakaryocyte
differentiation, but whether FOG-1 regulates GATA-3 in T cells is uncertain. We show that
FOG-1 can repress GATA-3—dependent activation of the IL-5 promoter in T cells. Also, FOG-1
overexpression during primary activation of naive T cells inhibited Th2 development in CD4*
T cells. FOG-1 fully repressed GATA-3—dependent Th2 development and GATA-3 autoacti-
vation, but not Stat6-dependent induction of GATA-3. FOG-1 overexpression repressed de-
velopment of Th2 cells from naive T cells, but did not reverse the phenotype of fully commit-

ted Th2 cells. Thus, FOG-1 may be one factor capable of regulating the Th2 development.
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Introduction

In development, lineage commitment decisions can be ini-
tiated by transient gradients of factors that regulate gene ex-
pression. The early effects of transient signaling can become
stabilized by feedback pathways such as transcriptional au-
toactivation (1), in which a transcription factor induces its
own expression. For example, autoactivation of Pit-1 and
GATA-2 occurs in the developing pituitary after their tran-
sient induction by FGF-8 and BMP2/4 (1), stabilizing cel-
lular commitment to expression of specific pituitary hor-
mones. Transcriptional autoactivation also occurs for the
transcription factor GATA-1 in hematopoietic develop-
ment (2), MyoD in muscle development (3, 4), and reti-
noic acid X receptor (5), suggesting it may be a common
developmental strategy for lineage commitment. We re-
cently showed that GATA-3 also exerts transcriptional au-
toactivation in development of the Th type 2 (Th2) subset
of CD4" T cells (6). In this system, transient signaling by
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IL-4 receptors during activation of naive T cells causes sig-
nal transducer and activator of transcription (Stat)*6-depen-
dent elevation in GATA-3 expression followed by a switch
to Stat6-independent GATA-3 autoactivation (6, 7).

Transcriptional autoactivation reinforces developmental
choices, but creates a problem of regulating a potentially
runaway feedback pathway. For Th2 development, this
problem arises because naive T cells express a basal level of
GATA-3 that potentially could autoactivate in the absence
of IL-4 signaling. However, despite basal GATA-3 expres-
sion in naive T cells, Stat6-independent autoactivation is
found to occur inefficiently, in ~5-10% of T cells (6).
Therefore, a threshold may exist that must be overcome
before autoactivation can efficiently occur.

The physical basis for this threshold is unknown. Con-
ceivably, there may be a requirement for IL-4—induced
Stat6 activation in establishing GATA-3—dependent tran-
scription of the GATA-3 gene. This does not appear to be

* Abbreviations used in this paper: FOG, friend of GATA; GFP, green fluo-
rescent protein; RAG, recombination activating gene; ROG, repressor of
GATA,; Stat, signal transducer and activator of transcription.
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the case, however, since autoactivation of endogenous
GATA-3 expression can be established by ectopic GATA-3
even in the absence of IL-4 and in Stat6-deficient T cells
(6). A threshold for GATA-3 autoactivation could also be
established by factors that partially repress GATA-3 activ-
ity. Friend of GATA (FOG)-1 was identified as a GATA-1
interacting factor and shown to enhance GATA-1-depen-
dent transcriptional activity (8). FOG-1 contains multiple
zinc finger domains, four of which are capable of interact-
ing with the NH,-terminal zinc finger of the GATA fam-
ily of transcription factors. In particular, zinc fingers 1, 5,
6, and 9 of FOG-1 interact with the N zinc finger domain
of GATA-1. Initially, FOG-1 was found to be capable
of activating GATA-1-dependent responses. Subsequent
studies have also found that both FOG-1 and FOG-2 can
exert repressive activities of GATA-dependent responses
(9—11). FOG-1 can interact with GATA-3 in yeast two-
hybrid analysis (8), but its effects in T cells have not been
examined.

In this study, we examined the eftect of FOG-1 in regu-
lating the transcriptional activity of GATA-3 in developing
CD4* T cells. We find that FOG-1 exerts an inhibitory
rather than an activating role in regulating GATA-3—
dependent transcription in CD4* T cells. Further, our re-
sults indicate that FOG-1 can exert this activity primarily at
relatively low levels of GATA-3 expression and selectively
in naive T cells, but not in fully differentiated Th2 cells where
GATA-3 levels are much higher. FOG-1 appears to selec-
tively regulate GATA-3 autoactivation, and specifically re-
presses the Stat6-independent, GATA-dependent induction
of GATA-3 expression, but does not repress IL-4 driven,
Stato-dependent GATA-3 expression.

Materials and Methods

Reagents.  Wild-type and Stat6-deficient DO11.10 o/ —
TCR transgenic mice have been described previously (12, 13).
Cytokines and antibodies were obtained as described previ-
ously (6).

T Cell Activation and Phenotype Differentiation. 1DO11.10 sple-
nocytes were purified by density gradient (Histopaque-1119;
Sigma-Aldrich) and activated by 0.3 wM chicken OVA peptide
323-339 at 3 X 10° cells per milliliter in IDME media. For Th1
development, T cells were activated in the presence of IL-12 (10
U/ml) and anti—IL-4 antibody 11B11 (10 pwg/ml) (14). For Th2
development, cells were activated in the presence of anti—IL-12
(TOSH) (3 pg/ml; reference 15) and IL-4 (100 U/ml). For pas-
sage, T cells were harvested 7 d after the previous activation,
washed, and restimulated with 0.3 pM OVA at 1.25 X 103 cells
per milliliter and irradiated Balb/c splenocytes (2,000 rads, 2.5 X
106 cells per milliliter).

Constructs and Retroviral Infection. The green fluorescent pro-
tein (GFP)-RV vector has been described previously (16). We
modified GFP-RYV to create GFPR1-RV, allowing EcoR 1 clon-
ing of cDNAs into the multiple cloning sites (MCS) as follows.
GFP-RYV was used as template in a PCR with the following oli-
gonucleotide primers: MCS1: 5" GGG AGA TCT AAA CTC
GAG AAA GAA TTC TAA CGT TAC TGG CCG AAG; and
GFP-AS: 5 GAA TTC GGA TCC TTA CTT GTA CAG
CTC GTC C. The PCR product contains the internal ribosomal
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entry site/GFP cassette from GFP-RV, which now lacks the
original 3" EcoR1 site and making the MCS EcoR1 site unique.
This product was digested with BglIl and BamHI and ligated
with the 5.1-Kb backbone of Bglll/BamHI-digested GFP-RV to
produce GFPR1-RV. A 3.3-Kb EcoR1 fragment containing
full-length FOG-1 cDNA was digested from pMT2-FOG-1 (8)
and ligated into the EcoR1 site of GFPR1-RV. Integrity of the
full-length FOG-1 ¢cDNA was confirmed by sequencing. A full
length murine GATA-3 cDNA was generated using R/m
GATA-3 (J.D. Engel, Northwestern University, Evanston, IL;
reference 17) as template in a PCR reaction with the following
oligonucleotides as primers: GATA-3-5": GAATTCGTCGAC-
GCTCTGCCTCTCTAACCCAT; and GATA-3-3": GAATT-
CGTCGACGGACATGGAGGTGACTGCGGA.

This product was digested with Sall and ligated into Xhol-
digested hCD4-RV (18) to generate GATA-3-hCD4-RV. Ret-
rovirus was produced and transfections performed as described
previously (13). For coinfection experiments, viral supernatants of
FOG-1-RV and GATA-3-hCD4-RV were added together on
day 2 Th1 cells and infected T cells were sorted on day 7 for dual
expression of GFP and hCD4 using monoclonal anti-human
CD#4 directly conjugated with R-PE (Caltag).

Northern and Western Blot Analysis. Total RNA was isolated
by Rneasy kit (QIAGEN). RNA (5 pg per lane) was electro-
phoresed and transferred to Zeta probe membrane (Bio-Rad Lab-
oratories). A FOG-1 ¢cDNA probe was generated using the fol-
lowing oligonucleotide primers: FOG1-S: 5" CTG TCG GCC
TTC ACC ACC AA; and FOG-1-AS: 5" GTG CCT TGT CAG
CGG GAA CC. The HPRT, GAPDH, and GATA-3 probes
have been described previously (13, 19). Blots were probed with
murine monoclonal anti-GATA-3 antibody HG3-31 (Santa Cruz
Biotechnology, Inc.), a murine polyclonal anti-FOG-1 serum (8),
and polyclonal anti-murine ZAP-70 serum (20).

IL-5 Reporter Analysis. To generate a high copy number IL-5
reporter construct, we obtained the wild-type IL-5 reporter orig-
inally generated in the vector pXP1 (21) and moved it into the
vector pBS-LUC (22) as follows. The pXP1 IL-5 reporter con-
struct was digested with HindIIl and BamHI, and the liberated
1.7 Kb IL-5 promoter fragment ligated into HindIII/BamHI-
digested pBS-LUC, generating IL-5-LUC. We used the Renilla
luciferase vectors pPRL-TK or pRL-CMV (Promega) to normal-
ize Firefly luciferase transfections.

To express GATA-3 in transient transfections, the GATA-3
PCR product generated above using R/m GATA-3 and primers
GATA-3-5" and GATA-3-3" was digested with Sall and ligated
to into Xhol-digested vector pcDNA3.1 (Invitrogen) to generate
the plasmid GATA-3-pcDNA (8). 10 X 10° EL-4 cells on ice
were electroporated in 1 ml at 960 wF and 320V (22) with com-
binations of GATA-3-pcDNA and PMT2-FOG-1 as described
in the Figure legends. After 12 h, cells were either left untreated
or activated by 25 ng/ml PMA and 1 mM Bt2cAMP for 6 h as
indicated in the Figure legends and luciferase activity measured as
described previously (22).

Analysis of FOG-1—deficient T Cells by RAG2 Blastocyst Comple-
mentation. The CJ-7 ES cell line was previously used to generate
FOG-17/* single targeted and FOG-17/" doubly targeted ES
clones FOG3.31 and FOG3.3.11.10 (23). 10 ES cells were injected
into recombination activating gene (RAG)-2—deficient blastocysts
as described previously (24). Two chimeras each were analyzed for
FOG-17/* single targeted and FOG-1"/" doubly targeted ES
clones. Analysis of thymocyte subsets (see Fig. 7 A) was performed
as described previously (25). To analyze IL-4 production, intracel-
lular staining was performed as described previously (6).
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Results

FOG-1 Is Expressed in both Th1 and Th2 by CD4* T
Cells. We first considered FOG-1, FOG-2, BCI-6, and
CIITA expression in T cells during the induction of Thl
and Th2 subsets (Fig. 1 A). The mRNAs for BCI-6, FOG-2,
and CIITA were essentially undetectable in T cells un-
der either Th1 or Th2 conditions after 2 or 4 d of activa-
tion (data not shown). Although CIITA expression in Th1
cells has been reported by one group, it was detected only
by RT-PCR, and not by Northern or RNase protection
(26). In contrast, FOG-1 mRNA was detectable by
Northern blot analysis (Fig. 1 A). Expression was relatively
low in naive T cells, induced somewhat by stimulation
with anti-CD3 and anti-CD28 antibodies. The induction
of both Th1 and Th2 development requires T cell activa-
tion, so that the increase in FOG-1 expression seen upon
activation may indicate a potential regulatory role for
FOG-1 in phenotype development. Expression was essen-
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tially the same between Thl- and Th2-inducing condi-
tions and was maintained at relatively similar levels from
naive T cells to day 7, not showing significant elevation in
expression after Th differentiation (Fig. 1 A). By contrast,
GATA-3 expression was barely detectable by Northern
blot analysis in naive T cells, but became strongly and se-
lectively expressed during Th2 development. Thus, in
early T cells, mRNA for FOG-1 is in relative excess to
GATA-3, whereas in differentiated Th2 cells GATA-3 is
in relative excess to FOG-1.

We confirmed this result by Western blot analysis,
checking whether FOG-1 became differentially expressed
in differentiated Th1 or Th2 cells at the level of protein ex-
pression (Fig. 1 B). FOG-1 was expressed at essentially the
same level in either resting or restimulated cells and in Th1
and Th2 cells (Fig. 1 B, top). As a control, we found that
GATA-3 protein is highly expressed in resting and acti-
vated Th2 cells, but essentially undetectable in Th1 cells.

FOG-1 Represses GATA-3—dependent Transcriptional Ac-
tivity. FOG-1 activates GATA-1 transcription at the NF-
E2 promoter (8), but represses GATA-1 activity at the
M1la and the EKLF promoters (27) in transfection assays
and during erythropoiesis in injected Xenopus embryos
(10). These results suggest that the activity of FOG-1 may
differ in distinct promoter contexts. While FOG-1 can in-
teract with GATA-3 in a yeast two-hybrid system (8), no
functional studies of FOG-1 interactions with GATA-3
have been reported.

To test if FOG-1 activates or represses GATA-3—depen-
dent activity in T cells, we used the GATA-3—dependent
reporter system based on the IL-5 promoter (28). First, we
established the linear range for GATA-3 in which increas-
ing GATA-3 expression caused an increase in PMA/
Bt2cAMP-induced reporter activity (Fig. 2 A), consistent
with the dose—dependent effects of GATA-3 on the IL-5
promoter (28). Using a linear range of GATA-3 cotransfec-
tion, we next asked if FOG-1 could activate or repress
GATA-3—dependent IL-5 promoter activity (Fig. 2 B).
FOG-1 expression alone had no effect on activating IL-5
reporter activity (Fig. 2 B). As expected, GATA-3 expres-
sion increased PMA/Bt2cAMP-inducible reporter activity
(Fig. 2 B). Coexpression of FOG-1 with GATA-3 almost
completely inhibited GATA-3—induced reporter activity
(Fig. 2 B). Inhibition by FOG-1 of GATA-3—dependent
reporter activity was dose—dependent (Fig. 2 C), was maxi-
mal at 15 pg of FOG-1 plasmid, and saturated at ~80% in-
hibition. In summary, FOG-1 represses GATA-3—depen-
dent IL-5 promoter activity.

FOG-1 Overexpression in Naive T Cells Represses Th2
Development. We wished to determine if FOG-1 also inhib-
ited GATA-3—dependent transcriptional activity in non-
transformed T cells. For this we used retroviral gene trans-
fer to express FOG-1 in antigen-activated DO11.10 T cells
(Fig. 3 A). First, we asked if expressing FOG-1 early during
development would alter acquisition of a Th2-cytokine
pattern induced by IL-4 (Fig. 3 B). In T cells activated in
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opment. (A) Retroviral constructs. (B) T cells from unimmunized
DO11.10 TCR transgenic mice were activated using 0.3 pM OVA pep-

vitrogen). After 16 h, cells were
left untreated (open bars) or
treated with PMA/Bt2cAMP
(closed bars) for 6 h and lu-
ciferase  activity determined.
Values shown are the relative
Firefly luciferase activity after normalization by Renilla luciferase activity
of pRL-TK. The results were repeated twice. (B) 107 EL-4 cells were
transfected with the IL-5-Luc and pRL-TK as above, with additions (+)
of GATA-3-pcDNA (6 pg) and pMT2-FOG-1 (20 wg) as indicated. 6
g of pcDNA3.1 and 20 pg pMT2 were added in replacement (—) to
equalize total DNA between samples. After 16 h, cells were left un-
treated (white bars) or treated with PMA/Bt2cAMP (black bars) for 6 h
and luciferase activity determined and analyzed as in A. The experiment
was repeated five times with similar results. (C) EL-4 cells were trans-
fected with IL-5-Luc (20 pg), pPRL-CMV (5 wg), and the indicated mi-
crograms of GATA-3-pcDNA and pMT2-FOG-1. To equalize DNA
between samples, equal amounts of pcDNA3.1, or pMT2 were added in
replacement as in B above. Cells were stimulated and analyzed as in A.
The data are presented as fold-induction over the unstimulated IL-5 re-
porter activity in the condition without GATA-3 and FOG addition
(lane 1). The experiment was repeated four times with similar results.
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tide and conditions inducing either Th1 (10 U/ml IL-12 and 10 pg/ml anti—IL-4) or Th2 (100 U/ml IL-4 and 3 pg/ml anti-IL-12) development and
infected by GFP-RV or FOG-1-RYV virus after 36 h. CD4% GFP* T cells were purified by cell sorting on day 7 and restimulated with OVA, and ex-
panded for 7 d. T cells were restimulated (1.25 X 10° cells per milliliter) with 0.3 uM OVA peptide, and cytokines measured by ELISA as described pre-
viously. Similar results were obtained in six independent experiments. (C) Cells in B were expanded for 1 wk and activated with PMA (50 ng/ml) and
ionomycin (1 wM) overnight. Whole cell lysates (5 X 10° cells per lane) were analyzed by Western blot analysis for expression of FOG-1 and ZAP-70.
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the presence of IL-4, retroviral overexpression of FOG-1
partially inhibited IL-5 and IL-4 expression compared with
T cells infected with the empty control retrovirus. FOG-1
inhibited IL-4 production by ~70%, and inhibited IL-5 by
~50% (Fig. 3 B). In five additional independent experi-
ments, overexpression of FOG-1 consistently inhibited 1L-4
expression by between 50 to 80%. While inhibition of IL-4
production was not complete, the effects of FOG-1 were
selective for Th2 cells, since IFN-y production was not af-
fected (data not shown, and Fig. 5).

As a control, we verified by Western blot analysis that
the retroviral expression of FOG-1 significantly increased
FOG-1 protein content in these cells (Fig. 3 C). This ex-
periment also verified that the level of endogenous FOG-1
is similar between Th1 and Th2 cells as found above (Fig. 3
C, compare lanes 1 and 2). Thus, overexpression of FOG-1
repressed IL-4-induced Th2 development, consistent with
it acting as a repressor of GATA (ROG)-3—dependent ac-
tivity in the transient transfection system.

We next asked if FOG-1 could repress Th2 cytokines in
fully difterentiated cells. T cells that had undergone 1 wk of
previous differentiation were infected with FOG-1-
expressing and control retroviruses (Fig. 4). At this time
point, overexpression of FOG-1 did not significantly re-
press Th2 cytokine production (Fig. 4 A), even though
FOG-1 protein levels were significantly elevated as before
(Fig. 4 B). This result suggests that FOG-1 can act as a re-
pressor primarily during an early step in Th2 development.
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dependent experiments.

FOG-1 Inhibits GATA-3—induced Th2 Development.
FOG-1 could repress Th2 development either by inhibit-
ing Stat6-dependent processes or a GATA-3—dependent
process. To distinguish these possibilities, we performed a
series of coinfection experiments in which FOG-1 and
GATA-3 were independently expressed by difterent retro-
viral vectors. Since retroviral GATA-3 expression can in-
duce Th2 development independently of Stat6 and in
Stat6-deficient cells (6, 13), coexpressing FOG-1 with
GATA-3 allows a direct test of its role in the GATA-3—
dependent Th2 development.

First, we performed coinfection studies in wild-type T
cells that contain Stat6, activated in Thl-inducing condi-
tions, where Stat6 activation may be prevented using a
neutralizing anti-IL-4 antibody. T cells activated in Th1-
inducing conditions were infected with combinations of
FOG-1 and GATA-3 retroviruses on day 2 and infected
cells purified by two-color cell sorting on day 7. Under
Th1 conditions, the GATA-3 retrovirus induced IL-4 and
IL-5 production and inhibited IFN-y production (Fig. 5 A)
consistent with previous findings (6, 13, 29). In contrast,
the FOG-1 retrovirus did not induce Th2 development or
inhibit IFN-y production (Fig. 5 A). However, when
FOG-1 and GATA-3 both expressed in a dual infection,
the FOG-1 significantly inhibited the extent of GATA-3—
induced Th2 development (Fig. 5 A).

In the above experiment, IL-4 induced by the retroviral
GATA-3 may not be completely neutralized by antibody,



Figure 5. FOG-1 represses
GATA-3—induced Th2 in Stat6-
deficient T cells. T cells from
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transgenic mice were activated
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36 h, cells were infected (+)
with GEP-RV, FOG-1-RV, or
GATA-3-RV as indicated. Ret-
rovirally infected T cells were
purified for the appropriate
markers on day 7 by cell sorting,
and expanded once with OVA
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Similar results were obtained in
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Th2 (100 U/ml IL-4 and 3 pg/ml anti-IL-12) development as indicated. After 36 h, T cells were infected (+) with GFP-RV, FOG-1-RV, or
GATA-3-RYV as indicated. Cells were purified for the appropriate retroviral markers on day 7 by cell sorting and expanded once. Then (on day 14), T
cells were purified a second time by cell sorting and activated as above, and cytokines measured by ELISA.

allowing for potential Stato-dependent induction of
GATA-3 in T cells. To eliminate this possibility, we re-
peated these coinfection experiments using Stat6-deficient
DO11.10 T cells also activated under Thl-inducing condi-
tions (Fig. 5 B). In this setting, retroviral GATA-3 expres-
sion strongly induced Th2 development, with high IL-4
and IL-5 production (Fig. 5 B). However, when FOG-1
and GATA-3 were now coexpressed, FOG-1 almost com-
pletely inhibited GATA-3—induced Th2 development (Fig.
5 B), with IL-4 production nearly undetectable, and with
>10-fold reduced IL-5. Additionally, FOG-1 coexpression
with GATA-3 increased IFN-y production fourfold in
Stato-deficient T cells. These results suggest that FOG-1
can repress GATA-3—-induced Th2 development.

FOG-1 Inhibits GATA-3 Autoactivation, but not Stat6—
dependent GATA-3 Induction. Since retroviral GATA-3
can induce expression of the endogenous GATA-3 gene (6),
we wanted to ask whether FOG-1 could repress GATA-3
autoactivation. Northern blot analysis can distinguish be-
tween the retrovirally derived and the endogenous cellular
transcripts for both GATA-3 and FOG-1. On Northern
blots, endogenous GATA-3 transcripts migrate at ~3.8 Kb
and retroviral GATA-3 transcripts migrate at 4.6 Kb. En-
dogenous FOG-1 migrates at 3.4 Kb and retroviral FOG-1
at 6.5 Kb.

We first examined wild-type T cells that express Stat6, in
which FOG-1 only incompletely blocked GATA-3—induced
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Th2 development (Fig. 6 A). T cells were activated in
Thl-inducing conditions, infected on day 2 with FOG-1
or GATA-3 retroviruses, purified by two-color cell sorting
on day 7, expanded, and analyzed by Northern and West-
ern blot analysis (Fig. 6 A). Retroviral GATA-3 infection
induced the expression of endogenous GATA-3 transcripts
(Fig. 6 A, lane 3), consistent with previous findings (6).
Retroviral FOG-1 did not induce endogenous GATA-3
transcription (Fig. 6 A, lane 2). Coinfection of FOG-1 with
GATA-3 reduced the relative level of induction of endog-
enous GATA-3 both as measured by Northern blot analysis
(Fig. 6 A, lane 4) and also as measured by Western blot
analysis (Fig. 6 B, compare lane 3 and 4).

To directly test whether FOG-1 can repress IL-4—depen-
dent and Stat6-dependent induction of GATA-3, we also
examined GATA-3 protein expression of FOG-1-infected
cells activated in the presence of IL-4 (Fig. 6 B, lane 6). Im-
portantly, in these Th2-inducing conditions, retroviral
FOG-1 expression did not reduce GATA-3 levels. Thus, in
T cells expressing Stat6, FOG-1 partially represses GATA-3
autoactivation induced by retroviral GATA-3, but this re-
pression may be incomplete since some IL-4 produced by
some T cells (Fig. 3 B) could potentially induce endogenous
GATA-3 through the Stat6-dependent pathway. However,
in this condition, the transcriptional effect of GATA-3 that
is expressed can still be inhibited by FOG-1, since we ob-
served 50-80% decrease in IL-4 production (Fig. 3 B).

FOG-1 Represses GATA-3 Activity



A Th1 Th2
] 10 1
GFP + - - -+
FOG-1 T
GATA3 N .

retroviral FOG-1 [> . .
e

endogenous FOG-1 P

retroviral GATA-3 >

endogenous GATA-3 P

GAPDH
1.2 3 4 5
B Th1 Th2
I 1 1
GFP + - - - o+ -

FOG1 - + - + - 4

GATAZ - - + + - -
SATA - .-
ZAP-T0 | M o . "\

C Th1 Th2
 ——

GFP + - - *

FOG-1 S

GATA3 -+ + -

retroviral GATA-3 [>
endogenous GATA-3 P

3 4

GAPDH

1 2

Figure 6. FOG-1 represses Stat6-independent GATA-3 autoactiva-
tion. (A and B) Cells analyzed for cytokine expression in Fig. 5 A were
expanded for 7 d, activated with PMA and ionomycin for 12 h, and total
RNA prepared. Northern blot analysis (A) for expression of the retrovi-
ral and endogenous FOG-1 and GATA-3 transcripts, and GAPDH was
performed. Western blot analysis (B) was performed for GATA-3 and
ZAP-70. (C) Cells analyzed for cytokine expression in Fig. 5 B were ex-
panded for 7 d, activated with PMA and ionomycin for 12 h, and total
RNA prepared. Northern blot analysis for retroviral and endogenous
GATA-3 expression, and GAPDH expression was performed.
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To completely eliminate Stat6-dependent induction of
GATA-3 and examine FOG-1 repression of GATA-3 au-
toactivation in isolation, we repeated the experiment now
using Stat6-deficient T cells (Fig. 6 C). As expected, T cells
activated in Th1 conditions and infected by empty retrovi-
rus showed no expression of endogenous GATA-3 (Fig. 6
C, lane 1). Retroviral GATA-3 again strongly induced the
expression of endogenous GATA-3 transcripts (Fig. 6 C,
lane 2). However, now in Stat6-deficient T cells, the coex-
pression of FOG-1 with GATA-3 caused a very significant
reduction in the level of endogenous GATA-3 transcrip-
tion induced by retroviral GATA-3 (Fig. 6 C, compare
lanes 2 and 3). This result suggests that FOG-1 can repress
the transcriptional activity of the GATA-3 protein in driv-
ing the expression of the endogenous GATA-3 locus.

Analysis of FOG-1—deficient T Cells Using RAG-2 Blasto-
cyst Complementation. Embryonic lethality prevents direct
analysis of mature FOG-1—deficient T cells (23). There-
fore, we attempted to generate normal mature T cells by
producing chimeras using complementation of RAG-27/~
blastocysts with ES cells targeted at both FOG-1 alleles (23)
(Fig. 7). In such chimeras, mature T and B cells are exclu-
sively derived from FOG-1-targeted ES cells. For controls,
we generated chimeras with an ES cell targeted on only
one FOG-1 allele (23).

Overall thymocyte numbers in FOG-17/" chimeras
were greatly reduced relative to FOG-17/% chimeras
(Fig. 7 A). FOG-17/7 chimeras were nearly devoid of
CD4*7CD8* (DP) thymocytes (2%) (Fig. 7 A, top) com-
pared with control FOG-1""" chimeras which showed the
normal majority of DP thymocytes (82%). In FOG-17/~
chimeras, CD4-CD8~ (DN) thymocytes were the major-
ity, similar to unreconstituted RAG-2"/" mice. Analysis of
DN thymocytes showed a block in the transition from
CD44-/CD25% to CD447/CD25" in FOG-17/~
thymocytes, indistinguishable to RAG-27/" thymocytes,
whereas this transition occurred normally in FOG-17/*
thymocytes (Fig. 7 A, bottom). Endogenous RAG-27/~
DN thymocytes are present in all these chimeras, and with-
out additional analysis we cannot precisely conclude at
which step before the DP stage the FOG-17/~ thymocytes
development arrests. Some single positive CD4* or CD8*
thymocytes T cells are present in FOG-17/~ thymuses de-
spite the lack of DP thymocytes, distinguishing them from
totally unreconstituted RAG-27/" thymuses, although it is
unclear how these thymocytes developed in the absence of
a DP population. Finally, mature B cells were identified at
similar numbers in the spleens of FOG-1"/" chimeras and
FOG-17/* chimeras (data not shown). These results could
either indicate a requirement for FOG-1 in DP thymocyte
development, or reflect poor T cell reconstitution by this
particular FOG-17/~ ES clone.

Despite poor thymocyte development in FOG-17/~
chimeras, we attempted to identify potential effects on
Th1/Th2 development by purifying the peripheral CD4*
T cells from FOG-17/~ and FOG-1"/* chimeras. Periph-
eral CD4% T cell numbers in FOG-17/" chimeras were
significantly lower than in FOG-1"* chimeras, preventing
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isolation of cells sufficient for direct biochemical (Northern
and Western) blot analysis, but sufficient for in vitro activa-
tion (Fig. 7 B). Activation of these T cells by antibodies,
rather than by antigen, was necessary since these thy-
mocytes are not on a TCR-transgenic background, but on
the 129/Sv genetic background of CJ-7 ES cell (23). Thus,
we included activation of Balb/c T cells as a control for this
difference in genetic background and activation method.
Naive FOG-17/7, FOG-1""%, or Balb/c T cells were
purified by cell sorting and activated with plate bound anti-
CD3/CD28 antibodies under various initial conditions
(Fig. 7 B). In Th1 conditions, each population failed to ac-
quire IL-4 production (Fig. 7 B, Th1). Similarly low levels

gated cells in this quadrant. Similar results were obtained in
two experiments

of IL-4 production were seen when all cytokines (e.g.,
IL-4, IL-12, and IFN-y) were neutralized (Fig. 7 B, Neu).
In Th2 conditions, Balb/c T cells acquired a strong Th2
phenotype, with 49% cells positive for IL-4 production.
However, both the FOG-1"/" and FOG-1"/" T cells be-
came only weakly positive for IL-4 production, with 6.5 and
11% of cells producing IL-4 under these same Th2 condi-
tions (Fig. 7 B). FOG-17/7 T cells were less positive for
IFN-vy intracellular staining under Thl conditions (24%)
compared with FOG-17/* T cells (40%; data not shown).
These results could indicate a general problem with cytokine
production in FOG-1—deficient T cells, related either to ab-
normal reconstitution or to the absence of FOG-1.
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More importantly, differences in genetic background
prevent strong conclusions from these RAG-2 chimera
studies. Even under Th2-inducing conditions, 129/sv-
derived T cells showed much less efficient IL-4 production
than Balb/c T cells, independently of FOG-1 deficiency.
This effect could be due to differences in genetic back-
ground (30-35). Further, in unmanipulated conditions
(Fig. 7 B, Drift), Balb/c T cells became 39% positive,
whereas FOG-17/" or FOG-1"/* T cells became essen-
tially negative, at 2% and <1% positive for IL-4 produc-
tion, demonstrating the sensitivity of default Th2 develop-
ment to variations in genetic background. While, we
intended to test if FOG-1 deficiency caused constitutive
GATA-3 autoactivation, we can only conclude that
FOG-1—deficient T cells do not acquire a default Th2 phe-
notype under these in vitro conditions, and were unable to
directly analyze GATA-3 expression. Thus, we must tem-
per our conclusions due to possible artifacts induced by
poor thymocyte development in these chimeras and to dif-
terences in genetic background between 129/sv and Balb/c
T cells for default Th2 development.

Discussion

Th2 development can be divided into two phases (7); an
initial phase in which a transient excess of IL-4 induces
GATA-3 expression in a Stat6-dependent manner (13) fol-
lowed by a phase in which GATA-3 promotes its own
transcription (i.e., autoactivation) in a Stat-6—independent
manner, stabilizing GATA-3 expression and Th2 develop-
ment (6). Since naive activated T cells express detectable
levels of GATA-3 even without IL-4 treatment (6), we
wondered whether T cells contain factors capable of con-
trolling GATA-3—dependent transcription and thereby
generating a threshold for GATA autoactivation. In this
study we considered factors known to interact with GATA
family members. FOG-1 and FOG-2 could potentially re-
press GATA-3—dependent transcription. However FOG-2
was not detectable in T cells. FOG-1 is detectable in both
naive and differentiated CD4" T cells. FOG-1 was ex-
pressed slightly higher in activated naive T cells than resting
naive T cells, but was similar between Th1 and Th2 condi-
tions. Thus, we wondered whether FOG-1 could act to in-
hibit GATA-3—dependent transcriptional activity in T
cells. Our findings suggest that FOG-1 can repress GATA-
3—dependent promoter activity, and repress the GATA-3—
dependent induction of Th2 development, but does not
block Stat6-dependent processes, such as IL-4—induced
transcription of GATA-3.

We have not examined all possible factors that could
regulate GATA-3 autoactivation. The zinc finger protein
ROG has been reported to exert an inhibitory effect in T
cells that may be related to its ability to interact with
GATA proteins (36). ROG was identified initially as a
GATA-3—interacting protein, and when overexpressed in
T cell clones exerted repression of both Th1 and Th2 cyto-
kines, with effects shown for IFN-y, IL-4, and IL-5 (36).
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ROG-1 is induced within 24 h of activation under both
Th1 and Th2 conditions, so conceivably could also partici-
pate in regulating GATA-3—dependent autoactivation (36).
However, so far the effects of introducing ROG by over-
expression have been examined in fully differentiated T cell
clones, and not in early developing primary T cells. Thus,
the effect that ROG could potentially have on GATA-3
expression has not been examined.

Other factors could also help regulate GATA-3—depen-
dent transcriptional activity, including but not limited to
CIITA (26), BCl-6 (37), and T-bet (38), since each of
these factors opposes Th2 cytokine expression in one way
or another. At present, these factors are not thought to di-
rectly regulate GATA-3 transactivation, but rather to exert
independent effects on downstream targets. For example,
GATA-3 levels were reported to be independent of CIITA
expression (26). However, it will be interesting to deter-
mine their potential for directly regulating GATA-3 auto-
activation as well.

FOG-1 contains repetitive zinc finger motifs, with zinc
fingers 1, 5, 6, and 9 capable of interacting with GATA-1
N finger (39). FOG-1 may inhibit GATA-dependent tran-
scriptional activity in part by recruiting CtBP2, a local tran-
scriptional repressor (40). A short protein motif, PIDLS, lo-
cated between zinc fingers 6 and 7 of FOG-1 mediates
interaction with CtBP2 (40). Not all repression may in-
volve CtBP2, however, since the NH, terminus of FOG-2
exerts transcriptional inhibition independently of its ability
to bind CtBP2 (41).

We propose that FOG-1 may be one factor that can reg-
ulate GATA-3—dependent transcriptional activity in T
cells. This effect could occur either by recruiting CtBP2
(or other corepressors) into the GATA-3 transcriptional
complex, or by direct repression of GATA-3 transcrip-
tional activity. In either model, the level of inhibition
caused by FOG-1 depends on relative amounts of FOG-1
and GATA-3. When GATA-3 is low, as in naive T cells,
fixed levels of FOG-1 might bind a larger fraction of
GATA-3, and more effectively repress GATA-3—depen-
dent transcription. Our data showed that FOG-1 only re-
pressed GATA-3—induced processes, including GATA-3
autoactivation and Stat6-independent Th2 development,
but not the IL-4—induced, Stat6-driven GATA-3 expres-
sion. In this way, FOG-1 might regulate GATA-3 activity
in naive T cells, but not block the Stat6-dependent IL-4—
driven induction of GATA-3. Importantly, FOG-1 expres-
sion is not strongly induced in Th2 development, so that
higher levels of GATA-3 in Th2 cells results in a smaller
FOG-1-bound fraction, and less repression. This is consis-
tent with our finding that overexpression of FOG-1 in dif-
ferentiated Th2 cells did not inhibit IL-4 or IL-5 produc-
tion (Fig. 4 A). Since germline deletion of FOG-1 (23) and
GATA-3 (42, 43) are both lethal, testing these models for
T cells in vivo is difficult. We attempted to analyze
FOG-1—deficient T cells for altered Th2 development us-
ing RAG-2 blastocyst complementation, but we are unable
to draw firm conclusions from these experiments. More



definitive tests of FOG-1’s role in regulating Th2 develop-
ment will likely require a inducible deletion of FOG-1.
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