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The recent availability of heterogeneous high-throughput data types has increased the need for scalable in
silico methods with which to integrate data related to the processes of regulation, protein synthesis, and
metabolism. A sequence-based framework for modeling transcription and translation in prokaryotes has been
established and has been extended to study the expression state of the entire Escherichia coli genome. The
resulting in silico analysis of the expression state highlighted three facets of gene expression in E. coli: (i) the
metabolic resources required for genome expression and protein synthesis were found to be relatively invariant
under the conditions tested; (ii) effective promoter strengths were estimated at the genome scale by using global
mRNA abundance and half-life data, revealing genes subject to regulation under the experimental conditions
tested; and (iii) large-scale genome location-dependent expression patterns with approximately 600-kb peri-
odicity were detected in the E. coli genome based on the 49 expression data sets analyzed. These results support
the notion that a structured model-driven analysis of expression data yields additional information that can
be subjected to commonly used statistical analyses. The integration of heterogeneous genome-scale data (i.e.,
sequence, expression data, and mRNA half-life data) is readily achieved in the context of an in silico model.

The increasing availability of complete genome sequences
has ushered in an era of genome-enabled science that permits
construction of in silico models at the genome scale (11, 17, 23,
25, 37). In addition to the number of genome sequences, the
amounts of other high-throughput data types, including tran-
scriptomic, proteomic, metabolomic, global mRNA decay, and
interaction data, are growing at an ever-increasing rate (14).
This wealth of genome-scale data highlights the need for scal-
able in silico methods with which to integrate and reconcile
heterogeneous data sets (26).

Previously, a sequence-based framework for calculating the
metabolic costs of expressing a gene and synthesizing its gene
product was established (2). These costs are calculated directly
from the DNA sequence, and estimates of ribosomal content
can be used to scale the total protein-producing capacity of a
cell and the requisite costs. The established framework, when
scaled to account for all the genes in the Escherichia coli K-12
strain MG1655 genome (7), should allow explicit calculation of
the material and energy costs required for expressing the entire
genome, in addition to the costs for synthesizing the resulting
proteome. Fundamental values for cellular biomass require-
ments have been experimentally measured for E. coli (22), but
these values have never been calculated directly from the
merging of sequence data with high-throughput gene expres-
sion data. Previous sequence-based cost estimates for protein
synthesis have been calculated from expression estimates
based on codon usage (1) but have not integrated actual ex-
pression or mRNA half-life data. A method for integrating

such heterogeneous data sets would provide fundamental ma-
terial and energy cost values, estimated effective promoter
strengths on a genome scale, and the genome location distri-
bution of gene expression in prokaryotes.

Expression profiling has been used to identify genes whose
expression changes under shifting environmental conditions (4,
24, 31, 40, 46). A variety of methods have been developed with
which to analyze these data, including coexpression pattern
analysis for operon prediction (33), dimensionality reduction
techniques (16, 18), and several types of clustering methods
(3). A model-driven means by which to interpret and analyze
expression data, however, has not been established. The avail-
ability of sequence data, expression data, and, most recently,
global mRNA half-life data (6, 36) has created a need for such
a structured analysis and integration of these disparate data
sets. We developed a method that accomplishes this goal and
used it to study the overall cost of maintaining a particular
expression state, the distribution of individual effective pro-
moter strengths, and the corresponding genome location-de-
pendent characteristics of gene expression.

MATERIALS AND METHODS

In silico analysis framework. The analysis framework established previously
(2) describes a means of calculating the material and energy costs for maintain-
ing a particular mRNA transcript and for synthesizing the resulting protein. For
mRNA maintenance, the constituent nucleotide triphosphates are required to
maintain the concentration of a transcript at a particular steady-state concen-
tration (8). If the transcription rate, �mRNA (expressed in numbers of transcripts
per cell per unit of time [typically per second]), is known for a gene, the requisite
nucleotide demands can be calculated directly from the gene sequence.

Similarly, if the abundance of a particular transcript (mi) relative to the total
mRNA content (mrel,i � mi/mtot, where mtot � �k

mk) and the ribosomal

content of the cell are known, upper boundaries on the amino acid requirements
for synthesizing the encoded protein can be explicitly calculated. Thus, if the
protein synthesis rate (i.e., the number of protein molecules translated per cell
per unit of time) is known, the amino acid building blocks required to synthesize
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the encoded protein can be calculated directly from the sequence. In addition to
the amino acid costs, one ATP and two GTP molecules are required for each
peptide bond that is formed (2, 20).

Calculation of transcription state. The transcription state is defined as the
vector of all transcription rates in the genome, �mRNA,i (i � 1. . .N, where N
represents the number of coding sequence open reading frames [ORFs] in the
genome). The transcription state of the E. coli genome can be explicitly calcu-
lated by using sequence data if the following parameters are known: the effective
promoter strengths (or ORF usages), the mRNA degradation rate of each
transcript being synthesized, the mRNA amounts, and the free RNA polymerase
(RNAP) concentration. At the genome scale, for each transcript:

vdeg,i � kdeg,imi (1)

where �deg,i, kdeg,i, and mi are the degradation rate, the mRNA degradation rate
constant, and the mRNA concentration, respectively, for the ith gene.

The transcription initiation rates (�mRNA,i) can be approximated if the effec-
tive promoter strength for each gene (qi) (expressed in units of per molar per
second), the RNAP concentration ([RNAP]), and promoter concentration ([P]i)
are known (28):

vmRNA,i � qi�RNAP��P�i (2)

It is assumed that transcription elongation is not limiting for protein synthesis,
since once transcription initiation occurs, ribosomes may bind to the unfinished
mRNA transcript and translation may commence at a rate comparable to the
mRNA elongation rate (42).

In a steady state, the transcription rate must balance the mRNA degradation rate:

vdeg,i � vmRNA,i (3)

It is therefore possible to reconcile data for mRNA concentrations, effective
promoter strengths, and mRNA degradation rates in the following manner:

kdeg,imi � qi�RNAP��P�i (4)

The effective promoter strengths, which depend on both the intracellular condi-
tions and the regulation present, can thus be calculated globally if large-scale
mRNA concentration data (35, 44) and mRNA half-life data (6, 36) are avail-
able. If log-phase growth is assumed, the number of copies of each promoter per
cell can be estimated from each gene’s position on the chromosome and the
growth rate of the cell (8). Since these effective promoter strengths are essentially
normalized transcription rate constants, they are subject to regulation. Thus, the
variance of each effective promoter strength across many data sets becomes a
useful quantity. The vector of all effective promoter strengths, q � (q1. . .qN),
constitutes the promoter activation state of the genome, where N is the number
of coding sequences in the genome.

Metabolic cost of RNA synthesis. The synthesis rate of each mRNA transcript,
which determines the nucleotide triphosphates required, is set by the effective
promoter strength for each (ith) gene. Neither the mRNA elongation rate nor
the free RNAP concentration is assumed to be limiting for the synthesis rate of
each transcript (8, 28). In the absence of large-scale promoter strength data,
however, the transcription rate for each transcript may be estimated from the
relative mRNA amounts (estimated from expression data) and from available
mRNA decay rates (6, 36) (equation 1). It is possible to normalize the nucleo-
tides required for mRNA maintenance when the total mRNA concentration
([mRNA]tot) at a given growth rate is known (8).

Metabolic cost of protein synthesis. The total protein synthesis rate (i.e., the
overall capacity of the cell to synthesize protein) is limited by the number of
ribosomes available to the cell (8, 19). Additionally, the relative abundance of
each transcript (mrel,i) determines the weighting of the synthesis rate for each
protein since all mRNA transcripts compete for the pool of available ribosomes.
This disregard for the potential effect of transcript length on ribosomal occu-
pancy is probably valid since the messages are not necessarily saturating. In fact,
the number of ribosomes in a typical E. coli cell is about 1 order of magnitude
greater than the total number of messages (22). Thus, an upper boundary for
each protein synthesis rate (�prot,i) can be set as follows:

vprot,i �
�

ai
mrel,i (5)

where � is the maximal protein synthesis capacity of the cell (in number of
peptide bonds formed per cell per unit of time; about 340,000 peptide bonds per
cell per s [8]) as limited by the number of ribosomes present and ai is the number
of amino acids in each protein. The corresponding amino acid costs for support-
ing the upper boundaries for protein synthesis rates can be directly calculated
from the known sequence. Additionally, the energy cost required for ribosomal

binding, translocation along the ribosomes, and tRNA charging can be calculated
for each protein synthesis rate.

Analyzing genome location-dependent patterns in gene expression. Calcula-
tion of the transcription state of the genome requires a means of analyzing
potential patterns in expression along the chromosome. Wavelet transform tech-
niques (5) can be used to analyze and visualize the genome location-dependent
variability of gene expression. While standard Fourier transforms allow identi-
fication of periodic patterns in stationary signals, wavelet transforms allow iden-
tification of both periodic and nonperiodic localized patterns and do not assume
a stationary signal. In this work we used the continuous wavelet transform, which
is better suited for visualizing patterns than its discrete counterpart (21). The
continuous wavelet transform of signal x(t) [W(t,a)] (in our case, effective pro-
moter strengths along the genome), is defined as

W�t,a� �
1

�a�
	





g�t� � t
a �x�t��dt� (6)

where g([t� 	 t]/a) is the wavelet transform filter centered at t and the width of
the filter (a) is used to determine the scale at which patterns are analyzed. By
choosing the filter function (g) we can extract different types of patterns from the
data. Here we used the Morlet wavelet defined as g(t) � cos(5t)exp(	t2/2), which
is particularly well suited for studying localized periodic patterns in data (5). The
wavelet transform can be visualized by using a scalogram that displays the
transform W(t,a) as a contour plot with location along the genome (t) on one axis
and the scale (a) on the other axis. We evaluated the significance of the spatial
patterns extracted through wavelet analysis by randomizing the gene order in the
E. coli genome and recomputing the transform for each randomized genome. A
P value for each individual W(t,a) was then calculated based on 1,000 random-
ized genomes by computing the number of times that a specific |W*(t,a)| for a
randomized genome was larger than the true |W(t,a)|.

Experimental methods and normalization. All mRNA expression data were
generated from E. coli grown in batch culture as described in detail elsewhere
(J. D. Glasner, T. Durfee, Y. Qiu, M. Liu, Y. Kang, C. Herring, C. R. Richmond,
G. Plunkett 3rd, N. T. Perna, R. Mau, D. Frisch, S. Hinsa, S. Fendrick, G.
Nodalski, P. Borelli, S. Phillips, N. Hermersan, and F. R. Blattner, unpublished
data) and are available online (13; http://asap.ahabs.wisc.edu/annotation/php
/logon.php). In most experiments we used the sequenced K-12 strain MG1655.
Seventeen experiments involved strains derived from MG1655 with single ORF
disruptions, and in 2 experiments (single spotted array hybridizations) we used
strains DH5alpha and DH10B. In 39 of 49 experiments we used cells harvested
at the early exponential phase growth, and in 10 experiments we used cells from
late-exponential-phase or stationary-phase cultures. In 46 of the experiments we
used cells grown in a MOPS (morpholinepropanesulfonic acid)-based minimal
medium, while in 3 experiments we used Luria-Bertani media. Glucose was used
as the carbon source in most minimal medium experiments (43 of 49 experi-
ments), and in the other experiments we used acetate, glycerol, or proline as the
carbon source. Data were collected by hybridization of fluorescently labeled
cDNAs to either Affymetrix E. coli antisense oligonucleotide arrays (as described
by Rosenow et al. [32]) or microarrays of spotted ORF-length PCR fragments (as
described by Yang and Ames [44]). The oligonucleotide arrays contained probes
for both ORFs and intergenic regions, but only the data corresponding to ORFs
were considered in this study. For each ORF on the Affymetrix array we calcu-
lated the average difference value using the Microarray Suite software (Af-
fymetrix, Inc., Santa Clara, Calif.). For spotted arrays the signal intensity for each
ORF was taken to be the average intensity of duplicate spots on the array.
Fluorescently labeled genomic DNA was used as a reference for the spotted
arrays and thus provided an absolute measure of expression. To convert the
signal values to estimates of transcript abundance, the simplifying assumption
was made that for each experiment an average E. coli cell in the population
contained 10,000 (gene-size) mRNA transcripts (22). The signal for each ORF
on each array was scaled by the factor 10,000/sum of the signal intensities for
each array. When replicate hybridizations were available, the scaled signal values
were averaged across arrays. A small number of spots on each spotted microarray
were disregarded when we averaged across replicates because of poor-quality
PCR, spotting, or hybridization. For this reason the sums of the estimates for the
numbers of copies per cell are slightly lower than 10,000 and vary across the
spotted cDNA array experiments.

RESULTS

The in silico and experimental methods described above
were used to address the following three questions. What are
the metabolic resources required for expressing the entire E.
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coli genome under various conditions? What is the distribution
of effective promoter strengths, and is this distribution gene
function dependent? And do these estimated promoter
strength distributions reveal genome location-dependent pat-
terns in gene expression?

Metabolic cost of genome expression. The cost of expressing
the E. coli genome was calculated for a number of different
steady-state mRNA concentration distributions. A number of
random distributions were probed, as were mRNA concentra-
tions derived directly from the 49 gene expression data sets
generated in this study. All of these cost calculations were
normalized by using parameters corresponding to a cell with a
40-min doubling time (Table 1). Thus, for the mRNA mainte-
nance cost, the mRNA concentrations were normalized to a
specified total mRNA concentration ([mRNA]tot � �mi �
4.188 � 10	3 M). Similarly, the protein synthesis rates (and
the corresponding costs) were normalized by assuming that
there were 21,040 active ribosomes per cell (8) or � �3.37 
105 peptide bonds/cell/s by assuming a peptide elongation rate
of 16 amino acids/ribosome/s (42). Note that the amino acid
costs given below are actually upper boundaries for the costs,
since possible tRNA abundance constraints were not taken
into account.

Simulated in silico expression profiles. The costs of express-
ing a particular distribution of mRNA transcripts and of syn-
thesizing the encoded proteins were calculated for three ran-
dom mRNA concentration distributions: uniform, normal, and
exponential. Since the calculations for any randomly generated
expression profile, regardless of distribution, were nearly in-
variant, Table 1 shows the mean nucleotide and amino acid
demands (as well as the resulting by-products) for a typical
simulation. The coefficients of variation (CVs) were deter-
mined from calculating the costs given by 400 simulations, but
they are not shown in Table 1 since they were all less than 1%.

Measured in vivo expression profiles. The material and en-
ergy costs were then calculated for mRNA concentration dis-
tributions derived from available experimentally determined
gene expression data, and the resulting costs and CVs are
shown in Table 1. Gene expression data sets from 49 separate
experiments (corresponding to 91 hybridizations, including 41
Affymetrix arrays and 50 spotted cDNA arrays) were generated
as described above, and the numbers of transcript copies per
cell were estimated for most of the 4,290 coding sequences in
E. coli for each data set. For the spotted arrays, the numbers of
transcript copies per cell were estimated from microarrays
normalized by using genomic DNA as described above. The
experimental conditions from which the data were derived
varied widely and included exponential and stationary-phase
growth in glucose minimal medium, exponential growth in
acetate and glycerol minimal media, response to acid shock,
response to cold shock, response to heat shock, growth in
media containing an antibiotic, growth in Luria-Bertani broth,
and various deletions grown on glucose minimal medium. In
order to examine if the observed relative cost invariance was
true for data sets available elsewhere, additional data sets were
obtained from previous studies (41). The results for these data
sets (data not shown) were comparable to those from our
laboratory and did not alter the overall findings of this study.

Cost comparisons. The averages and CVs from each com-
putation of metabolic costs were compared. The variance in

the results among the 400 random simulations was essentially
negligible (all CVs were �1%). The 49 simulations resulting
from expression data exhibited slightly higher variation (the
average CV for the amino acid demands was 3.6%), but no CV
was higher than 10% (for the tryptophan cost). There was not
a statistically significant difference in the costs for any of the
amino acids or nucleotides resulting from randomly distributed
mRNA concentrations or data-based simulations. The mean
protein length was about 40 amino acids shorter for the data-
based simulations than would be expected if the mRNA dis-
tribution were random. The highest CVs for the data-based
cost calculations were for tryptophan (10.0%), cysteine (8.6%),
and lysine (7.3%), and the lowest were for isoleucine (1.3%),
threonine (1.3%), and asparagine (1.4%). The amino acid
composition of a related strain of E. coli (B/r) has been exper-
imentally determined (22), and the calculated costs for E. coli

TABLE 1. Calculated amino acid and nucleotide demands for
expressing the E. coli genomea

Amino acid(s) or
nucleotide

Demands
(mmol/g [dry wt]/h) CV (%)

Random All data

Amino acids 316.93 276.10 6.4
Ala 0.66 0.66 1.7
Arg 0.38 0.39 1.6
Asn 0.27 0.28 1.4
Asp 0.36 0.37 2.2
Cys 0.08 0.07 8.6
Gln 0.31 0.30 3.0
Glu 0.40 0.43 4.7
Gly 0.51 0.53 1.8
His 0.16 0.15 4.8
Ile 0.42 0.42 1.3
Leu 0.74 0.69 3.4
Lys 0.31 0.35 7.3
Met 0.20 0.19 2.2
Phe 0.27 0.26 4.0
Pro 0.31 0.29 3.1
Ser 0.40 0.39 2.8
Thr 0.38 0.38 1.3
Trp 0.11 0.09 10.0
Tyr 0.20 0.19 3.1
Val 0.49 0.51 3.0

ATP 7.02 7.02 0.01
CTP 0.08 0.08 0.7
GTP 13.97 13.96 0.004
UTP 0.08 0.07 1.4

AMP 7.02 7.02 0.01
CMP 0.08 0.08 0.7
GMP 0.09 0.09 0.004
UMP 0.08 0.07 1.4

GDP 13.88 13.88 �0
Pi 28.39 28.39 �0

a The average protein length and the resulting by-product synthesis rate were
included for each set of simulations. The random demands were derived from
randomly generated data sets, while the demands for all data were derived
directly from the 49 gene expression data sets used in this study. The CVs are the
CVs for the data-based calculations across all 49 data sets. All results were
normalized by using parameters corresponding to a doubling time of 40 min:
total [mRNA], 4.188  10	3 M; total ribosomal content, 21,040 active ribo-
somes; mass, 4.33  10	13 g (dry weight)/cell; and density, 382.72 g (dry weight)/
liter (8).
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K-12 correlate relatively well with the biomass data (results not
shown).

Distribution of estimated effective promoter strengths. Us-
ing global mRNA half-life data (6), we calculated the effective
promoter strength for each of the 49 sets of mRNA concen-
trations estimated from expression data (which included ex-
pression data from a variety of experimental conditions). The
mean effective promoter strength and the corresponding CV
were plotted for each of the 3,817 genes for which both ex-
pression data and half-life data were available (Fig. 1A). (Ta-
ble 1 indicates the parameters used for calculation of promoter
strengths.) In this analysis, the CV could be thought of as a
measure of the extent to which a gene was subject to regulation
under the experimental conditions tested. The highest expres-
sion levels generally corresponded to ribosomal protein com-

ponents and associated protein synthesis enzymes, structural
proteins, and membrane pore proteins (as classified by Serres
and Riley [38]). Although the majority of CVs (the CVs for
60.9% of the 3,817 mean effective promoter strengths) fell
between 50 and 100%, 115 genes had standard deviations that
were equal to or greater than double their average expression
levels. Over one-fifth of the genes (876 genes or 22.9%) had
CVs of less than 50% (Fig. 2a).

If the genes known to take part in metabolism (12) were con-
sidered separately (Fig. 2b), their CVs (average, 81.9%) were
comparable to the average CV for the 3,817 genes (78.2%). The
average expression of the metabolic genes (891 M	1 s	1), how-
ever, was significantly higher than that of the average gene (632
M	1 s	1). The mean effective promoter strengths and CVs of
genes implicated in regulation (34) were roughly equivalent to

FIG. 1. Calculated average effective promoter strengths at different sliding average scales. The cellular parameters were chosen for a doubling time
of 40 min (see Table 1), with an RNAP concentration of 1.456  10	6 M (8). The concentration of each promoter was chosen based on a C period of
45 min and a D period of 25 min (8), where the C period refers to the time between initiation and completion of one round of chromosomal replication,
and the D period refers to the interval between the end of replication and cell division (22). The location of the origin of replication (oriC) is indicated
for reference. (A) Plots of mean expression levels and CVs for the 20 Affymetrix data sets and the 29 spotted array data sets. The solid bars represent
the mean effective promoter strengths calculated from experiments performed with Affymetrix arrays, the dotted bars represent the effective promoter
strengths calculated from spotted array experiments; and the grey bars represent the CVs spanning all 49 data sets used in the calculations. (B) Plot of
mean expression levels over a sliding average (with second-order Savitzky-Golay smoothing) of 100 genes for the Affymetrix array (solid line) and the
spotted array (dotted line) data sets. (C) Same as panel B, but the sliding average was taken over a 600-gene window.
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those of the overall genome (mean effective promoter strength,
559 M	1 s	1; mean CV, 79.5%) (Fig. 2c).

Genome location-dependent patterns in gene expression. In
order to elucidate potential genome location-dependent pat-
terns in gene expression, wavelet transforms were applied to
the effective promoter strength data as described above. Slid-
ing averages of the calculated effective promoter strengths
obtained by using Savitzky-Golay smoothing (Fig. 1B and C)
indicated that there was nonrandom genome location-depen-
dent variability along the E. coli chromosome. In particular,
there appeared to be a periodic large-scale pattern of regions
with high average expression. This pattern was present both in
the data sets generated from Affymetrix experiments and in the
data sets generated from spotted array experiments, implying
that the observed pattern was not likely to be an artifact of the
experimental platform (Fig. 1). In order to elucidate this pat-
tern and other more subtle spatial patterns in the data, con-
tinuous wavelet and Fourier transforms were applied to the
effective promoter strength data. The continuous wavelet
transform of the average effective promoter strengths esti-
mated from the 20 Affymetrix GeneChip experiments per-
formed in this study (using the Morlet wavelet [5]) was repre-
sented in a scalogram (Fig. 3a). The major feature of the
transform was the clear periodic pattern at a scale of approx-
imately 600 kb. This pattern was observed in the spotted array
data sets and was also detected by using other types of wavelet
filters, such as the Marr wavelet used by Murray et al. (21),
indicating that the observed pattern was not an artifact due to
either the experimental platform or the particular transform
used (results not shown).

In the cross section of the scalogram at a scale of 610 kb
(Fig. 3b), the regular periodic pattern extending over almost
the entire length of the genome was readily observed. The
same periodic component identified through wavelet analysis
could also be identified as a peak in the Fourier spectrum (Fig.
3c) at a period of approximately 600 bp. However, the periodic
pattern did not extend in a regular fashion throughout the
whole genome, making standard Fourier analysis somewhat
less suitable for this study than wavelet analysis.

The observed periodic pattern appeared in all the individual
effective promoter strength data sets computed by using dif-
ferent expression profiles and hence did not seem to be specific
to any particular experimental conditions. No such pattern was
observed in the raw mRNA half-life data. A periodic pattern
was, however, detected in the raw gene expression data (data
not shown), but the pattern was somewhat less well defined
than that in the effective promoter strength data. Since the
effective promoter strengths were corrected for differential
mRNA decay rates and distance from the replication origin,
they seemed to be a more appropriate measure of the actual
transcription rate than mRNA expression data alone.

Analysis of gene functional classes whose members are pref-

erentially located in particular regions of high or low average
expression within the periodic pattern (Fig. 3b) may elucidate
the relationship between the observed periodicity and E. coli
cellular function. Flagellar and other cell motility-related
genes and genes encoding ribosomal and other translation-
related proteins are preferentially located in one or more of
the high-expression regions. On the other hand, genes involved
in major metabolic functions, such as energy metabolism, car-

FIG. 3. Spatial variability of gene expression along the E. coli ge-
nome studied by using continuous wavelet and Fourier transforms of
the effective promoter strength data. (a) Scalogram of the wavelet
transform with the gene position on the y axis and the transform scale
on the x axis. Lighter and darker regions correspond to higher and
lower values of the coefficients, respectively. The regions enclosed by
black contour lines were deemed to be statistically significant patterns
compared to spatially randomized effective promoter strengths (P �
0.001). (b) Cross section of the wavelet scalogram in panel A at a scale
of 610 kb. The regions with significantly nonrandom wavelet coeffi-
cients are indicated by red. Gene functional classes (classified accord-
ing to GenProtEC 38) preferentially located in particular high-expres-
sion (red) or low-expression (green) regions (hypergeometric P �
[0.001/number of functional classes]) are also indicated. (c) Fourier
transform analysis of the effective promoter strength data. The only sig-
nificant peak in the transform occurs at the approximately 600-kb period.

FIG. 2. Log-log plots of the standard deviations (St. Dev.) versus mean effective promoter strengths (Eff. Prom. Str.) for individual ORFs in
49 expression data sets. The gene information outside each plot indicates the numbers of genes between CV demarcations, and the gene
information inside each plot indicates the numbers of genes whose promoter strengths were less than 100 M	1 s	1, between 100 and 1,000 M	1

s	1, and greater than 1,000 M	1 s	1. (a) Plot of all 3,817 genes for which effective promoter strengths were calculated. (b) Overlay of 514 metabolic
genes (12). (c) Overlay of 290 regulatory genes (34).
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bon utilization, and transport, tend to be located in the low-
expression regions. Furthermore, genes in certain functional
classes are typically strongly enriched in only one or two of the
high- or low-expression regions, indicating that there are po-
tentially distinct roles for each of these regions. Note that the
only data generated were data for protein-encoding ORFs.
Thus, the rRNA and tRNA transcription rates were not con-
sidered in the analysis of genome location-dependent patterns.

DISCUSSION

We performed an integrated analysis of genome-scale gene
expression in E. coli, based on simultaneous use of sequence data,
gene expression data, and mRNA half-life data. The results from
this integrative analysis are threefold: (i) the relative material and
energy costs used to express the E. coli genome were essentially
independent of the distribution of mRNA concentrations; (ii) an
examination of the distribution of the effective promoter strengths
of 49 gene expression data sets revealed that over 16% of the
genes in E. coli vary in expression by more than 100% of the
average promoter strengths under the conditions used; and (iii) a
wavelet analysis of the distributions revealed a large-scale (�600-
kb) periodic pattern in the expression of genes in E. coli. The
methods used were computationally simple and thus suitable for
immediate integration into existing genome-scale metabolic mod-
els of E. coli (12, 29).

The apparent invariance of the costs for maintaining any ex-
pression state of the genome implies that the metabolic resources
required to maintain a particular transcription and proteomic
state are relatively constant and independent of external condi-
tions. This invariance does not hold true, however, if a gene or
small subset of genes with atypical amino acid composition is
expressed at a level that is orders of magnitude higher than the
level of expression of the rest of the genes (data not shown). Thus,
microbes genetically engineered to express a particular protein at
a high level may experience significant phenotypic effects associ-
ated with the cost imposed by such atypical expression. It is also
possible that the dynamic range of microarrays and gene chips
becomes limiting if a few transcripts are expressed at a very high
level and therefore saturate the signal on the arrays (9, 30). To
test the significance of this effect, cost simulations were per-
formed in which the top 0.1% of genes with the highest expression
levels were assigned values for number of copies per cell that were
10% higher than the level reported by the arrays. The highest CV
was increased to just over 20% (for tryptophan), while the aver-
age CV of the amino acid costs increased from 3.6 to 8.1%,
suggesting that a limited dynamic range in the experimental tech-
nology could have some effect on the calculated costs. Finally, it
is possible that the observed invariance may have been due to a
lack of probing the experimental conditions that would most alter
the relative amino acid costs required for expression. However,
the conditions chosen were quite varied, and hence we expected
there to be differences in the overall metabolic costs between the
conditions if such differences exist.

The variation in effective promoter strength was computed
for the entire genome. In general, no clear patterns were found
between gene category and variation in expression level. There
was also no observed functional class bias either in the effective
promoter strengths or in the variance across 49 different cal-
culations. It is worth noting that these computations were

biased by the experimental conditions under which each ex-
pression profile was measured. To better ascertain genes that
are subject to regulation, it will be necessary to test more
varied growth conditions (e.g., growth on other carbon sources,
anaerobic growth, growth during diauxic shifts, etc.). If M9
medium (which contains a relatively large amount of phos-
phate) were used instead of MOPS medium, for example, one
might expect the genes involved in the phosphate regulon to
exhibit altered effective promoter strengths (and, conse-
quently, increased CVs in the subsequent analysis), thus re-
vealing the extent to which these genes were differentially
regulated under the changing medium conditions (43). As
more data sets are included in this type of integrated analysis,
a better gauge of the variability in gene expression should be
obtained, thus more completely revealing the extent to which
each gene is subject to regulation.

An approximately 600-kb periodic genome location-depen-
dent pattern in gene expression in the E. coli genome was
detected by performing wavelet analysis of the effective pro-
moter strength data generated in this study. The origin and
significance of this pattern, however, are not clear. One possi-
ble explanation for the observed pattern is the existence of
topological domains with potentially different levels of super-
coiling in the E. coli chromosome (39). It has been estimated
that there are 43 � 10 such domains so that the average
domain size is approximately 100 kb (39). No significant 100-kb
periodicity was detected in the wavelet analysis except for
particular localized patterns (Fig. 3a), although an irregular
periodicity at a sliding average of 100 genes (�100 kb) was
observed (Fig. 1B). As the 600-kb periodicity corresponds to a
multiple of the 100-kb topological domain scale, it is possible
that the potential differences in gene expression in different
topological domains indeed explain the observed pattern.
However, the nature and locations of the topological domain
boundaries in the E. coli genome are not known (10, 27, 45),
making comparisons of the topological domain structure with
the observed periodicity in expression challenging. Even if the
origin of the periodic expression pattern is somewhat obscure,
there is a clear tendency of genes in certain functional classes
to cluster in either the high- or low-expression regions within
this pattern (Fig. 3b). If the periodic pattern and the corre-
sponding functional class clusters continue to be observed as
more data sets are generated, this tendency may suggest how a
genome location-dependent constraint on gene expression
could act to shape gene order in genomes.

As genome-scale data, including mRNA expression data,
mRNA half-lives, and proteomic data, are becoming more
widely available, the need for integrating these heterogeneous
data types is becoming stronger (26). As this study demon-
strated, a higher-order biological analysis can be performed
based upon the integration of multiple data types that cannot
be done based on an analysis of individual data sets. Such
integrated data analysis is enabled by genome-scale in silico
models. Different data types demand a model to explicitly
relate their values, thus revealing emergent properties that
would otherwise be inaccessible (15).

The proposed model integrates three types of genome-scale
data: sequence, gene expression data, and mRNA half-life
data. This structured framework constitutes a novel means by
which to analyze expression data and interpret the expression
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state of a cell. The scalability of the methods used to generate
these data should greatly facilitate future integration of the
genomic expression state with existing genome-scale metabolic
models. This method therefore constitutes an important step in
our progress towards achieving truly genome-scale integrated
models of cellular function.
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