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ABSTRACT

The post-genomic era is marked by huge amounts
of data generated by large-scale functional genomic
and proteomic experiments. A major challenge is to
integrate the various types of genome-scale inform-
ation in order to reveal the intra- and inter-
relationships between genes and proteins that
constitute a living cell. Here we present a novel
application of classical graph algorithms to inte-
grate the cellular networks of protein—protein
interactions and transcription regulation. We
demonstrate how integration of these two networks
enables the discovery of simple as well as complex
regulatory circuits that involve both protein—protein
and protein—-DNA interactions. These circuits may
serve for positive or negative feedback mechan-
isms. By applying our approach to data from the
yeast Saccharomyces cerevisiae, we were able to
identify known simple and complex regulatory cir-
cuits and to discover many putative circuits, whose
biological relevance has been assessed using
various types of experimental data. The newly iden-
tified relations provide new insight into the pro-
cesses that take place in the cell, insight that could
not be gained by analyzing each type of data inde-
pendently. The computational scheme that we pro-
pose may be used to integrate additional functional
genomic and proteomic data and to reveal other
types of relations, in yeast as well as in higher
organisms.

INTRODUCTION

The sequencing of whole genomes has paved the way to large-
scale experiments that provide vast amounts of valuable data.
These include profiling of mRNA and protein expression at a
whole-genome scale, locating the binding sites of given
transcription factors along the genome, and proteome-wide
identification of interacting proteins. While each data set by
itself calls for the application of appropriate computational
tools for data processing, even more so does the integration of

different types of information. Yet, despite the wide
recognition of the importance of integrative analyses, only a
few such studies have been reported, most of which regard
the integration of mRNA profiling data in the yeast
Saccharomyces cerevisiae with other types of data (1-10).
These integrative analyses provide new molecular insights
that could not be revealed using each type of information
alone. In the present report, we integrate genome-wide data of
protein—protein interaction with data of regulatory proteins
and their target genes. Integration of these two types of data is
especially important for the investigation of regulatory
pathways, as it is widely accepted that many of the pathways
in the cell are regulated both at the transcriptional and at the
proteomic levels. One common type of molecular pathway
that involves both protein—protein and protein—-DNA inter-
actions is the regulatory circuit, and the integration scheme
presented here is aimed at its discovery.

In general, we define a multi-level regulatory circuit
between two proteins when they are related both by protein—
protein interaction and as regulator—target (Fig. 1a). Feedback
loops where a regulatory protein activates the transcription of
a target gene, whose product, in turn, inhibits or activates the
regulatory protein, provide an example of such multi-level
regulatory circuits. The relation between the two proteins
defining a circuit is not necessarily direct: proteins can either
be related by intermediate interactions or by intermediate
regulators (Fig. 1b). Such circuits can be used for complex
regulatory tasks, e.g. as signal transducers. For example, in
Figure 1b, protein B may transmit a signal to protein C, which,
in turn, transmits a signal to protein A.

Here we present a rigorous integration of large-scale data of
protein—-DNA and protein—protein interactions. By using a
novel approach based on classical graph algorithms (11), these
two types of data are efficiently integrated, enabling the
discovery of simple and higher order multi-level regulatory
circuits. We applied our approach to data of protein—protein
and protein—-DNA interactions in the yeast S.cerevisiae and
discovered all possible regulatory circuits based on these data.
The biologically relevant circuits were determined by using
the assignments of the circuit proteins to cellular compart-
ments and cellular processes based on experimental data, and
by their consistency with results of deletion experiments (12).
We illustrate the validity of this computational approach by
the already known simple and higher order circuits that it
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Figure 1. Regulatory circuits defined by proteins A and B. A red bi-direc-
tional arrow marks protein—protein interaction, and an orange arrow marks
transcription regulation. (a) A direct regulatory circuit consists of two
proteins, where protein A regulates gene b, and the product of gene b,
protein B, interacts with A. Such a circuit can be used for feedback regula-
tion or for switching on a new pathway. In the former, the interaction
between A and B prevents A from activating the transcription of the gene
encoding protein B, and by this maintains the required level of B. In the
latter, the complex AB can be used to activate a new set of genes. In both
cases, the circuit serves as the switch that controls the activity of A.
(b) Higher order regulatory circuits can be identified between proteins that
are indirectly related. These circuits contain intermediate proteins between
A and B that either form a series of protein—protein interactions, or a series
of regulator—target interactions. In the upper circuit, proteins A and B are
related via protein C that interacts with both A and B. In the lower circuit,
proteins A and B are related via proteins C and D, and via transcription
factor E that is regulated by A and in turn regulates the gene encoding
protein B.

identifies, and report many putative regulatory circuits that can
be tested experimentally. The newly identified relations
provide new insight into the processes that take place in the
cell, insight that could not be gained by analyzing each type of
data independently.

MATERIALS AND METHODS
Data sources

Data of transcription factors and their target genes in yeast
were extracted from the SCPD database (http://cgsigma.
cshl.org/jian) (13), from the YPD database (http://www.
proteome.com) (14), and from recent publications on
genome-wide experiments that locate binding sites of given
transcription factors (15-18). For data extraction from the
latter, we used the same experimental thresholds used in the
original papers.

Protein—protein interaction data in yeast were extracted
from the DIP database (http://dip.doe-mbi.ucla.edu) (19),
from the BIND database (http://binddb.org) (20), and
from the MIPS database (http://mips.gsf.de/proj/yeast/tables/
interaction/) (21). In total, our data set consisted of 5976
protein pairs connected as regulator—target and 8184 protein
pairs connected by protein—protein interactions. For interpret-
ation of the results, we used extensively the information in the
YPD database and references therein.

Detection of regulatory circuits

The regulator—target relationship is viewed as a transcription
regulation graph Gg, where there is a directed edge from node
i to node j if protein i regulates gene j (we refer to a gene and
the protein it encodes interchangeably). Similarly, protein—
protein interaction data are viewed as a graph Gp, where a bi-
directed edge connects nodes i and j if proteins i and j interact.

To detect regulatory circuits we look for protein pairs such
that the two pair-mates are connected to each other by a
directed path in Gy and by a path in Gp: (i) for both graphs Gg
and Gp, compute the graph distance between any two proteins
that are at most four edges distant from each other; (ii)
postulate a kth order circuit for those pairs of proteins for
which the larger of the two distances equals k; (iii) define the
corresponding circuit as the union of the shortest paths in both
graphs, revealed by the BFS algorithm (11). We chose at this
stage to concentrate on the shortest paths connecting a protein
pair for the sake of simplicity. Apart from its computational
aspect, choosing the shortest path has a biological rational, as
shorter paths of interactions should allow a more efficient
response to external or internal stimuli. If Gp and/or Gg
contain several shortest paths between the pair of proteins that
define the circuit, all combinations of these paths are initially
considered as potential circuits. In later phases of the analysis,
additional assessments are performed to select the most
promising circuit(s).

The graphs are represented by their adjacency matrices, and
protein pairs that define circuits are detected via simple matrix
manipulations (Figs 2 and 3). In brief, the protein—protein
interaction data are represented by a symmetric matrix of 6315
X 6315 (the number of yeast protein-encoding genes), with
occupied entries for pairs of proteins that are known to interact
and empty entries for pairs of proteins for which such data are
unavailable. The regulator—target data are represented by a
non-symmetric matrix of 6315 X 6315, with occupied entries
for proteins and genes that are known to be related as regulator
and target, respectively, and empty entries when such a
relation is not known. By intersecting the two matrices co-
occupied entries can be identified. Each such entry defines a
pair of proteins that are related to each other both by protein
interaction and as regulator—target, defining a direct regulatory
circuit (Fig. 2). Higher order relations between proteins may
be detected by multiplication of each matrix by itself: proteins
that are either related by intermediate interactions or by
intermediate regulators. Intersection of the higher order
matrices enables the detection of pairs of proteins that
define higher order regulatory circuits (Fig. 3). The circuits
themselves are revealed using a graph search method.

Statistical significance of circuit abundance

We assess whether the number of protein pairs that define
circuits is significantly higher in the integrated network in
comparison with their number in integrated randomized
networks. To keep the randomized networks as close as
possible to the real networks in terms of their network
properties, we preserve the topology of each network and
permute over the network nodes, generating 1000 random
isomorphic networks. Our analysis is conducted in three
ways: (i) the protein—protein network is kept as is and the
protein—-DNA network is randomized; (ii) the protein-DNA
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Figure 2. The computational approach for integration of protein—protein and protein-DNA interaction data. (Top) From left to right, the protein—protein inter-
action graph, the regulator—target relationship graph and the intersection graph. The intersection graph contains a regulatory circuit between E and D.
(Middle) The same information using matrix representation is depicted. The protein—protein interaction data are represented by the left-most symmetric adja-
cency matrix, where red-filled entries mark pairs of interacting proteins [(A,B), (B,C) and (D,E)]. The regulator—target interaction data are represented in the
middle adjacency matrix, where orange-filled entries mark regulator—target relationships [(A,c), (C,e) and (E,d)]. Co-occupied entries in the two matrices
correspond to protein pairs that are related to each other both by protein—protein interaction and regulator—target relationship, and are revealed by intersecting
the two matrices. These co-occupied entries determine the circuits. The resulting intersection matrix is shown on the right, where the green-filled entry marks

the pair (E,D) that defines a regulatory circuit (bottom).

network is kept as is and the protein—protein network is
randomized; (iii) both networks are randomized. The statis-
tical significance per order is obtained by counting in how
many of the integrated random networks the number of protein
pairs that define circuits is at least as high as in the real
integrated network.

Biological assessment of circuits

Analysis based on proteins’ assignments to cellular processes.
Proteins can be annotated based on the cellular processes they
participate in (e.g. the transcription factor Imel is assigned
to the cellular processes meiosis and recombination).
Assignments of proteins to cellular processes are provided
by the YPD database (14), based on experimental information.
For our analysis, we used the documentation in the YPD May
2002 version (14), according to which each protein may be
assigned to one or a few out of 43 possible cellular processes.
A protein assignment is zero if its biological process is
undefined. A circuit score k, is the maximal number (k) of
circuit proteins that are assigned to a common cellular process,
where p denotes this specific process. We quantify the
significance of a circuit’s score by comparing it with the
scores of 10 000 random circuits (except for order 1, where we
use all available data). Each random circuit is composed of a
series of proteins, where every two adjacent proteins interact
by our data, and the order of these connections is as in the
tested circuit. This ensures that the random circuits pertain to
the defined circuitry of the tested one. The significance

(P-value) of the original circuit with score k, is computed as
the fraction of random circuits where at least k members are
assigned to cellular process p. In case k is associated with more
than one specific process, the significance is computed per
process, and the highest fraction is considered as the
significance value. A circuit is considered significant if its
P-value is at most 0.05. When more than one shortest path
exists between a pair of proteins that define a circuit, all
possible circuits are assessed, and the one(s) with the lowest
probability is selected (given that the probability is at most
0.05). The circuits that were selected through the cellular
process assessment are now subjected to two additional
assessments.

Analysis based on the annotation of protein localization. We
consider an interaction between two proteins as feasible if the
two interacting proteins are localized to the same cellular
compartment, or if they are documented as co-participating in
a complex. A circuit is considered as biologically feasible if all
its interactions are feasible. In this step of the analysis we
select among the circuits that passed the first assessment those
that are biologically feasible.

To evaluate whether the number of biologically feasible
circuits deviates significantly from that expected at random,
we perform a binomial test. The expected probability for
circuits composed of ¢ physical interactions, £ > 1, is obtained
by generating 10 000 random circuits, each composed of a
series of ¢ + 1 proteins, where every two adjacent proteins
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Figure 3. Detection of regulatory circuits of order 2. (Top) From left to right, the protein—protein interaction graph, the regulator—target relationship graph
and the intersection graph. In each graph a directed solid edge connects two nodes if the corresponding proteins interact. A directed dotted edge from one
node to another exists if a path composed of two solid edges leads from the first node to the other. For example, in the protein—protein interaction graph a
dotted edge connects A and C since they are connected by a path A-B-C of length 2. (We ignore paths of the form A-B—A that use the same edge twice in
the protein—protein interaction graph.) The intersection graph contains two regulatory circuits, between E and D, and between A and C. (Middle) The graphs
as adjacency matrices. As in Figure 2, filled entries mark protein pairs that are connected by a solid edge in the original graphs. By multiplication of each
matrix by itself, higher order relations between proteins may be detected. These relations are noted as striped entries in the red and orange matrices (and rep-
resent the dotted edges in the corresponding graphs). Entries that are co-occupied in the red and orange matrices are colored green in the intersection matrix:
the entries are filled if both corresponding entries are filled, and striped if at least one entry is striped. (Bottom) The resulting regulatory circuits. The regula-
tory circuits between E and D and between A and C are of orders 1 and 2, respectively.

physically interact by our data, and computing the fraction of
feasible circuits. For £ = 1 we use all available data. The
protein localization data were taken from Kumar et al. (22)
and from YPD (14), where each protein may be localized to
one or a few out of 29 possible cellular compartments. In
addition, we used protein complex data from MIPS (21) and
YPD, to record whether two proteins participate in the same
complex.

Note that the two circuit properties, the fraction of proteins
that participate in a common cellular process and the fraction
of feasible physical interactions, are not completely inde-
pendent. Nonetheless, correlation analysis indicates that only
10% of their variance is shared (r2).

Analysis based on results of knockout experiments. The data
for this assessment were extracted from the Rosetta
Compendium of knockout results (12), a data set that contains
gene expression profiles of S.cerevisiae genes corresponding
to individual deletions of 276 genes. For a circuit that is
defined by a regulatory protein A and a target gene B (Fig. 1),
we expect that the knockout of B will affect the activity of A,
if indeed the circuit functions as a feedback loop. This effect
can be experimentally detected by following the changes in
the expression levels of other gene targets of A. We define a
change in expression only when it is at least 2-fold change. We
limit our analysis to genes B that do not themselves encode
for transcription factors, to avoid misinterpretation of the
knockout results. In cases where we find that genes affected by

the knockout of B correspond with gene targets of A, we
evaluate the significance of this relationship by a %2 test.

RESULTS

The computational approach used to integrate the protein—
protein interaction and regulator—target data is depicted in
Figures 2 and 3 and is described in the Materials and Methods.
Intuitively, we represent each type of data as a graph, integrate
the two types of data by intersecting the two graphs, and
identify pairs of proteins that define a circuit from the
intersection graph (we refer to a gene and the protein it
encodes interchangeably). The circuits themselves are re-
vealed using an algorithm for finding the shortest paths
between two nodes in a graph (11). Application of this
algorithm to corresponding pairs of nodes in the two graphs
enables the detection of circuits that include both protein—
protein and protein—DNA interactions. The order of a circuit is
determined to be the maximal number of interactions
(protein—protein or regulator—target) that connect the pair-
mates. Since one cannot cope manually with the huge amount
of genome-scale data, we have automated this process by
representing the graphs by their adjacency matrices and
employing matrix manipulations (Figs 2 and 3). This compu-
tational procedure is guaranteed to detect all circuits in the
data that comply with our definition.

In this study, we extracted regulatory circuits of orders 1-4,
based on yeast experimental data of protein—protein and
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Figure 4. Number of connected protein pairs. Gray bars, protein pairs whose distance in the graph of physical interactions <k; black bars, protein pairs
whose distance in the regulator—target graph <k; white bars, protein pairs defining circuits of order k (based on the intersection graphs). The numbers on the

y-axis are presented on a logarithmic scale.

protein—DNA interactions (see Materials and Methods for data
sources). In total, our procedure revealed 6394 pairs of
proteins that may define regulatory circuits of orders 1-4
(Fig. 4). For each order, the number of protein pairs that define
circuits is significantly higher than in integrated random
networks (P < 0.05, see Materials and Methods).

By taking all possible shortest path combinations into
account, 18 149 putative circuits were generated. Since the
yeast experimental data sets are noisy and may include false
interactions, it is essential to narrow down the predicted
circuits to the ones that are biologically most promising. To
this end, we apply a hierarchical assessment protocol: first, we
apply the cellular process assessment to the entire circuit
population, as this assessment relies on all proteins in the
circuit. Only circuits that are determined to be statistically
significant by this analysis are kept. In cases where several
circuits are defined for a protein pair, we select the circuit(s)
that is most statistically significant. Secondly, the reduced
population of circuits that passed this assessment is subjected
to two additional assessments, based on cellular localization
and knockout data. Only circuits that pass at least one of these
additional assessments are considered as potentially biologic-
ally relevant circuits. Below we describe these assessments in
detail, demonstrate the validity of our approach by examining
already known circuits that were reconstructed and verified,
and discuss new insights gained by our analysis.

Assessment of circuits

Cellular process assessment. To select the biological mean-
ingful circuits we evaluated the consistency of the proteins
participating in a circuit according to their assignments into
cellular processes. We expect that within a biologically
meaningful circuit, the fraction of proteins participating in a

common cellular process, e.g. mitosis, will be significantly
higher than that expected at random. Indeed, comparison
between the fractions of molecules that participate in the same
process in actual and randomly generated circuits revealed
that for 3183 out of the 18 149 circuits, the circuit fraction is
significantly higher than that of the corresponding random
circuits (P < 0.05).

Assessment by protein localizations annotation. To assess the
biological feasibility of the circuits we examined the cellular
localization of the proteins participating in the protein—protein
interaction path within a circuit (14,22). An interaction is
feasible if the two interacting proteins are localized to a
common cellular compartment or co-participate in a docu-
mented complex. Since a protein may be localized to more
than one compartment, it may interact with different pair-
mates in different cellular compartments, and the protein—
protein interaction path of a circuit may span several cellular
compartments. We expect that biologically feasible circuits
will be entirely composed of feasible protein—protein inter-
actions. Indeed, 729 of the circuits that passed the cellular
process assessment are biologically feasible. Notably, the
fraction of feasible circuits among the putative circuits is
significantly higher than in the corresponding random circuits
(see Materials and Methods). For orders 1-4, we obtain
statistical significance values ranging from P = 0.0051 to
P < 0.0001.

Assessing the circuits by knockout data. To assess the
regulatory relevance of the extracted circuits we used a data
set that contains gene expression profiles of S.cerevisiae genes
corresponding to individual deletions of 276 genes (12).
Specifically, changes in expression levels of all the yeast genes
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Table 1. Summary of detected circuits

Circuit No. of protein No. of No. of statistically No. of feasible No. of circuits No. of potential
order pairs that define circuits significant circuits circuits according validated by the biologically relevant
circuits by the cellular to the localization knockout results® circuits?
process assessment? assessment”

1 14 14 11 8 (10) 0 (0) 8

2 189 219 76 41 (58) 34 42

3 1308 1993 447 170 (313) 6 (21) 173

4 4883 15923 2649 510 (1459) 16 (120) 523

Total 6394 18 149 3183 729 (1840) 25 (145) 746

4Circuits with fractions of proteins assigned to the same cellular process that deviated significantly from random are reported. This assessment was performed

for all detected circuits.

bCircuits where all protein—protein interactions are feasible are reported. The cellular localization assessment was performed only for circuits that are
statistically significant according to the cellular process assessment, and for which protein localization annotation was available for all proteins in the protein—

protein interaction path (this number appears in parentheses).

Circuits where the relationships between the affected genes and gene targets of the relevant transcription factor were statistically significant are reported.
This assessment was performed only for circuits that are statistically significant according to the cellular process annotation. For each circuit order, the total
number of circuits that could be tested by the knockout data is shown in parentheses.

dCircuits supported by the cellular process assessment and by at least one other assessment.

were measured in response to the deletion of each one of those
276 genes. For a circuit that is defined by a regulatory protein
A and a target gene B (Fig. 1), we expect that the knockout of
B will affect the activity of A, if indeed the circuit functions as
a feedback loop. This effect could be detected by following the
changes in the expression levels of other gene targets of A. To
be confident that this effect is not random, we required that the
number of the gene targets of A that changed their expression
levels upon the knockout of gene B would be statistically
significant (see Materials and Methods). It should be noted
that the interpretation of knockout results is somewhat
problematic, because alternative regulations may mask the
effect of the deleted gene, even though such an effect exists.
Nevertheless, this approach should be valuable where such
effects can be detected.

Apparently, only a small number of circuits could be
subjected to this evaluation, as only 62 of the 276 deleted
genes coincided with genes B in the circuits. These 62 genes
participated in 145 regulatory circuits that were statistically
significant by the cellular process assessment. For 25 of these
circuits, the relationships between the affected genes and gene
targets of the relevant transcription factor were statistically
significant (P =< 0.05), providing additional supportive
evidence for these putative circuits.

In total, 746 circuits were statistically significant by the
cellular process assessment, and by either the cellular
localization assessment or the knockout results assessment
(or by both). A summary of our results is presented in Table 1.
The circuits themselves are listed in the Supplementary
Material, where for each circuit we report its performance in
the three assessments and provide information about the
putative cellular process it participates in and on the cellular
localizations where the protein—protein interactions occur. For
those circuits where we have supportive knockout data we list
the potential gene targets of the circuits, based on the knockout
results (12).

Potential biologically relevant circuits

The best way to validate the potential biologically relevant
circuits would have been to compare them with a data set of

known circuits. We expect that if our approach is valid, it
will report all known circuits as biologically relevant.
Unfortunately, such a database of known circuits does not
exist. To test our approach, we examined 15 examples of
known circuits described in the literature. These include the
circuits defined by the protein pairs Swi6—Swi4 (23,24), Gal4—
Gal80, Gal4—Gal3 and Gal4-Gall (25), Imel-Riml1 and
Ume6-Imel (26), Stel2-Fus3 (which define two circuits)
(27), Ste12-Farl (28), Cbf1-Met28 and Met4—Met28 (29),
Swi4—Cl1b2 (30), Mbp1-CIb5 (31), and Stb1-Clnl and Stb1-—
CIn2 (32). Thirteen of these circuits were considered by
the analysis as biologically relevant (87%), lending support
to the biological essence of our computational procedure.
The two remaining known circuits were verified by only
one assessment, indicating that the annotation used to
assess the data is incomplete. This suggests that there are
more than 746 potential biologically relevant circuits among
the detected circuits, which will be revealed when the
annotation improves.

Examples of known circuits revealed by our approach

Among the potential biologically relevant circuits, we
detected eight direct (first order) regulatory circuits
(Table 1), five of which are known. For example, Gal4 and
Gal80 that are involved in galactose catabolism define one of
these direct regulatory circuits. Gal4 is a transcription factor
that activates genes participating in galactose catabolism,
including GALS80. Gal80 binds to Gal4, and in the absence of
galactose represses its activity (Fig. 5a). Thus, this circuit
provides an example for negative feedback regulation. Other
examples of direct regulatory circuits involve also positive
feedback loops, such as the circuit defined by the pair of
transcription factors Swi6—Swi4 (Fig. 5a).

Examples of reconstructed known circuits of higher orders
could also be found. The pair Gal4-Gal3 that defines a
regulatory circuit within the galactose pathway provides an
example for a known regulatory circuit of order 2 (Fig. 5b).
Gal4 is a transcription factor of GAL3, and the two proteins
interact via Gal80. As mentioned above, Gal4 and Gal80 form
a complex that inhibits Gal4 from acting as a transcription
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Figure 5. Detected regulatory circuits. (a) Known direct regulatory circuits. Gal4—-Gal80 comprises a negative feedback circuit (see text). The Swi6—Swi4 cir-
cuit functions to switch on a new pathway: the transcription of SWI4 depends on Swi6. The complex Swi4—Swi6 (called SBF) is responsible for the transcrip-
tion of SWI4 as well as for the synthesis of other genes that function in late G;, thus enabling the progression of the cell cycle (23,24). (b) Known regulatory
circuits of order 2 (see text). (¢) Regulatory circuits of higher orders. Stel2 and Farl define a known regulatory circuit of order 4 that is part of the mating
pheromone response pathway (28) and Swi4 and Hogl define a putative regulatory circuit of order 3. In the Stel2—-Farl circuit, purple arrows mark protein—
protein interactions that are part of the known circuit, but are not detected by our method since we are looking for the shortest path between Stel2 and Farl.
A complex of Ste4—Stel8 released from activated pheromone receptors recruits three essential regulators to the plasma membrane, and tethers them in close
juxtaposition: a scaffold protein, Farl, that carries the guanine nucleotide exchange factor (Cdc24) for the Cdc42 small GTPase; a Cdc42-activated protein
kinase Ste20; and a scaffold protein, Ste5, that carries the three-tiered module of protein kinases (Stel1, Ste7, Fus3). The close juxtaposition enables the fol-
lowing interaction series, Cdc24—Cdc42-Ste20-Ste11-Ste7-Kss1-Ste12, which results in the activation of Stel2. The activated Stel2 is a transcription factor
of FARI, as well as of many other genes involved in the pheromone response pathway. (Conventionally, the pathway is described by the interactions of
proteins Fus3 and Digl/Dig2 with Stel2 instead of Kss1, and we would have detected it if we did not look for the shortest path.) For the Swi4—Hogl1 circuit,

see text.

factor. However, in the presence of galactose, Gal3 interacts
with Gal80, releasing the Gal4 inhibition. This enables Gal4 to
transcribe genes, specifically GAL3, therefore constituting a
positive feedback regulation circuit (25). The same pattern is
identified for Stel2—(Digl or Dig2)-Fus3 (Fig. 5b), a well
known regulatory circuit within the mating pheromone
response pathway (28). Ste12 and Digl/Dig2 form a complex
that inhibits Ste12. When Fus3 interacts with Digl/Dig2 the
inhibition is released and Ste12 acts as a transcription factor of
FUS3, as well as of other genes related to this pathway. An
example of a known circuit of order 4 is demonstrated in
Figure Sc. Stel2 and Farl define the circuit that is part of the
mating pheromone response pathway. Since we are searching
for the shortest path between the two proteins defining a
circuit, our method detected the scaffold proteins that
constitute the circuit, but not the auxiliary proteins that
interact with them.

An example of a known circuit that was reconstructed
but was not included in the list of biologically relevant
circuits, is the circuit defined by Gal4—Gall. This circuit is
similar to the Gal4—Gal3 circuit (Gall replaces Gal3), both in
composition and in function (25). However, although the
circuit is known, the annotation regarding the localization of
Gall in the cell is missing. Gall is also not included in the
knockout data. Therefore, this circuit was only supported by

the cellular process assessment. When the annotation
improves, such cases where known circuits are missed
would be eliminated.

New relationships between genes and proteins

Our analysis sheds light on possible regulatory relationships
between genes and proteins that could not be revealed by
independent analyses of each data set. The circuit defined
between the proteins Swi4 and Hogl, which was supported by
all three assessments, provides an intriguing example (Fig. 5c).
In this circuit the interaction path is Swi4-SIt2—(Ptp2 or
Ptp3)-Hogl. It was suggested in the literature that an activated
form of Hogl, a MAP kinase protein, is able to activate the
Hog1 phosphatases Ptp2 and Ptp3 (33). It was also shown that
activated Ptp2 and Ptp3 inactivate Slt2, another MAP kinase
(34), Slt2 activates Swi4 by phosphorylating it (35) and this
activation results in increased overall expression of Swi4
target genes (35). Based on this information, we suggest that
the circuit defined by Swi4—Hog1 is a negative feedback loop.
Swi4 activates Hogl, and the latter can inactivate Swi4
through the circuit. The three assessments do not only support
this circuit’s validity but also provide important insight. From
the cellular process assessment we can infer that this negative
feedback loop possibly plays a role in the response of the cell
to high osmolarity. The protein localization assessment shows
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that the circuit spans different cellular compartments, where
the signal is transferred from the cytoplasm to the nucleus. The
gene targets of Swi4 that are affected by the deletion of the
HOG]1 gene are most likely involved in the response to high
osmolarity.

DISCUSSION

A major challenge of the post-genomic research is to
understand how cellular phenomena arise from the connect-
ivity of genes and proteins. The network of interactions that
connects genes and proteins generates complex molecular
circuitry that resembles complex electrical circuits (36). In this
report, we present a novel application of classical graph
algorithms for the integration of protein—protein and protein—
DNA interaction data, to systematically reveal components of
the cellular circuitry. Specifically, we focus on the detection of
well defined direct and higher order regulatory circuits that
involve both protein—protein and regulator—target interactions.
By combining the two levels of interaction, a regulatory
circuit may function as an efficient positive or negative
feedback loop, a key component of various control systems
(36-38). We address this question at a genomic scale, and
rigorously analyze the available information of protein—
protein interaction and gene regulation in the yeast
S.cerevisiae. While our computational procedure is applicable
to any size of data, its strength is in its ability to efficiently
process large amounts of the two types of data. This is of great
importance in view of the extensive data sets that have
accumulated from the various functional genomic and
proteomic studies.

The method we present guarantees the detection of
every circuit that complies with our definition based on
the available experimental data. Here we based our
analysis primarily on genome-wide experimental data. On
the one hand, by integrating data from different types of
genome-wide experiments we are able to identify novel
functional pathways involving both proteins and DNA. On the
other hand, genome-wide experiments are susceptible to
errors: large-scale protein—protein interaction experiments
may produce false-positive results (39,40) and genome-wide
location analyses reveal binding of regulatory proteins to
DNA, but do not guarantee that the binding has a regulatory
effect. Therefore, the validity of the derived circuits depends
on the quality of the experimental data, and is expected to
improve as the data improve. Nevertheless, regulatory circuit
detection is based upon the intersection of two independent
data sets, providing cross-validation of the information
sources and reducing the amount of false positives contained
in each data set.

The integration of the available data of protein—protein and
protein—-DNA interaction in the yeast S.cerevisiae yielded
approximately 6400 protein pairs that define putative multi-
level regulatory circuits of orders 1-4. The three assessments
that we performed per circuit, testing its biological meaning
by the cellular process assessment, its biological feasibility by
the protein localization assessment, and its regulatory rele-
vance by its consistency with knockout data, provide an
integrative scheme for assessing the circuit’s biological
relevance. Applying the three assessments hierarchically to
the detected circuits—first the assessment that relies on the

entire circuit composition, and secondly, the two assessments
which relate to circuit fragments—resulted in the identifica-
tion of 746 potential biologically relevant circuits. The
successful identification of known circuits as biologically
relevant supports the rationale of our scheme.

In addition to their confirmatory nature, the three
assessments provide intriguing insights. The first assessment
may suggest the cellular process in which the regulatory
circuit plays a role: if a significant fraction of the circuit
proteins participate in a common cellular process, then the
circuit is predicted to function as part of this process.
Furthermore, the cellular process of a circuit can be used for
the annotation of circuit proteins that lack such an assignment.
Specifically, we managed to assign biological process
annotations to 271 such proteins. As for the localization
assessment, it enables mapping up the pathway of a circuit in
the cell by tracing the cellular localization annotations
attached to the edges. For example, the protein—protein
interactions composing the circuit defined by Stel2-Farl
(Fig. 5c) can be traced to several cellular compartments,
describing how the mating pheromone signal is carried from
the plasma membrane to the nucleus, similarly to other signal
transduction pathways. The third assessment, using the
knockout data, provides a link to the potential gene targets
of the putative circuits.

Our integration method may be extended to different types
of analyses. First, we can refine the current analysis by
distinguishing between transcription activators and repressors
in the regulator—target graph. Secondly, we intend to use our
integrated data set to reveal other types of pathways. Such
pathways may be composed of alternating regulator—target
and protein—protein interactions of the form that underlies, for
example, the cell cycle progression (16). Finally, in the current
study we relied only on experimental data, but our scheme
may utilize putative data as well. When accurate algorithms
for prediction of the various gene attributes from sequence
data are available (e.g. protein—protein interaction or tran-
scription factor binding sites), they can be used to predict the
input data that will be further processed by our approach. One
can envision that in the future such approaches may enable
extracting knowledge on the regulatory networks in the cell
based on genomic sequence data alone.

SUPPLEMENTARY MATERIAL
Supplementary Material is available at NAR Online.
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