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ABSTRACT

Genome annotation in differently evolved organ-
isms presents challenges because the lack of
sequence-based homology limits the ability to
determine the function of putative coding regions.
To provide an alternative to annotation by sequence
homology, we developed a method that takes
advantage of unusual trypanosomatid biology and
skews in nucleotide composition between coding
regions and upstream regions to rank putative open
reading frames based on the likelihood of coding.
The method is 93% accurate when tested on known
genes. We have applied our method to the full com-
plement of open reading frames on Chromosome I
of Trypanosoma brucei, and we can predict with
high con®dence that 226 putative coding regions
are likely to be functional. Methods such as the one
described here for discriminating true coding
regions are critical for genome annotation when
other sources of evidence for function are limited.

INTRODUCTION

Characterization of putative coding regions is a prerequisite
for converting raw genomic sequence data into biologically
relevant information. Standard approaches to this task provide
less assistance, however, when the organism is evolutionarily
distant from well-characterized counterparts and the process is
frustrated by the lack of sequence homology based sugges-
tions of function. This is the case for Trypanosoma brucei, a
protist with many unusual biological features, limited experi-
mental characterization, and estimated to be over 800 million
years diverged from its nearest well-studied neighbor,
Saccharomyces cerevisiae (1).

This paper presents a novel approach to the challenge of
annotating unusual organisms. We utilize unique aspects of
trypanosome genes to better distinguish true coding regions
from computationally valid but non-functional predictions.
The approach detailed here suggests ways in which utilizing
unusual features of a particular organism can signi®cantly
enhance the annotation.

T.brucei is just one representative of the broad family of
trypanosomatids, some members of which are signi®cant

pathogens of humans and livestock. T.brucei and
Trypanosoma cruzi cause African sleeping sickness and
Chagas' disease, respectively, and a related species,
Leishmania major, causes cutaneous leishmaniasis. They
share complex life cycles with transmittal to humans and
livestock effected through insect vectors, and all are adept at
host immune evasion. As such, these are some of the most
insidious parasites known, often with fatal consequences for
their hosts (2,3). The genomes of T.brucei, T.cruzi and
L.major are currently being sequenced.

Unlike most other eukaryotes, the majority of coding
regions of trypanosomes are not interrupted by introns. More
surprising, perhaps, is that no Pol II promoter for any protein-
coding gene has been identi®ed to date. Gene regulation
appears to occur mainly after the initiation of RNA transcrip-
tion, but the mechanisms have yet to be characterized in detail
(4,5).

In part because of these unusual features and the large
evolutionary distance to well-studied model organisms, the
analysis of the T.brucei genome has yielded many more
putative coding regions than can be assigned functions. Over
500 coding regions have been noted on Chromosome I of
T.brucei, but just 26% of these have a function assignment (as
reported in the EMBL database, see Data for details). This is
summarized in Table 1, which shows the results of using a
standard prokaryotic open reading frame (ORF) ®nder
(Glimmer 2.0) followed by sequence homology searches of
the major databases for Chromosome I of T.brucei. Glimmer
2.0 is reported to be up to 98% accurate at identifying
prokaryotic coding regions and is based in part on a
probabilistic analysis of codon usage (6). For comparison,
the current annotation of the same chromosome by the Sanger
Institute is also presented. As can be seen in this table,
Glimmer not only ®nds a large number of ORFs; less than one-
quarter can be assigned a function based on sequence
homology evidence. The paucity of annotations for T.brucei
was the motivation for the development of the organism-
speci®c method described here.

The crucial point is that over three-quarters of the putative
coding regions identi®ed to date on T.brucei chromosome I
have no assigned function. At least some of these putative
coding regions are likely to be computational artifacts, but
distinguishing between true coding regions and such artifacts
is dif®cult in the absence of evidence for function.
Experimental demonstration of a functional role for a given
ORF is the most conclusive evidence. However, in organisms
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such as T.brucei, the set of experimentally characterized genes
is small compared to the number of possible coding regions.
To experimentally characterize each computationally identi-
®ed coding region would require painstaking effort. This effort
could be better directed if ORFs were ®rst ranked by the
likelihood that they are functional genes. Such a ranking
would facilitate the experimental characterization of the most
likely coding regions ®rst, with subsequent efforts clarifying
the status of less likely coding regions. We therefore sought a
computational approach that could assign a probability that a
particular coding region might represent a real gene.

The method we present here is able to rank ORFs because it
takes account of skews in nucleotide composition between
coding regions and the regions immediately upstream of the
translation start. These regions contain important signals
involved in mRNA maturation. In trypanosomatids, most
protein-coding genes are arrayed in cassettes that are co-
transcribed into poly-cistronic mRNAs (7,8) that are cleaved
into individual, mature mRNAs by a process known as trans-
splicing, which adds a 39 nucleotide (nt) spliced leader (SL)
sequence to the 5¢ UTR of each transcript. As with other
eukaryotes, the 3¢ end of the mRNA is poly-adenylated to
produce the complete, processed monocistronic mRNA for
each gene in the array (9±14).

Figure 1 illustrates how trans-splicing might occur in a
simpli®ed polycistronic mRNA. trans-splicing is mechan-
istically similar to the more familiar intron-exon or cis-
splicing and much of the spliceosomal machinery may be
common to both processes (15). The trans-splicing signal
appears to be a composite of several elements, but the key
feature is a poly-pyrimidine (TC-rich) tract that precedes the
AG used as the splice acceptor site (8,11,16±22). We can
localize these tracts to the approximately 400 nt immediately
upstream of known coding regions because 5¢ untranslated
regions (UTRs) are relatively short (50±250 nt) in T.brucei
(based on a survey of GenBank entries). A clear over-
representation of pyrimidines in upstream regions is visible
when runs of pyrimidines are counted in upstream versus
coding regions (Fig. 2).

Although the trans-splicing signal is dif®cult to character-
ize computationally at this time, we have taken advantage of
the dramatic skews in nucleotide composition associated with
trans-splicing to identify likely coding regions. That is, we use
the trans-splicing regions as a model of sequences that are
likely to be non-coding, as it is highly unlikely that a trans-
splicing signal will occur in the middle of a genuine coding

region. We compared the dinucleotide frequency in these
upstream regions with that of known coding regions to
develop a predictive model of genuine coding regions. When
the model was applied to an independent test set of known
coding regions, it was 93% accurate at identifying true coding
regions. The method has the advantage of being speci®c to
T.brucei, enabling the identi®cation of novel genes that share
little or no sequence homology with previously characterized
proteins in this or other organisms. This approach can be used
to rank ORFs so that those most likely to be functional can be
experimentally characterized ®rst. Such efforts are critical to
improve our understanding of this unusual organism.

Figure 1. Schematic of trans-splicing in trypanosomatids. Genes are arrayed
in polycistronic units, shown here as colored boxes (ORFs). Transcription
yields a polycistronic precursor RNA with multiple transcripts strung
together. The actual trans-splicing process adds a 39 nucleotide (nt) spliced
leader sequence (shown in aqua) to the 5¢ upstream sequence of each coding
region to yield the monocistronic mRNAs [adapted from (16)]. As with cis-
splicing, trans-splicing chemically bonds the guanine in the GT dinucleotide
of the 5¢ donor site to an adenine at what is known as the branch point.
Following this bonding, the 3¢ AG dinucleotide is used to demarcate the 3¢
end of the region to be spliced. However, unlike in cis-splicing, two separ-
ate RNAs, the spliced leader RNA and the precursor RNA, are joined in the
trans-splicing process. Therefore, the 5¢ donor site is actually on the spliced
leader sequence while the AG of the 3¢ acceptor site is in the upstream
region of the gene undergoing trans-splicing. The by-product of trans-
splicing is therefore a Y-shaped RNA remnant, containing a portion of the
spliced leader sequence and a segment of the upstream region of the gene.
This Y-shaped RNA is the direct corollary of the lariat structure produced
by cis-splicing during the removal of introns from precursor mRNA
(9,12,14,16±18).

Table 1. Results of ORF ®nding and annotation on Chromosome I of
T.brucei using two approaches

Total number of
ORFs predicted

Total with
assigned function

Glimmer 2.0 428 91
(0.21)

Sanger Institute 509 133
(0.26)

Glimmer 2.0 is a prokaryotic ORF ®nder and was trained on the data
described in Data and run on the entire Chromosome I sequence. The
results from the Sanger Institute's analysis are a summary of their entries in
the EMBL database; see Data for more information.

Figure 2. An over-representation of pyrimidines can be seen when runs of
T and C are compared between upstream ¯anking regions and known
coding regions. In this ®gure, the x-axis indicates the number of pyrimidines
in a row (i.e. TCTC would be four pyrimidines in a row). The y-axis indi-
cates the number of such instances found in the entire set of sequences.
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DEFINITIONS

In this work, we will use certain common terms in ways that
may require some explanation. We de®ne an open reading
frame (ORF) as a segment of sequence initiated by a start
codon at the 5¢ end of the sequence, a consecutive set of
translatable codons and a stop codon that terminates the
segment. There are no other features associated with an ORF;
an ORF may or may not have any valid biological function.

We only consider protein-coding regions, so an ORF may
be a coding ORF if it shares signi®cant sequence-based
homology to a known protein-coding gene at either the
nucleotide or amino acid level. Other forms of evidence of
functionality may also be used to declare an ORF as likely
to be coding. In contrast, no-evidence ORFs (nORFs) are
ORFs for which there is no evidence of functionality, or they
lack all hallmarks of known coding regions. They may be
computational artifacts.

Annotation is used in a very limited sense of the word: to
refer to the individual descriptions of function assigned to a
putative coding region. Each description of a coding region
can be of two forms. A functional annotation is one giving a
precise indication of a protein's role in the biology of the
organism (e.g. protein phosphatase). However, most annota-
tion efforts label all identi®ed ORFs with some kind of
description. Therefore, there will also be putative coding
regions with the annotation `hypothetical' or `putative', when
these coding regions lack clear evidence of speci®c function.
These are referred to as hypothetical annotations to distinguish
them from functional annotations.

MATERIALS AND METHODS

We ®rst explored features of the set of functionally annotated
ORFs on Chromosome I against those with hypothetical
annotations. The Wellcome Trust Sanger Institute has iden-
ti®ed 509 ORFs in their submission to the EMBL database
(see Data for accession numbers and other details). Of these,
91 have a functional annotation for a protein function. An
additional 42 ORFs have annotations for DNA or RNA level
features. The remainder is annotated with uninformative
descriptors such as hypothetical. We could discern no
signi®cant differences in codon usage bias or other features
of nucleotide composition between functionally annotated
ORFs and those with hypothetical annotations (data not
shown).

To validate true coding regions in the absence of other
information, we wished to compare known coding regions to
sequences we could be absolutely certain did not code for
functional proteins. Although comparison to random sequence
can be instructive in some instances, the objective here was to
distinguish between classes of sequence from within the same
organism. The poly-cistronic nature of transcription in
T.brucei makes it dif®cult to identify truly inter-intergenic,
non-coding sequences without ®rst characterizing the poly-
cistronic arrays. Identifying these arrays is dif®cult in the
absence of complete knowledge of the genome. For a suitable
model of non-coding regions, we therefore turned to the only
sequences from T.brucei that were available in some abund-
ance: sequences immediately upstream of known coding
regions.

To facilitate comparisons of sequences of differing lengths
and composition, we compared the upstream regions to coding
regions at the dinucleotide level using transition probabilities.
We applied maximum likelihood estimation (MLE) to
estimate these probabilities since MLE allows for estimation
from a relatively small sample size. MLE based transition
probabilities are calculated by the formula:

akl � cklP
l
0 ckl

0
1

where akl is the transition probability that the nucleotide l
follows the nucleotide k. ckl is the number of times the
dinucleotide combination kl occurs. In the denominator, we
calculate the sum of the transition probabilities of all
nucleotides that could follow k, represented by l¢ as any of
the four nucleotides (23).

We evaluated several standard methods for classi®cation
of sequences using the dinucleotide transition probabilities
as variables (data not shown). For each classi®cation
method, we trained on a set of data and then evaluated the
performance of each method on an independent dataset. The
method that performed with the highest accuracy as a
sequence classi®er was linear discriminant analysis (LDA).
LDA as implemented in the statistical package R was used for
this analysis (24).

Data

For any classi®cation method involving training and testing,
several sets of data are required. A model is ®rst developed
using training data, which must be of the highest standard to
ensure that the model accurately re¯ects known features. To
test the actual performance of the model, other datasets are
required. Where possible, evaluation on an independent
dataset is desirable. It is the performance of a method on
this test dataset that determines the overall accuracy of the
method (25). Our datasets are described below and are
included in the Supplementary Material.

Training set. Our training dataset was composed of proven
coding and upstream regions. For coding regions, we selected
T.brucei genes from GenBank where the entire coding
sequence could be con®dently identi®ed. We used two
approaches to collect data on upstream, non-coding regions.
We generated some data speci®cally for this analysis through
mRNA extraction, reverse transcription to cDNA and poly-
merase chain reaction (RT±PCR) ampli®cation with subse-
quent sequencing. We supplemented this by mapping a limited
set of previously characterized expressed sequence tags
(ESTs) that contained the SL sequence to more recently
determined genomic sequence.

Thirty-®ve cDNA sequences were selected from GenBank
that contained at least 200 nt of upstream sequence and a
complete coding region. For an additional 15 genes, we used
sequences from genomic bacterial arti®cial chromosomes
(BACs) sequenced by the Wellcome Trust Sanger Institute
and The Institute for Genome Research (TIGR) that matched
known genes in GenBank at the nucleotide level (at least 95%
identity across 95% or more of the coding region).
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For each of these genes, we designed a 3¢ gene-speci®c
primer. For the 5¢ primer, we used a portion of the 39 nt leader
sequence that occurs at the 5¢ end of all T.brucei mRNAs.
Primers were designed by the Primer3 program, and the
optimal primer selected manually from the suggestions
provided [S.Rozen and H.J.Skaletsky (1996,1997). Code
available at http://www-genome.wi.mit.edu/genome_software/
other/primer3.html. Sequences are included in the
Supplementary Material].

RNA was extracted from cultures of the bloodstream and
insect midgut stages of T.brucei Lister 427. Reverse tran-
scription to cDNA was carried out using the Stratagene
ProStar FirstStrand RT kit with random priming (with
supplied random primers). Ampli®cation by PCR was con-
ducted with the following cycling parameters: 2:00 min at
94°C, then 30 cycles of 0:10 min at 94°C, 0:30 min at 60°C,
1:00 min at 72°C. A ®nal extension period of 7:00 min at 72°C
completed the PCR program. Ampli®cations used the Expand
High Fidelity PCR polymerase from Roche Applied Science.
The annealing temperature of 60°C was selected to minimize
non-speci®c priming.

Ten microliters from each PCR reaction were used for gel
electrophoresis on a 2% (w/v) agarose gel, and reactions with
a clear single band were selected for sequencing. A total of 29
such reactions yielded clear sequence data. These were then
mapped back to the original genomic sequence by BLAST
comparisons using all default parameters (26). Each of the
sequenced fragments was compared against the entire set of 50
genes. For each mapping, the best high-scoring pair (HSP) was
used if the match length exceeded 50 nt. Mappings and
extraction of upstream sequences were done in part by manual
review of BLAST results and partially via ad hoc Perl scripts
written for this purpose using the BLAST parser BPlite.pm
[I.Korf (1999) BPliteÐLightweight BLAST parser. http://
sapiens.wustl.edu/~ikorf/BPlite.html].

We also extracted 146 5¢ ESTs from dbEST (27) that
contained the entire spliced leader sequence and mapped these
to all the genomic data available from the Sanger Institute
databases [genomic survey sequences (GSS), genomic contigs
from Chromosomes IX and X and BACs from other chromo-
somes]. As with the experimentally generated data, we used
BLAST and Perl scripts to map the ESTs and identify the
upstream regions. This yielded an additional 77 upstream
regions.

Our ®nal set of con®rmed upstream sequences had 106
sequences. To match this set of sequences, we collected an
independent set of 106 coding sequences from GenBank.
While upstream sequences for T.brucei are limited in
GenBank, experimentally characterized coding regions are
relatively more abundant. Therefore, some of the coding and
upstream sequences were contiguous, but others were un-
related. The 212 sequences (106 upstream and 106 coding)
yielded the transition probabilities used as the training data.
The sequence data is included in the Supplementary Material.

Independent test dataset. To evaluate our method, we
compiled an independent set of sequences composed of 103
coding regions with credible function assignments: 44 genes
from Chromosome I and 59 genes from Chromosome II. We
are reasonably con®dent that these are true coding regions
based on their high percentage identity and good percent

coverage to known genes. Four hundred nucleotides of
sequence immediately upstream of the translation start were
used as examples of non-coding regions. Since 5¢ untranslated
regions (UTRs) are relatively short (50±250 nt) in T.brucei
(based on survey of GenBank entries), the 400 nt of non-
coding sequence could be expected to contain sequence
upstream of the UTR region. Transition probabilities for these
sequences constituted the independent test dataset.

Other data. Finally, the method was applied to all 509 protein-
coding ORFs identi®ed by Sanger Institute on Chromosome I
as reported in their submission to the European Molecular
Biology Laboratory database on November 28, 2002 (EMBL
accession numbers AL929603-AL929605 and AL929607).
For each ORF, we used the entire coding region as
documented by Sanger Institute. A LDA-based prediction
for each of the 509 ORFs is included in the Supplementary
Material and can be viewed interactively on our website at:
http://bioinformatics.rit.edu/~shuba/bin/motif-er.cgi

Genomic data for use in this web-based viewer were
obtained from the Sanger Institute website at: http://www.
sanger.ac.uk/Projects/T_brucei/.

Sequencing of the T.brucei genome was accomplished as
part of the Trypanosome Genome Network, with support by
The Wellcome Trust. Our use of these data conforms to the
data release policy of the T.brucei genome project at the
Sanger Institute.

Web interface

Users can access our method via a web interface at: http://
bioinformatics.rit.edu/~shuba/bin/orbit.cgi.

Users may submit up to 500 000 nucleotides of sequence
data for analysis. Sequence data in the form of FASTA-
formatted sequences can be submitted either as a contiguous
sequence or individual sequences. However, the current web
interface implementation makes no attempt to identify ORFs
or other sequence structures. It is assumed that the users will
have already identi®ed likely ORFs and upstream regions
prior to the use of our interface. For larger datasets or for
processing raw genomic sequence into ORFs followed by
predictions using our method, please contact the authors for a
standalone version.

RESULTS

Our aim in the construction of the LDA model was to predict
the likelihood that a given sequence is coding. To ensure that
our model performs at a reasonable accuracy, we ®rst consider
the likelihood that any individual prediction will be correct.
We consider two portions of the output from LDA analysis to
determine the 95% con®dence interval, or the region in which
we can be 95% certain that an individual prediction is correct.
LDA assigns a score to each sequence that is derived from the
likelihood that the sequence was classi®ed correctly. The LDA
method selects a standard score cut-off for assigning samples
into classes (28). In this case, a score of zero or less led to
classi®cation of a sequence as coding while a score greater
than zero resulted in the sequence being labeled as
non-coding.

We consider this LDA assigned score in conjunction with a
second measure, the actual probability of correct classi®ca-
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tion. Our aim is to identify the LDA scores associated with a
probability of correct classi®cation >0.95. Figure 3 shows the
LDA assigned score versus the posterior probability (likeli-
hood of correct classi®cation) for the training data. Figure 3
suggests that a score less than ±1 or greater than +1 indicates at
least 95% con®dence in the prediction. Some sequences with
scores between ±1 and +1, on the other hand, will be
misclassi®ed. This will be an important consideration when
we evaluate the model performance on the independent test
dataset.

Evaluation on the independent test set

Having established the score ranges for high con®dence, we
could evaluate the model's overall accuracy on the indepen-
dent test dataset. Figure 4 shows the distribution of LDA
scores. We know from Figure 3 that there will be some
misclassi®cation when sequences score between ±1 and +1.
This is con®rmed by the score distributions shown in Figure 4
where there is an overlap between the scores for known coding
sequences and known non-coding sequences in the region
between ±1 and +1.

Despite some misclassi®cation, the overall accuracy of this
method is 93%. A more exact measure of the performance of
this method is to consider the sensitivity (number of coding
regions correctly identi®ed from the total set of known coding
regions) and the speci®city (number of non-coding regions
correctly identi®ed from the set of all known non-coding
regions). Sensitivity and speci®city are calculated as
follows: Sensitivity (Sn) = TP/(TP + FN), and Speci®city

(Sp) = TN/(TN + FP). Accuracy is de®ned as the average of
sensitivity and speci®city: Accuracy = TP + TN/(TP + FP +
TN + FN) where TP is true positives, TN true negatives, FP
false positives and FN false negatives. Throughout, we will
highlight the sensitivity and speci®city rather than the
accuracy because these two measures of performance present
a more nuanced understanding of predictive ability (29).
While overall accuracy can often be quite high, by considering
sensitivity and speci®city we can ascertain where the method
does well and where it is likely to fail.

Considering these measures of performance for our data, the
method appears to be extremely sensitive and quite speci®c
(Table 2). True coding regions (sensitivity) are correctly
identi®ed 96% of the time as shown. The ability to identify
non-coding regions (speci®city) is somewhat reduced but
remains quite high: 90% of known non-coding regions are
correctly identi®ed.

We can now dissect model performance in the regions
where the score and associated prediction are of high
con®dence (less than ±1 or greater than +1) as well as in the
low con®dence range between ±1 and +1. The results indicate
that for 71% (73/103) of the sequences classi®ed as coding, we
are >95% con®dent that the assignment is correct (Table 2B).
For the remaining 29%, however, some misclassi®cation is
likely. Of the sequences in this region, 29 are predicted to be
coding. Twenty-six of these are known coding regions
corresponding to a sensitivity of 0.90. However, speci®city
is signi®cantly lowered. Of the 40 ORFs predicted to be non-
coding, only 31 are in fact non-coding sequences (speci®city
of 0.78). The reduced speci®city and sensitivity are expected
given that predictions in this region are unreliable.

Application to chromosome I

With this understanding, we analyzed the entire complement
of 509 ORFs identi®ed by the Sanger Institute. Our method
predicts that 321 of the 509 ORFs are coding. Although we
cannot validate every single ORF that our method predicts is
likely to be coding, we can compare the distribution of
functional annotations to hypothetical annotations across the
four score levels of our method. This is shown in Figure 5.

The Sanger Institute utilizes three forms of hypothetical
annotations. Those ORFs that show clear sequence homology
to hypothetical annotations in other organisms are denoted as
`conserved hypothetical protein' in the EMBL entries. These
ORFs constitute the set of so-called orphan genes, a set of

Figure 3. The posterior probability for the coding regions in the training data is shown in the left panel. The gray lines indicate the minimum score required
for 95% con®dence in an individual prediction. In this case, it corresponds to a LDA assigned score of ±1 or lower. Similarly, the panel on the right shows
the posterior probability distribution for non-coding sequences and that the 95% prediction interval corresponds to a LDA assigned score of +1 or higher.

Figure 4. The distribution of scores for the independent test dataset of 103
known coding regions and 103 known non-coding regions is shown here.
The curves overlap in the score range from ±1 to +1 as expected based on
the results of Figure 3.
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conserved ORFs found in many organisms but for which
functions have yet to be determined. A second category of
ORFs have no sequence homology and were determined to be
unlikely to be true coding regions based on several heuristics,
such as being on the opposite strand from the postulated
coding strand (based on details provided on the Sanger
Institute web pages and in the EMBL entries). These ORFs are
marked `hypothetical protein, unlikely' in the EMBL anno-
tation. A third set of ORFs are marked only as `hypothetical'
and we refer to these as `predicted' ORFs since their coding
status is ambiguous.

What is striking from the results in Figure 5 is that 73% of
those ORFs annotated as `hypothetical, unlikely' score as non-
coding regions based on the LDA analysis (55% score as
highly unlikely and an additional 18% are in the ambiguous
region). A small percentage of these ORFs (14%) do score as
very likely coding regions, but this suggests that at least some
of the heuristics used to mark an ORF as unlikely are perhaps
not exact. Similarly, 78% of the ORFs annotated as `hypo-
thetical, conserved' are very likely to be true coding regions
based on the LDA analysis. None of these ORFs score in the
range where we could be reasonably con®dent that they are
non-coding.

Of the ORFs with functional, protein annotations (91 in the
EMBL entry), 86 are correctly identi®ed as likely to be coding,
and 58 score in the high con®dence range. Only ®ve ORFs are
misclassi®ed, yielding an overall true positive identi®cation
rate of 95%. These results reinforce the validity of this
approach as a means to rank ORFs based on their likelihood of
coding.

To further validate our method, we evaluated the mRNA
expression of 47 of the identi®ed ORFs on Chromosome I via
RT±PCR. We were able to con®rm expression from 76% of
ORFs predicted to be coding by our method and validate the
lack of expression from 52% of ORFs predicted to be
non-coding (data not shown). Our computational evaluation
and results are reinforced by these ®ndings and provide
preliminary proof of principle of the validity of our approach.

DISCUSSION

The method described here allows for annotation of likely
coding regions based on sequence composition in the absence
of other evidence for function. At the dinucleotide level there
are signi®cant differences between coding and non-coding
regions in T.brucei, and these variations in dinucleotide
pro®les are the basis of the success of our approach. The result
is a method that is 93% accurate when tested on functionally
annotated genes and their corresponding upstream regions.
The method is extremely sensitive, identifying 96% of true
coding regions, and quite speci®c, ®nding 90% of true non-
coding regions. In applying our method to Chromosome I, we
correctly identify 66 out of 70 functionally annotated ORFs
for a true positive identi®cation rate of 95%.

With increasing understanding of the biology of trypano-
somes, we may be able to extend our model to include other
features of coding and non-coding regions. Currently, our
ability to reliably identify non-coding regions is somewhat
low, with a speci®city of only 0.6 for high con®dence
predictions. This is a consequence of using sequences that
were immediately upstream of coding regions as our model for
non-coding regions. These regions were expected to contain
signals for the unusual trans-splicing process. Obviously, not
all non-coding regions will have these signals and we
currently misclassify some non-coding regions because they
lack the hallmark signals of trans-splicing. However, we were
limited in terms of reliable sequence data that could be
guaranteed not to contain a functional coding region (see
Materials and Methods). At any rate, our focus has been on
identifying likely functional coding regions, and this is amply
addressed by the high sensitivity of the current model.

We may also be able to improve on our model, particularly
for sequences that score in the ambiguous zone, as additional
data from genome sequencing become available. Currently,
the data sets described in Data represent the most complete set
of known, non-coding regions and fully characterized coding
regions available for this organism. This has limited the
approaches that can be reasonably applied to the challenge of
annotating ORFs in the absence of other evidence for function.

Compositional methods for the evaluation of coding regions
have been explored in a number of organisms (23,30). These
methods often use higher order nucleotide combinations than
we present here. For example, one such method, Hexamer,
evaluates hexa-nucleotide frequencies (23). Given the limited
data available for T.brucei, however, such an approach would
have been statistically unfeasible. In our data set, even
tri-nucleotide combinations could not be satisfactorily deter-
mined for all sequences because of the length and composi-
tional skew of the selected non-coding regions. In the absence
of suf®cient training data, therefore, such methods may yield
dangerously inaccurate predictions. An alternative to direct

Table 2. The results of evaluating our model on the independent test set
of known coding regions and known non-coding regions

Known coding Known non-coding
(total: 103) (total: 103)

(A)
Predicted coding True positives False positives

99 10
(0.96) (0.1)

Predicted non-coding False negatives True negatives
4 93

(0.04) (0.9)
Sensitivity Speci®city
0.96 0.9

Accuracy: 0.93

(B)
Score < ±1 True positives False positives

73 1
(0.71) (0.01)

Score > +1 False negatives True negatives
1 62

(0.01) (0.6)
Sensitivity Speci®city
0.99 0.98

Accuracy: 0.99

(A) shows the overall proportion of sequences classi®ed by the method as
coding or non-coding. (B) shows the distribution of sequences with high
con®dence scores. Sensitivity and speci®city are provided as measures of
performance. In all cells, values in parentheses indicate the proportion out
of the entire set of coding and non-coding sequences (103 each).
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compositional approaches are sequence log likelihood ratios
(23), which are sometimes used to compare the overall
composition of one region with that of another. However, this
approach proved to be a very poor discriminator between
coding and non-coding regions in our data set (data not
shown).

With the accumulation of a larger set of con®rmed coding
and non-coding regions, we can apply more powerful non-
linear classi®ers such as neural nets (NNs) or probabilistic
approaches such as hidden Markov models (HMMs). We were
unable to apply these methods in the current situation because
our training set is essentially the only such dataset available
for T.brucei. It is too small a set for reliable estimation of all
the parameters required by these methods (23). Indeed, we
have separately established that this data set is a poor training
set even for existing predictive tools that use probabilistic
approaches, such as Glimmer 2.0 (data not shown).

One possible solution to expand our limited dataset of
con®rmed coding regions is by using syntenic comparisons
across the members of the trypanosomatid family. That is, we

could use functionally annotated ORFs from L.major or
T.cruzi to identify likely functional coding regions in T.brucei.
Unfortunately, such synteny-based analyses fail in this
instance because L.major is believed to have diverged from
T.brucei and T.cruzi about 340 million years ago. The
divergence dates for T.brucei and T.cruzi are estimated to be
greater than 110 million years ago (1). With such large
evolutionary distances even amongst the closest relatives of
T.brucei, syntenic comparisons cannot be made with any
reasonable con®dence.

While synteny cannot be used to improve on predictions in
T.brucei, some of the biology of T.brucei is conserved
amongst the other members of the family. trans-splicing
appears to be common to all the trypanosomatids studied to
date. It is quite likely that our method can be applied to other
trypanosomatids, given suitable training datasets. With appro-
priate data, our method may even be applied to other classes of
organisms such as Caenorhabditis elegans, where trans-
splicing appears to occur along with cis-splicing of certain
genes (31).

Figure 5. Breakdown of ORFs based on Sanger Institute annotation versus LDA based annotation. The Sanger Institute provides three sub-classi®cations of
hypothetical annotations. Those ORFs that show sequence-based homology to hypothetical annotations in other organisms are termed `conserved hypothetical
protein' (denoted here as `Conserved' or `C'). If an ORF is on the opposite strand from the predicted coding strand or has unusual GC composition, it is
sometimes labeled `hypothetical protein, unlikely' (based on details provided on the Sanger Institute web pages and EMBL entry). We have shown these here
as `Unlikely' or `U'. Finally, some ORFs are annotated merely as `hypothetical protein' and we refer to these as `predicted' or `P'. For those ORFs with a
function assignment, we use the term `Assigned function' or `A'. Plots on the left side of this ®gure show the distribution of annotations for ORFs that our
method would label as likely coding, while plots on the right side if this ®gure show ORFs that our method would identify as unlikely to be true coding
regions.
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The key bene®t of this approach is that it is derived from a
model of true coding regions. Therefore, this approach can be
used to validate ORFs that lack other evidence of function. By
considering the LDA score assigned to a putative coding
region, ORFs can be classi®ed into one of four classes: high
con®dence coding, low con®dence coding, possibly non-
coding and likely non-coding. Re®ning the set of ORFs likely
to be coding in this manner should help focus efforts to
experimentally characterize and classify those coding regions
most likely to be functional genes. Our approach can be used
as a means of annotation in the absence of more substantial
evidence from experimental characterization or sequence
homology.

The results described here further demonstrate the import-
ance of developing organism-speci®c approaches for gene
veri®cation in conjunction with more generalized approaches.
While generalized tools can provide a ®rst-pass evaluation of
likely coding regions, the assumptions that underlie these
methods may not necessarily hold true in the organism of
interest. This is the case in T.brucei where it appears that not
all ORFs are coding. It is in such cases that the application of
methods derived from the biology of the organism can
improve on and re®ne predictions so as to facilitate experi-
mental characterization and investigation. Such work will be
crucial to gaining a better understanding of unusual organ-
isms, particularly those that are evolutionarily distant from
their better-studied counterparts.

SUPPLEMENTARY MATERIAL

Supplementary Material is available at NAR Online.
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