Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1964 Jul 1;47(6):1175–1194. doi: 10.1085/jgp.47.6.1175

Sodium Movement across Single Perfused Proximal Tubules of Rat Kidneys

Gerhard Giebisch 1, Ruth M Klose 1, Gerhard Malnic 1, W James Sullivan 1, Erich E Windhager 1
PMCID: PMC2195375  PMID: 14192552

Abstract

Using perfusion techniques in single proximal tubule segments of rat kidney, the relationship between net sodium movement and active transport of ions, as measured by the short-circuit method, has been studied. In addition, the role of the colloid-osmotic pressure gradient in proximal transtubular fluid and sodium movement has been considered. Furthermore, the limiting concentration gradient against which sodium movement can occur and the relationship between intratubular sodium concentration and fluid transfer have been investigated. Comparison of the short-circuit current with the reabsorptive movement of sodium ions indicates that this process is largely, perhaps exclusively, active in nature. No measurable contribution of the normally existing colloid-osmotic pressure gradient to transtubular water movement was detected. On the other hand, fluid movement across the proximal tubular epithelium is dependent upon the transtubular sodium gradient and is abolished when a mean concentration difference of 50 mEq/liter is exceeded.

Full Text

The Full Text of this article is available as a PDF (1.2 MB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ADRIAN R. H. The effect of internal and external potassium concentration on the membrane potential of frog muscle. J Physiol. 1956 Sep 27;133(3):631–658. doi: 10.1113/jphysiol.1956.sp005615. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BLOOMER H. A., RECTOR F. C., Jr, SELDIN D. W. The mechanism of potassium reabsorption in the proximal tubule of the rat. J Clin Invest. 1963 Feb;42:277–285. doi: 10.1172/JCI104714. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CLAPP J. R., RECTOR F. C., Jr, SELDIN D. W. Effect of unreabsorbed anions on proximal and distal transtubular potentials in rats. Am J Physiol. 1962 Apr;202:781–786. doi: 10.1152/ajplegacy.1962.202.4.781. [DOI] [PubMed] [Google Scholar]
  4. CLAPP J. R., WATSON J. F., BERLINER R. W. OSMOLALITY, BICARBONATE CONCENTRATION, AND WATER REABSORPTION IN PROXIMAL TUBULE OF THE DOG NEPHRON. Am J Physiol. 1963 Aug;205:273–280. doi: 10.1152/ajplegacy.1963.205.2.273. [DOI] [PubMed] [Google Scholar]
  5. COOMBS J. S., ECCLES J. C., FATT P. The electrical properties of the motoneurone membrane. J Physiol. 1955 Nov 28;130(2):291–325. doi: 10.1113/jphysiol.1955.sp005411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. FRAZIER H. S., DEMPSEY E. F., LEAF A. Movement of sodium across the mucosal surface of the isolated toad bladder and its modification by vasopressin. J Gen Physiol. 1962 Jan;45:529–543. doi: 10.1085/jgp.45.3.529. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. GIEBISCH G., KLOSE R. M., WINDHAGER E. E. MICROPUNCTURE STUDY OF HYPERTONIC SODIUM CHLORIDE LOADING IN THE RAT. Am J Physiol. 1964 Apr;206:687–693. doi: 10.1152/ajplegacy.1964.206.4.687. [DOI] [PubMed] [Google Scholar]
  8. GOTTSCHALK C. W., MYLLE M. Micropuncture study of pressures in proximal tubules and peritubular capillaries of the rat kidney and their relation to ureteral and renal venous pressures. Am J Physiol. 1956 May;185(2):430–439. doi: 10.1152/ajplegacy.1956.185.2.430. [DOI] [PubMed] [Google Scholar]
  9. GOTTSCHALK C. W., MYLLE M. Micropuncture study of the mammalian urinary concentrating mechanism: evidence for the countercurrent hypothesis. Am J Physiol. 1959 Apr;196(4):927–936. doi: 10.1152/ajplegacy.1959.196.4.927. [DOI] [PubMed] [Google Scholar]
  10. KASHGARIAN M., STOCKLE H., GOTTSCHALK C. W., ULLRICH K. J. Transtubular electrochemical potentials of sodium and chloride in proximal and distal renal tubules of rats during antidiuresis and water diuresis (diabetes insipidus). Pflugers Arch Gesamte Physiol Menschen Tiere. 1963;277:89–106. doi: 10.1007/BF00362394. [DOI] [PubMed] [Google Scholar]
  11. LASSITER W. E., GOTTSCHALK C. W., MYLLE M. Micropuncture study of net transtubular movement of water and urea in nondiuretic mammalian kidney. Am J Physiol. 1961 Jun;200:1139–1147. doi: 10.1152/ajplegacy.1961.200.6.1139. [DOI] [PubMed] [Google Scholar]
  12. LASSITER W. E., MYLLE M., GOTTSCHALK C. W. NET TRANSTUBULAR MOVEMENT OF WATER AND UREA IN SALINE DIURESIS. Am J Physiol. 1964 Apr;206:669–673. doi: 10.1152/ajplegacy.1964.206.4.669. [DOI] [PubMed] [Google Scholar]
  13. LITCHFIELD J. B., BOTT P. A. Micropuncture study of renal excretion of water, K, Na, and Cl in the rat. Am J Physiol. 1962 Oct;203:667–670. doi: 10.1152/ajplegacy.1962.203.4.667. [DOI] [PubMed] [Google Scholar]
  14. MALNIC G., KLOSE R. M., GIEBISCH G. MICROPUNCTURE STUDY OF RENAL POTASSIUM EXCRETION IN THE RAT. Am J Physiol. 1964 Apr;206:674–686. doi: 10.1152/ajplegacy.1964.206.4.674. [DOI] [PubMed] [Google Scholar]
  15. MENDEL D. Tubular reabsorption of protein in rats with experimental proteinuria. J Physiol. 1961 May;156:544–554. doi: 10.1113/jphysiol.1961.sp006692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. MENDEL D. Tubular reabsorption of protein in the rat. J Physiol. 1959 Oct;148:1–13. doi: 10.1113/jphysiol.1959.sp006269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. OKEN D. E., WHITTEMBURY G., WINDHAGER E. E., SOLOMON A. K. Single proximal tubules of Necturus kidney. V. Unidirectional sodium movement. Am J Physiol. 1963 Mar;204:372–376. doi: 10.1152/ajplegacy.1963.204.3.372. [DOI] [PubMed] [Google Scholar]
  18. PILLAT B., HEISTRACHER P. [A simple method for the visualization of glass microelectrodes by means of fluorescein]. Experientia. 1960 Nov 15;16:519–520. doi: 10.1007/BF02158380. [DOI] [PubMed] [Google Scholar]
  19. SOLOMON S. Transtubular potential differences of rat kidney. J Cell Physiol. 1957 Apr;49(2):351–365. doi: 10.1002/jcp.1030490215. [DOI] [PubMed] [Google Scholar]
  20. STEINHAUSEN M., IRAVANI I., SCHUBERT G. E., TAUGNER R., BRAUN A., VON EGIDY, ROHMANN F. P., TAUGNER G. AUFLICHTMIKROSKOPIE UND HISTOLOGIE DER TUBULUSDIMENSIONEN BEI VERSCHIEDENEN DIURESEZUSTAENDEN. Virchows Arch Pathol Anat Physiol Klin Med. 1963 Aug 8;336:503–527. [PubMed] [Google Scholar]
  21. ULLRICH K. J., MARSH D. J. Kidney, water, and electrolyte metabolism. Annu Rev Physiol. 1963;25:91–142. doi: 10.1146/annurev.ph.25.030163.000515. [DOI] [PubMed] [Google Scholar]
  22. ULLRICH K. J., SCHMIDT-NIELSON B., O'DELL R., PEHLING G., GOTTSCHALK C. W., LASSITER W. E., MYLLE M. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney. Am J Physiol. 1963 Apr;204:527–531. doi: 10.1152/ajplegacy.1963.204.4.527. [DOI] [PubMed] [Google Scholar]
  23. USSING H. H., ZERAHN K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand. 1951 Aug 25;23(2-3):110–127. doi: 10.1111/j.1748-1716.1951.tb00800.x. [DOI] [PubMed] [Google Scholar]
  24. WHITTEMBURY G., SUGINO N., SOLOMON A. K. Ionic permeability and electrical potential differences in Necturus kidney cells. J Gen Physiol. 1961 Mar;44:689–712. doi: 10.1085/jgp.44.4.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. WINDHAGER E. E., WHITTEMBURY G., OKEN D. E., SCHATZMANN H. J., SOLOMON A. K. Single proximal tubules of the Necturus kidney. III. Dependence of H2O movement on NaCl concentration. Am J Physiol. 1959 Aug;197:313–318. doi: 10.1152/ajplegacy.1959.197.2.313. [DOI] [PubMed] [Google Scholar]
  26. WIRZ H. Der osmotische Druck in den corticalen Tubuli der Rattenniere. Helv Physiol Pharmacol Acta. 1956;14(3):353–362. [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES