Skip to main content
The Journal of General Physiology logoLink to The Journal of General Physiology
. 1966 Jan 1;49(3):483–499. doi: 10.1085/jgp.49.3.483

Effects of Dinitrophenol and Oligomycin on the Coupling between Anaerobic Metabolism and Anaerobic Sodium Transport by the Isolated Turtle Bladder

Neal S Bricker 1, Saulo Klahr 1
PMCID: PMC2195494  PMID: 4223050

Abstract

Dinitrophenol (1 x 10-5 M) has been found to inhibit anaerobic sodium transport by the isolated urinary bladder of the fresh water turtle. Concurrently, anaerobic glycolysis was stimulated markedly. However, tissue ATP levels diminished only modestly, remaining at approximately 75% of values observed under anaerobic conditions without DNP. The utilization of glucose (from endogenous glycogen) corresponded closely to that predicted from the molar quantities of lactate formed. Thus the glycolytic pathway was completed in the presence of DNP and if ATP were synthesized normally during glycolysis, synthesis should have been increased. On the other hand, the decrease in Na transport should have decreased ATP utilization. Oligomycin did not block sodium transport either aerobically or anaerobically, but ATP concentrations did decrease. When anaerobic glycolysis was blocked by iodoacetate, pyruvate did not sustain sodium transport thus suggesting that no electron acceptors were available in the system. Two explanations are entertained for the anaerobic effect of DNP: (a) Stimulation by DNP of plasma membrane as well as mitochondrial ATPase activity; (b) inhibition of a high energy intermediate derived from glycolytic ATP or from glycolysis per se. The arguments relevant to each possibility are presented in the text. Although definitive resolution is not possible, we believe that the data favor the hypothesis that there was a high energy intermediate in the anaerobic system and that this intermediate, rather than ATP, served as the immediate source of energy for the sodium pump.

Full Text

The Full Text of this article is available as a PDF (869.2 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. CHANCE B., HOLLUNGER G. Inhibition of electron and energy transfer in mitochondria. IV. Inhibition of energy-linked diphosphopyridine nucleotide reduction by uncoupling agents. J Biol Chem. 1963 Jan;238:445–448. [PubMed] [Google Scholar]
  2. CHANCE B., WILLIAMS G. R., HOLLUNGER G. Inhibition of electron and energy transfer in mitochondria. III. Spectroscopic and respiratory effects of uncoupling agents. J Biol Chem. 1963 Jan;238:439–444. [PubMed] [Google Scholar]
  3. KLAHR S., BRICKER N. S. ENERGETICS OF ANAEROBIC SODIUM TRANSPORT BY THE FRESH WATER TURTLE BLADDER. J Gen Physiol. 1965 Mar;48:571–580. doi: 10.1085/jgp.48.4.571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KLAHR S., BRICKER N. S. NA TRANSPORT BY ISOLATED TURTLE BLADDER DURING ANAEROBIOSIS AND EXPOSURE TO KCN. Am J Physiol. 1964 Jun;206:1333–1339. doi: 10.1152/ajplegacy.1964.206.6.1333. [DOI] [PubMed] [Google Scholar]
  5. LARDY H. A., WELLMAN H. The catalytic effect of 2,4-dinitrophenol on adenosinetriphosphate hydrolysis by cell particles and soluble enzymes. J Biol Chem. 1953 Mar;201(1):357–370. [PubMed] [Google Scholar]
  6. MYERS D. K., SLATER E. C. The enzymic hydrolysis of adenosine triphosphate by liver mitochondria. I. Activities at different pH values. Biochem J. 1957 Dec;67(4):558–572. doi: 10.1042/bj0670558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. PULLMAN M. E., PENEFSKY H. S., DATTA A., RACKER E. Partial resolution of the enzymes catalyzing oxidative phosphorylation. I. Purification and properties of soluble dinitrophenol-stimulated adenosine triphosphatase. J Biol Chem. 1960 Nov;235:3322–3329. [PubMed] [Google Scholar]
  8. ROBIN E. D., VESTER J. W., MURDAUGH H. V., Jr, MILLEN J. E. PROLONGED ANAEROBIOSIS IN A VERTEBRATE: ANAEROBIC METABOLISM IN THE FRESHWATER TURTLE. J Cell Physiol. 1964 Jun;63:287–297. doi: 10.1002/jcp.1030630304. [DOI] [PubMed] [Google Scholar]
  9. SLATER E. C. Mechanism of phosphorylation in the respiratory chain. Nature. 1953 Nov 28;172(4387):975–978. doi: 10.1038/172975a0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of General Physiology are provided here courtesy of The Rockefeller University Press

RESOURCES