Abstract
Using Weber's method of "matrix analysis" for the estimation of the number of fluorescent species contributing to the emission of a sample, it is shown that the fluorescence1 band in spinach chloroplast fragments at room temperature originates in two species of chlorophyll a. Emission spectra obtained upon excitation with different wavelengths of light (preferentially absorbed in chlorophyll a or b) are presented. Upon cooling to - 196°C, the fluorescence efficiency increases about twentyfold. Two additional bands, that now appear at 696 and 735 mµ, suggest the participation of four molecular species. Emission spectra observed at different concentrations of chloroplast fragments with excitation in chlorophyll a and b and excitation spectra for different concentrations of chloroplast fragments and measurements at 685 and 760 mµ are presented. Two of the four emission bands may belong to pigment system I and two to system II. The 685, 696, and 738 mµ bands respond differently to temperature changes. In the -196°C to -150°C range, the intensity of the 685 mµ band remains constant, and that of the 696 mµ band decreases twice as fast as that of the 738 mµ band.
Full Text
The Full Text of this article is available as a PDF (946.6 KB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- BUTLER W. L. A far-red absorbing form of chlorophyll. in vivo. Arch Biochem Biophys. 1961 May;93:413–422. doi: 10.1016/0003-9861(61)90287-9. [DOI] [PubMed] [Google Scholar]
- Brody S. S. New Excited State of Chlorophyll. Science. 1958 Oct 10;128(3328):838–839. doi: 10.1126/science.128.3328.838. [DOI] [PubMed] [Google Scholar]
- Clayton R. K. The biophysical problems of photosynthesis. Science. 1965 Sep 17;149(3690):1346–1354. doi: 10.1126/science.149.3690.1346. [DOI] [PubMed] [Google Scholar]
- DUYSENS L. N., AMESZ J., KAMP B. M. Two photochemical systems in photosynthesis. Nature. 1961 May 6;190:510–511. doi: 10.1038/190510a0. [DOI] [PubMed] [Google Scholar]
- GOEDHEER J. C. FLUORESCENCE BANDS AND CHLOROPHYLL A FORMS. Biochim Biophys Acta. 1964 Sep 25;88:304–317. doi: 10.1016/0926-6577(64)90186-x. [DOI] [PubMed] [Google Scholar]
- GOVINDJEE, ICHIMURA S., CEDERSTRAND C., RABINOWITCH E. Effect of combining far-red light with shorter wave light on the excitation of fluorescence in Chlorella. Arch Biochem Biophys. 1960 Aug;89:322–323. doi: 10.1016/0003-9861(60)90063-1. [DOI] [PubMed] [Google Scholar]
- JACOBS E. E., VATTER A. E., HOLT A. S. Crystalline chlorophyll and bacteriochlorophyll. Arch Biochem Biophys. 1954 Nov;53(1):228–238. doi: 10.1016/0003-9861(54)90248-9. [DOI] [PubMed] [Google Scholar]
- Kok B., Gott W. Activation Spectra of 700 mmu Absorption Change in Photosynthesis. Plant Physiol. 1960 Nov;35(6):802–808. doi: 10.1104/pp.35.6.802. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LAVOREL J. [Heterogeneity of chlorophyll in vivo. I. Spectra of fluorescence emission]. Biochim Biophys Acta. 1962 Jul 16;60:510–523. doi: 10.1016/0006-3002(62)90870-3. [DOI] [PubMed] [Google Scholar]
- OLSON R. A., JENNINGS W. H., BUTLER W. L. MOLECULAR ORIENTATION: SPECTRAL DEPENDENCE OF BIFLUORESCENCE OF CHLOROPLASTS IN VIVO. Biochim Biophys Acta. 1964 Sep 25;88:331–337. doi: 10.1016/0926-6577(64)90188-3. [DOI] [PubMed] [Google Scholar]
- TEALE F. W. The extent of energy migration and chlorophyl. A orientation in Chlorella. Biochim Biophys Acta. 1960 Jul 29;42:69–75. doi: 10.1016/0006-3002(60)90754-x. [DOI] [PubMed] [Google Scholar]
- THOMAS J. B., MARSMAN J. W. On the pigment system of the red alga Porphyra lacineata. Biochim Biophys Acta. 1959 Oct;35:316–323. doi: 10.1016/0006-3002(59)90380-4. [DOI] [PubMed] [Google Scholar]