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Summary

Cells internalize soluble ligands through endocytosis and large particles through actin-based phago-
cytosis. The dynamin family of GTPases mediates the scission of endocytic vesicles from the
plasma membrane. We report here that dynamin 2, a ubiquitously expressed dynamin isoform,
has a role in phagocytosis in macrophages. Dynamin 2 is enriched on early phagosomes, and
expression of a dominant-negative mutant of dynamin 2 significantly inhibits particle internal-
ization at the stage of membrane extension around the particle. This arrest in phagocytosis re-
sembles that seen with inhibitors of phosphoinositide 3-kinase (P13K), and inhibition of PI3K
prevents the recruitment of dynamin to the site of particle binding. Although expression of
mutant dynamin in macrophages inhibited particle internalization, it had no effect on the pro-
duction of inflammatory mediators elicited by particle binding.
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M acrophages are “professional phagocytes” that play a
critical role in innate and acquired immunity due to
their unique ability to internalize and degrade pathogens
and to couple this to the release of inflammatory mediators.
Phagocytosis is initiated by the interaction of specific re-
ceptors on the surface of the phagocyte with ligands on the
particle. Although all phagocytosis requires actin polymer-
ization, phagocytosis mediated through different receptors
uses distinct mechanisms and results in different biological
outcomes (1). Thus, macrophage phagocytosis of pathogens
initiates inflammation, whereas the phagocytosis of apop-
totic cells does not initiate a proinflammatory response (2).
The specific molecular regulators of particle internalization
and the mechanisms of coupling to the production of in-
flammatory mediators are largely unknown.

While cells use phagocytosis to internalize large particles,
soluble ligands are internalized through receptor-mediated
endocytosis, a clathrin-based process. Dynamin 2 is a ubiqui-
tously expressed GTPase that has a critical role in the scis-
sion of forming clathrin-coated endocytic vesicles from the
plasma membrane (3). Flies with a temperature-sensitive
mutation in shibire, the Drosophila homologue of dynamin,
have impaired endocytosis at the synaptic junction that re-
sults in their rapid paralysis at the nonpermissive tempera-
ture (4, 5). The nerve terminals of these mutant flies are
depleted of synaptic vesicles and have an accumulation of
partially invaginated coated pits at the cell surface (6). This
defect in endocytosis is also found in several other tissues in
these flies (7-9).
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In mammalian cells, dominant-negative mutant forms of
dynamin that are unable to bind GTP inhibit receptor-
mediated endocytosis (10-12). When permeabilized nerve
termini are treated with the nonhydrolyzable GTP analogue,
GTP~S, tubular membrane invaginations coated with heli-
cal arrays of dynamin are formed (13). Similarly, dynamin
assembles into collar-like rings around the neck of the tu-
bular liposomes, and hydrolysis of GTP by dynamin leads to
an active scission of these tubules into discrete vesicles (14—
16). The precise mechanism by which dynamin functions
in vesicle scission is controversial; some evidence supports
dynamin acting as a mechanical force generator (13-15),
whereas other data suggest that it acts as a classical GTPase
switch that activates a downstream effector (17).

Dynamin 2 is also involved in membrane traffic at the
trans-Golgi network (TGN).! A neutralizing antibody di-
rected against dynamin 2 inhibits the formation of both
clathrin- and non—clathrin-coated vesicles at the TGN in
vitro (18). There is also strong evidence that the Saccharo-
myces cerevisiae dynamin homologue, Vpslp, modulates ve-
sicular trafficking from the TGN (19).

Dynamin 2 is targeted to forming endosomes through its
interaction with the Src homology (SH) 3 domain of am-
phiphysin (20-22). Thus, overexpression of the SH3 do-

LAbbreviations used in this paper: eGFP, enhanced GFP; GFP, green fluores-
cent protein; LDL, low-density lipoprotein; PI3K, phosphoinositide
3-kinase; RP, resident peritoneal; SH, Src homology; TGN, trans-Golgi
network; TRITC, tetramethyl rhodamine isothiocyanate.
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main of amphiphysin blocks receptor-mediated endocytosis
at nerve terminals and in Cos-7 cells (23, 24). We recently
cloned amphiphysin from an expression library using an
mADb generated against mouse macrophage phagosomes, and
have shown that amphiphysin is enriched on phagosomes
(our unpublished results). This suggested a possible role for
dynamin in phagocytosis. We report here that dynamin 2
localizes to forming phagosomes, and that a mutant form of
dynamin 2 inhibits phagocytosis at the stage of membrane
extension around the particle, but does not impair particle-
mediated stimulation of inflammatory mediators.

Materials and Methods

DNA Expression Vectors.  Full-length dynamin 2 (aa isoform)
with a single amino acid mutation that changed the lysine at posi-
tion 44 to an alanine, dyn*#A, was cloned into the pT1GZ2 vec-
tor. In this vector, expression of dynk44A is under the control of a
tetracycline-repressible promoter. Removal of tetracycline from
the media results in a bicistronic mMRNA that concomitantly di-
rects translation of the dominant-negative dynamin protein and
green fluorescent protein (GFP). pTIGZ2 consists of pcDNA3.1/
Zeo (Invitrogen) in which the CMV promoter was replaced by the
tetracycline-regulated promoter from pTetSplice (Xhol-HindlII
fragment; GIBCO BRL) followed by a multiple cloning site, the
cap-independent translational enhancer region of pCITE (ampli-
fied using the 5" primer, GTGGATCCGTTATTTTCCACCAT-
ATT, and the 3’ reverse primer, GGGAGCTCCCATATTAT-
CATCGTGTT; Novagen) and the coding region for enhanced
GFP (eGFP) from peGFP-N1 (EcoRI-Notl fragment; Clontech).

V5 epitope-tagged dynamin 2 and dynk#* were constructed by
TA cloning into the pcDNA3.1/V5/HisTOPO vector (Invitrogen).

pNeo/Tak was constructed to direct expression of the tetracy-
cline transactivator under neomycin selection. The plasmid uses a
tetracycline-regulated promoter to direct expression of the tetra-
cycline transactivator (both from pTet-Tak; GIBCO BRL). The
neomycin resistance marker was from pcDNAS3 (Invitrogen), and
the remainder of the plasmid was derived from pBluescript SK
(Stratagene).

Immunofluorescence Characterization. Murine resident peritoneal
(RP) macrophages were isolated and cultured as described previ-
ously (1). Synchronized phagosomes were created by centrifuging
particles onto the cells at 1,600 rpm and 4°C for 1 min. (Before
exposure to C3b;-opsonized particles, cells were treated with 200
nM PMA for 30 min.) After washing with PBS, the cells were incu-
bated in media at 37°C for the times indicated in the Results. The
cells were fixed in formalin (10 min, room temperature), permea-
bilized in 0.25% Triton X-100 in PBS (10 min, room tempera-
ture), washed twice in PBS, and incubated with primary antibody
(Dyn 2, an affinity-purified anti-dynamin 2 antibody generated as
described [25]; MCB63, an anti-pan dynamin antibody generated
as described [26]; or the anti-V5 antibody [Invitrogen], and anti—
human RBC antibody purchased from Jackson ImmunoResearch
Labs) for 1 h at room temperature. The coverslips were washed
in PBS and incubated with the appropriate secondary antibodies
(all FITC- and TxR-conjugated antibodies were from Cappel,
Cy5 conjugates from Jackson ImmunoResearch Labs). Actin was
stained with rhodamine-phalloidin (Molecular Probes). After a 1-h
incubation, the slides were washed in PBS, rinsed briefly in dis-
tilled water, and mounted in a polyvinyl alcohol-based mounting
medium (Harlow and Lane). All confocal images were obtained
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on a Zeiss Axiophot microscope equipped with Bio-Rad confo-
cal optics.

IgG-coated RBCs were prepared by incubating fresh human
RBCs, diluted in PBS, with anti-human glycophorin 1gG (Jack-
son ImmunoResearch Labs) at room temperature for 60 min. Com-
plement-coated RBCs were prepared by incubating human red
cells with anti-human glycophorin IgM (supernatant from the
NN3 hybridoma; American Type Culture Collection) at room
temperature for 30 min, and the cells were then washed and re-
suspended in RPMI with 10% C5-depleted human serum (Sigma
Chemical Co.), and incubated at 37°C for 1 h. Zymosan (Molec-
ular Probes) was prepared as described previously (27).

Phosphoinositide 3-kinase (P13K) was inhibited by incubating
RP macrophages with 100 nM wortmannin (Sigma Chemical
Co.) for 1 h. These cells were incubated with zymosan for 10 min,
then prepared and examined as above.

Immunoblotting. Macrophages, either RP or RAW 264.7 cells
(American Type Culture Collection), were lysed on ice into lysis
buffer (20 mM Tris, pH 7.4, 120 mM NacCl, 10% glycerol, 2 mM
EDTA, 1 mM dithiothreitol, and 1% SDS, 0.09 trypsin inhibitor
units [T1U] aprotinin, 0.5 mg/ml leupeptin, 1 mM PMSF). Total
murine brain homogenate was lysed into brain lysis buffer (10 mM
Hepes, 150 mM NaCl, 10 mM benzamidine, 1% Triton X-100
with the same protease inhibitors as above), incubated at 4°C
with agitation for 1 h, and insoluble material was removed by
centrifugation at 40,000 g for 1 h at 4°C. Samples were quantified
by the BCA assay (Pierce Chemical Co.), and 20 wg of protein/
well was run on a 10% SDS-PAGE acrylamide gel. Proteins were
transferred to polyvinylidene difluoride (PVDF) membrane (Mil-
lipore) and blocked overnight at 4°C in 10% nonfat dried milk in
PBS. Membranes were incubated for 1 h at room temperature
with one of the anti-dynamin antibodies (either Dyn 2 [25] or
the anti-dynamin 1 rabbit polyclonal antibody DG2, provided by
Pietro De Camilli, Yale University School of Medicine, New Ha-
ven, CT), washed three times for 15 min each in TBS/Tween and
incubated in a 1:10,000 dilution of peroxidase-conjugated sec-
ondary antibody (Cappel). After three 15-min washes in TBS/
Tween, specific binding was detected using chemiluminescence
(Amersham Pharmacia Biotech).

Cell Surface Staining.  Cells to be stained for FcyRIl and FcyRIII
were resuspended into FACS® buffer (PBS, 2% FCS, 0.5 mM azide)
while cells to be stained for Mac-1 were resuspended into 2.4G2 su-
pernatant (American Type Culture Collection), then incubated for
15 min on ice. Primary antibody (biotinylated 2.4G2 for FcR stain-
ing or biotinylated anti-mouse CD11b antibody, both from Phar-
Mingen) was added, and the cells were incubated on ice for 20 min.
Cells were washed in FACS® buffer, resuspended in diluted strepta-
vidin-PE (Caltag), and incubated on ice for 15 min. The cells were
washed, resuspended in FACS® buffer with 1% paraformaldehyde,
and analyzed on a FACScan™ (Becton Dickinson).

Transfections. A tetracycline transactivator—expressing RAW
cell line was generated by transfecting RAW 264.7 cells with
pNeo/Tak, and stable cell lines were selected using 400 pg/ml
G418 (GIBCO BRL). After 10 d of selection, the cells were cloned
by limiting dilution, and one cell line (designated RAW-TT10)
that demonstrated good tetracycline-regulated expression from a
subsequently transfected reporter plasmid was used for all experi-
ments. In the experiments reported here, tetracycline was always
absent from the media, resulting in strong activity of the tetracy-
cline-regulated promoter.

RAW-TT10 cells were transiently transfected by electropora-
tion. 10 g of DNA was added to 5 X 108 RAW-TT10 cells in
250 pl of RPMI (JRH Biosciences) with 10% heat-inactivated
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FCS (Hyclone). The cells were electroporated at 280 V, capaci-
tance 960 wF, and immediately washed in 5 ml of RPMI with
10% FCS. The cells were plated and analyzed 18-24 h later by
FACS® or confocal microscopy.

Phagocytosis Assay.  Tetramethyl rhodamine isothiocyanate
(TRITC)-zymosan was purchased from Molecular Probes.
TRITC-labeled SRBC “ghosts” were prepared by incubating
SRBCs (ICN/Cappel) in hypotonic lysis buffer (1 mM MgCl,,
100 wM EGTA in 0.02X PBS) with TRITC-BSA (Molecular
Probes) on ice for 1 h. Isotonicity was restored to the cells with
5X PBS, and the ghosts were resealed at 37°C for 1 h. Unincor-
porated TRITC-BSA was removed by washing in PBS, and the
ghosts were opsonized as described above (anti-SRBC IgG and
IgM were purchased from Intercell).

The specified particles were centrifuged onto the transiently
transfected RAW-TT10 cells at 1,600 rpm and 4°C for 1 min.
(Before exposure to C3b;-opsonized particles, cells were treated
with 200 nM PMA for 30 min.) The cells were incubated at
37°C for 10 min. The extracellular particles were removed,
ghosts were lysed with a 20-s water wash, and the TRITC-
zymosan was digested for 10 min with 100 U/ml lyticase (Sigma
Chemical Co.). The cells were resuspended in PBS/EDTA, fixed
with 1% formalin, and analyzed by FACS®,

The effect of dynamin 1 on phagocytosis was assessed with three
dominant-negative mutants of dynamin 1 expressed in pCMV5:
DI APH (deletion of amino acids 541-618), DI K535M, and DI
N272 (deletion of amino acids 1-272) (28). Each of these con-
structs was cotransfected with pSFFV-eGFP (eGFP under the con-
trol of the spleen focus—forming virus LTR) into RAW-TT10
cells, and phagocytosis was assayed as described above.

TNF Assay. RAW-TT10 cells were transfected with dyn<#4A-
pTIGZ2 18 h before the assay. The cells were incubated with the
indicated particles at 37°C for 30 min, at which time 5 M brefeldin
A was added to the media. The zymosan particles were endo-
toxin free as assessed by the limulus amebocyte lysate assay
(QCL-1000; BioWhittaker). The cells were incubated for an ad-
ditional 2.5 h, then collected for staining. The cells were blocked
in 2.4G2 hybridoma supernatant (American Type Culture Col-
lection) for 15 min on ice, fixed in 4% paraformaldehyde for 15
min at room temperature, washed, and stained with anti-TNF-«
antibody (PharMingen) conjugated to PE in permeabilization
buffer (1% FCS, 0.1% [wt/vol] sodium azide, 0.1% [wt/vol] sa-
ponin, in PBS, pH 7.4) at room temperature for 30 min, washed,
and analyzed on a FACScan™ (with CELLQuest™ software;
both from Becton Dickinson).

Video Microscopy. RAW-TT10 cells were transfected with
dynk4A-pTIGZ and plated on 35-mm glass-bottomed microwell
dishes (MatTek Corp.). 18 h later, the dish was mounted on a
Zeiss Axiophot microscope equipped with a cooled CCD camera
(Princeton Instruments) and Metamorph digital imaging software
system (Universal Imaging), and differential interference contrast
(DIC) images were collected every 30 s.

Scanning Electron Microscopy. 18 h after transfection, cells ex-
pressing high levels of the indicated proteins were sorted onto
Thermonox coverslips (Nunc) using a FACStarPtUs™ (Becton
Dickinson). Cells were adhered for 3 h at 37°C, then incubated
with 1gG-opsonized SRBCs for the indicated amount of time.
Cells were fixed in 3% glutaraldehyde in EM buffer (0.1 M caco-
dylate, 0.1 M sucrose) at room temperature for 1 h, then washed
with EM buffer. The cells were postfixed in 1% OsO, in 0.1 M
cacodylate, 4 mM CacCl, pH 7.3, for 30 min at room tempera-
ture. The cells were dehydrated through serial changes in ethanol
(35 and 50%) for 5 min each, en bloc stained in 3% uranyl ace-
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tate, 70% ethanol for 30 min, and ethanol dehydration was then
completed (80, 90, 95, 100, and 100%, each for 5 min). The cov-
erslips were critical point dried, mounted onto scanning stubs,
and air dried overnight. Cells were sputter coated with 30 nm
gold/palladium and examined on a Jeol JSM-6300F scanning
electron microscope.

Results

Dynamin 2 Is Enriched on Early Phagosomes in Macrophages.
Dynamin 2 was found to be expressed in murine RP macro-
phages and the RAW-TT10 macrophage cell line, whereas
dynamin 1 was not detected in macrophages (Fig. 1 A). In-
terestingly, dynamin 2 was recruited to early phagosomes,
as demonstrated by staining with two independent antibod-
ies to dynamin as well as by the localization of the epitope-
tagged protein (Fig. 1 B). The phagocytosis of different
particles is mediated by different receptors. For example,
FcRs mediate the uptake of 1gG-coated particles, comple-
ment receptors (CRs) mediate the uptake of C3b;-opsonized
particles, and the mannose receptor (among others) medi-
ates the uptake of zymosan (yeast cell wall particles) (2).
Phagocytosis stimulated by these receptors has common
features, such as a reliance on the actin cytoskeleton, and
distinct features, such as their different requirement for the
cytoskeletal proteins vinculin and paxillin (1). Immunoflu-
orescence microscopy of murine RP macrophages using
two independent antibodies demonstrated that dynamin 2
was enriched on early phagosomes containing 1gG-opson-
ized RBCs, C3b;-opsonized RBCs, and zymosan (Fig. 1
B, i, iii, vii, and viii). In addition, an epitope-tagged version
of the aa isoform of dynamin 2 transiently expressed in
RAW-TT10 macrophages also localized to phagosomes,
demonstrating that this macrophage-expressed isoform
contains the domain responsible for targeting to phagosomes
(Fig. 1 B, iv and v). The kinetics of association of dynamin
2 with phagosomes precisely mirrored that of F-actin: both
were recruited to the forming phagocytic cup and the early
phagosome (Fig. 1 B, v and vi), and both were concomi-
tantly lost from the phagosome after particle internalization
(data not shown).

Dynamin 2 Is Critical for Macrophage Phagocytosis. To ex-
amine the role of dynamin 2 in phagocytosis, RAW-TT10
macrophages were transfected with a dominant-negative
mutant form of the aa isoform of dynamin 2, dynk#4
which is unable to bind GTP (11). The mutant dynamin 2
gene was expressed in a bicistronic vector with GFP (pTIGZ2
vector), allowing transiently transfected cells to be identi-
fied by their green fluorescence. Phagocytosis of either
TRITC-labeled zymosan, 1gG-opsonized RBCs, or C3b;-
opsonized RBCs was assessed as a function of the level of
expression of the GFP/dominant-negative protein by two-
color FACS® (Fig. 2). In all cases, dynk*4A inhibited phago-
cytosis in a dose-dependent manner (Fig. 2 A); a typical
FACS® profile is shown in Fig. 2 B. Dynk4A inhibited
FcR-mediated phagocytosis by 85%, CR-mediated phago-
cytosis by 63%, and zymosan phagocytosis by 65% (Fig.
2 C). As expected, dynk*A also inhibited receptor-medi-



A Figure 1. Dynamin 2 is en-

i riched on murine macrophage
220 kD — PMo  RAW PM¢ _Brain phagosomes. (A) 20 pg of total
protein extract from RP mac-
rophages (PMd), RAW-TT10
macrophages, or brain was sepa-
rated on a 10% SDS-PAGE gel,
66 kD — transferred to polyvinylidene di-
) fluoride membrane, and probed
Dynamin 2 Dynamin 1 with an anti-dynamin 2 (Dyn 2),
or an anti-dynamin 1 (DG2) an-
tibody as indicated. A protein of
the expected 100-kD size was
detected in macrophages by the
anti-dynamin 2 antibody but was
not detected by the anti-dynamin
1 antibody. (B) Synchronized
phagosomes containing either
zymosan particles (i-vi), com-
plement-opsonized RBCs (vii),
or 1gG-opsonized RBCs (viii)
were created in RP macrophages
(i, i, iii, vii, viii) or in transiently
transfected RAW-TT10 cell ex-
pressing V5 epitope-tagged dy-
namin 2 (iv—vi). 5 min after par-
ticle binding, cells were fixed
and prepared for immunofluo-
rescence. Dynamin 2 was de-
tected with the anti-dynamin 2
antibody Dyn 2 (i, vii, and viii)
or the pan anti-dynamin antibody
MCS63 (iii); V5 epitope-tagged dynamin was detected with anti-V5 antibody (iv and v); actin was stained with rhodamine-phalloidin (vi); and zymosan
was visualized directly (ii). Dynamin enrichment on phagocytic cups and phagosomes (v) colocalized with F-actin (vi).
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Figure 2. Dynk*A inhibits mac-
rophage phagocytosis. Transiently
transfected RAW-TT10 macro-
phages internalized the indicated
particles for 10 min. Uninternalized
particles were removed, and the
cells were analyzed by flow cytome-
try. (A) Dyn¥#*A inhibited phagocy-
tosis in a dose-dependent manner.
: - . DynK#A expression, as determined
P 8 i i5? by GFP fluorescence, is plotted on a
logarithmic scale on the x-axis.
Phagocytosis, expressed as the per-
centage of cells internalizing particles
relative to the percentage of nonex-
C pressing control cells internalizing
100% 4 particles is plotted on the y-axis. The
—I— SEM from four independent experi-
ments is shown, but the error bars
75% A do not extend beyond the symbols.
(B) A typical experiment is shown.
Oeontrol RAW-TT10 cells transfected with
50% - WdynK44A dynX#A-pTIGZ2 were incubated
with  TRITC-zymosan and ana-
lyzed. The level of transgene expres-
250 | sion is expressed on the x-axis (GFP
fluorescence), and the phagocytosis
of labeled particles is shown on the
- y-axis (TRITC fluorescence). (C)
RAW-TT10 cells were transiently
transfected with either pT1GZ2 vec-
tor alone (control) or dynX#A-
pTIGZ2, and phagocytosis of TRITC-loaded 1gG-opsonized SRBCs, TRITC-loaded complement-opsonized SRBCs, or TRITC-zymosan was as-
sessed. Phagocytosis is expressed as the percentage of transfected cells internalizing particles relative to the percentage of untransfected cells internalizing
particles. Control and dyn*4A cells expressing the same level of GFP were compared. The data shown represent a minimum of three independent exper-
iments, and error bars reflect SEM.
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Figure 3. Dynamin 2 blocks receptor-mediated endocytosis in mac-

rophages. RAW-TT10 cells, transfected with the TIGZ control vector
(thin solid line) or the dynk4A vector (thick solid line), were incubated
with 20 pg/ml of Dil-labeled acetylated LDL (Dil AcLDL) for 30 min at
37°C. As a control, untransfected cells were incubated with the same con-
centration of Dil AcLDL at 4°C (dashed line). Cells were collected and
analyzed by flow cytometry. The amount of intracellular Dil AcLDL is
indicated on the x-axis in log fluorescence units. The histograms were
generated by gating on the highly expressing transfected cells (see Fig. 2 B
for sample gates). The gates used in this experiment were the same as
those used to assay phagocytosis.

ated endocytosis as determined by the uptake of Dil-
labeled acetylated low-density lipoprotein (LDL) in macro-
phages (Fig. 3).

V5 epitope-tagged dynk4#A colocalized with actin on na-
scent phagocytic cups, demonstrating that the mutant is
also recruited to the site of particle-induced signaling and
establishing that it is correctly localized to inhibit the func-
tion of dynamin on phagosomes (Fig. 4). This construct
also inhibited phagocytosis (data not shown), and its effects
were indistinguishable from those seen with untagged
dynk4A These effects were specific for dynamin 2, since
dominant-negative mutants of dynamin 1 did not inhibit
phagocytosis or receptor-mediated endocytosis in macro-
phages (data not shown).

The defect in phagocytosis was not due to an effect of
dynk44A on the level of phagocytic receptors, since trans-

Figure 4.

Dynk4A colocalized with F-actin on phagocytic cups.
RAW-TT10 cells transfected with V5 epitope—tagged dynk#4A were in-
cubated with zymosan for 10 min, fixed, and stained with the anti-V5 an-
tibody. Actin was visualized with rhodamine-phalloidin. Arrows indicate
where tagged dynX4A colocalized with actin on partially formed phago-
cytic cups.

1853 Gold et al.

fected cells expressed normal cell surface levels of FCRs
(CD16 and CD32) and CRs (Mac-1) (data not shown),
and particle binding was unimpaired (Table I; and see Figs.
4 and 5). Cell viability and other actin-based processes
were unaffected by the expression of dynk*A as demon-
strated by the observations that RAW-TT10 cells express-
ing dynk4A were able to migrate, polarize, extend and re-
tract ruffles, and spread in response to phorbol esters (data
not shown). Further, engagement of phagocytic receptors
stimulated actin polymerization at the site of particle bind-
ing (Fig. 4). In addition, mutant dynamin had no effect on
particle-induced TNF-« production (see Fig. 7, below),
demonstrating that one arm (internalization) of a bifurcat-
ing signaling pathway was selectively inhibited.

Dynamin 2 Is Required for Membrane Extension around the
Forming Phagosome.  Our initial hypothesis was that dy-
namin would serve a similar role in phagocytosis as it serves
in endocytosis and therefore would be required only for scis-
sion of the nascent phagosome from the plasma membrane.
However, examination of dynk*A-expressing RAW-TT10
cells attempting to internalize particles revealed that dynamin
was exerting a role earlier in the process. Cells expressing
dynX44A were able to bind particles, and phalloidin staining
demonstrated that this was accompanied by localized actin
polymerization; however, actin extended only partially
around the particles (Fig. 4). To determine the stage at
which phagocytosis was arrested, dynk44A-expressing RAW-
TT10 cells were studied by scanning electron microscopy.
10 min after contacting 1gG-coated SRBCs, control cells
(expressing pTIGZ2 alone) were identified at many different
stages of particle internalization (Fig. 5 A), while very few of
the dynk44A-expressing cells extended membrane more than
halfway around the SRBCs (Fig. 5 B). This indicated that
mutant dynamin arrested particle internalization at an inter-
mediate stage. Indeed, after unbound SRBCs were washed
away and phagocytosis was allowed to proceed for an addi-
tional 50 min at 37°C, the pTIGZ2 control cells had inter-
nalized >90% of the particles (Fig. 5 C, and Table I). In
contrast, <30% of the particles associated with the dynk44A-
expressing cells were internalized (Fig. 5 D, and Table I).

PI3K is a key regulator of macrophage phagocytosis (29,

Table 1. Bound, Incompletely Internalized Particles
Bound particles
10 min 1h
Control 450 *= 37 35 10
Dynk44A 480 + 53 300 + 28

Data represent number of bound, incompletely internalized 1IgG SRBCs
per 100 macrophages examined by scanning electron microscopy. Error
is SEM from three samples. Examination of parallel samples by
fluorescence confirmed that after 1 h, >90% of the particles on the
control cells were internalized, whereas <<30% of the particles associated
with the dynk44A-expressing cells were internalized.



control

30). Inhibition of PI3K causes incomplete phagosome clo-
sure (29, 30), a very similar phenotype to that observed in
cells expressing mutant dynamin. Inhibition of PI3K with
wortmannin prevented the recruitment of dynamin 2 to
the site of particle binding and actin polymerization (Fig. 6,
A and B). Thus, it is possible that PI3K might act upstream
of dynamin in phagocytosis.

Dynamin 2 Selectively Uncouples Particle Internalization from
Particle-induced Cytokine Production. Macrophage phagocy-
tosis of 1gG-coated particles and zymosan results in several
signaling events, including the production of inflammatory
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Figure 5. Dynk%A inhibits
membrane extension around the
forming phagosome. Transiently
transfected cells were sorted by
FACS®, and cells expressing the
highest levels of GFP were stud-
ied by scanning electron micros-
copy. Sorted cells were incu-
bated with IgG-coated SRBCs
for 10 min (A and B) or for 1 h
(C and D). After a 10-min inter-
nalization, control pTIGZ2-
transfected cells demonstrated
various stages of particle internal-
ization (A), and after 1 h, >90%
of the particles were internalized
(C). By contrast, cells expressing
dynk44A could only extend mem-
brane partially around the bound
particles at both time points (B
and D). The size bar shown in D
applies to A-D.

60 min

mediators such as TNF-a (2). Cells expressing dynk4A gener-
ated normal amounts of TNF-« upon interaction with parti-
cles (Fig. 7); thus, mutant dynamin uncoupled particle inter-
nalization from particle-dependent cytokine production.

Discussion

In this study, we have demonstrated that dynamin 2 is
essential to the formation of macrophage phagosomes, and
that it functions at the stage of membrane extension around
the particle. This role for dynamin is conserved in all of the

Figure 6. Dynamin is not recruited to the
site of particle binding in macrophages
treated with the PI3K inhibitor, wortman-
nin. Murine RP macrophages were treated
with wortmannin for 1 h and incubated with
zymosan for 10 min. Arrows indicate the site
of zymosan binding. Actin polymerized un-
der the bound particles (A), but dynamin was
not enriched in the actin pedestals (B).
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Figure 7. Dyn¥#A does not inhibit particle-induced inflammatory sig-

naling. TNF-a production induced by 1gG-opsonized particles or by zy-
mosan was analyzed by intracellular cytokine staining in RAW-TT10
cells transiently transfected with either control vector or dynk#A, Com-
plement-opsonized particles do not stimulate TNF-a production in mac-
rophages and therefore were not analyzed. (A) TNF-a production is ex-
pressed as the percentage of transfected cells producing the cytokine. (B)
The amount of intracellular TNF-a produced per cell is expressed on the
x-axis as log fluorescence units. Unstimulated cells are represented by the
dotted line; nonexpressing control cells exposed to zymosan are shown by
the bold solid line; and cells expressing high levels of dyn#A that were
stimulated with zymosan are represented by the thin solid line.

phagocytic receptor systems examined. Dominant-negative
mutant dynamin did not impinge on the cell’s capacity to po-
lymerize actin beneath the particle, or to produce inflamma-
tory mediators such as TNF-a in response to particle binding.

The phagocytic defect induced by dynk4A resembles
that seen when PI3K is inhibited in macrophages (29, 30).
This is of interest, since dynamin interacts with the p85
regulatory subunit of PI3K and this interaction stimulates
dynamin’s GTPase activity (31). We report here that inhi-
bition of PI3K prevents the recruitment of dynamin 2 to
the site of particle binding, suggesting that the activation of
PI3K is upstream of dynamin in mediating phagocytosis.
PI13K supports phagocytosis in macrophages, in part, by facil-
itating the insertion of membrane into forming phagosomes
(30). The scanning electron micrographs shown here suggest
that membrane extension may also be the stage of arrest in
the cells expressing dyn<#4A, Membrane extension is known
to require the fusion of vesicles with the plasma membrane
(30, 32-35); thus, it is tempting to speculate that dynamin’s
role in phagocytosis is related to its capacity to recruit mem-
brane to nascent phagosomes. In support of this, the yeast
homologue of dynamin, Vpslp, is required for bidirectional
trafficking between endosomes and the vacuole (19).

Although our data suggest a role for dynamin 2 in extend-
ing membrane around the nascent phagosome, it does not
rule out other mechanisms for dynamin’s effect on phago-
cytosis. For example, dynamin might have a direct effect on
actin during phagosome formation, since it has been demon-
strated to interact with profilin, an actin-binding protein (36).
It remains possible that dynamin is also involved in the scis-
sion of the neck behind the phagosome, similar to its known
role in endocytosis. However, we have not observed any en-
richment of dynamin at the scission site of the phagosome.

The phagocytosis of pathogens by macrophages is tightly
coupled to the elaboration of inflammatory cytokines that,
in turn, orchestrate an appropriate immune response. It has
long been known that particle binding by macrophages in-
duces actin-mediated internalization and inflammatory me-
diator production through a bifurcating signaling cascade
(37, 38). Dynamin clearly regulates the particle internaliza-
tion limb of this pathway while it has no role in the pro-
duction of inflammatory cytokines.
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