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ABSTRACT We describe theoretical principles of an imag-
ing modality that uses the acoustic response of an object to a
highly localized dynamic radiation force of an ultrasound field.
In this method, named ultrasound-stimulated vibro-acoustogra-
phy (USVA), ultrasound is used to exert a low-frequency (in kHz
range) force on the object. In response, a portion of the object
vibrates sinusoidally in a pattern determined by its viscoelastic
properties. The acoustic emission field resulting from object
vibration is detected and used to form an image that represents
both the ultrasonic and low-frequency (kHz range) mechanical
characteristics of the object. We report the relation between the
emitted acoustic field and the incident ultrasonic pressure field
in terms of object parameters. Also, we present the point-spread
function of the imaging system. The experimental images in this
report have a resolution of about 700 mm, high contrast, and high
signal-to-noise ratio. USVA is sensitive enough to detect object
motions on the order of nanometers. Possible applications in-
clude medical imaging and material evaluation.

The study of objects in terms of their mechanical response to
external forces is of considerable interest in material science
and medical diagnosis. Elastic constants are closely connected
to the thermodynamic properties of materials and can be
related to a wide range of physical parameters. Elastic con-
stants can be determined by measuring deformation in re-
sponse to an applied force. Although a static force can be used
for this purpose, using a dynamic force is preferred if one is
interested in measuring the dynamic characteristics of the
material (1).

Changes in elasticity of soft tissues are often related to
pathology. Palpation is a traditional example of estimating
mechanical parameters for tissue characterization, where a
static force is applied and a crude estimation of the tissue
elasticity is obtained through the sense of touch. In palpation,
force is exerted on the body surface, and the result is an
accumulative response of all the tissues below. Physicians can
sense abnormalities if the response to palpation of the suspi-
cious tissue is sufficiently different from that of normal tissue.
However, if the abnormality lies deep in the body, or if it is too
small to be resolved by touch, then the palpation method fails.

Elasticity imaging, a subject extensively investigated in re-
cent years, is a quantitative method that measures the me-
chanical properties of tissue. The general approach is to
measure tissue motion caused by an external (or, in some
methods, internal) forceydisplacement and use it to recon-
struct the elastic parameters of the tissue. Some investigators
have used static force to compress the tissue and measured the
resulting strain by ultrasound (2, 3). Others have used external
mechanical vibrators to vibrate the tissue and detected the
resulting displacement in tissue by Doppler ultrasound (4–7).
For a review of elasticity imaging methods, refer to ref. 8. A
recently developed method uses an actuator to vibrate the body

surface and then measures the strain waves with phase-
sensitive MRI (9).

Most of the elasticity imaging methods are based on an
external source of force resulting in a spatially wide stress-field
distribution. This requires the stress field to pass through the
superficial portion of an object before reaching the interior
part. Analysis of the object response can be complicated
because the stress-field pattern changes, often unpredictably,
at different depths before it reaches the region of interest
within the object. An alternative strategy is to apply a localized
stress directly in the region of interest. One way to accomplish
this is to use the radiation pressure of an ultrasound source(s).
Based on this strategy, Sugimoto et al. (10) presented a method
to measure tissue hardness by using the radiation force of a
single focused ultrasound beam. In this method, impulsive
radiation force was used to generate localized deformation of
the tissue. Resulting transient deformation was measured as a
function of time by an ultrasound Doppler method. Radiation
force has also been used to generate shear elastic waves in
tissues (11).

In this paper, we describe the principles of an imaging
technique that produces a map of the mechanical response of
an object to a force applied at each point. The method uses
ultrasound radiation force to remotely exert a localized oscil-
lating stress field at a desired frequency within (or on the
surface of) an object. In response to this force, a part of the
object vibrates. The size of this part and the motion pattern
depend on object viscoelastic characteristics. The acoustic
field resulting from object vibration, which we refer to as
‘‘acoustic emissions,’’† is detected by a sensitive hydrophone
and used to form the image of the object. This method benefits
from the high spatial definition of ultrasound radiation force
and high motion-detection sensitivity offered by the hydro-
phone. We call this technique ultrasound-stimulated vibro-
acoustography (USVA). Some general aspects of this method,
including some experimental results, have been outlined by the
authors in ref. 12. Here we present the theoretical foundations
of USVA.

METHODS

Our aim is to image an object based on its mechanical
characteristics. This is achieved by vibrating the object by
applying a highly localized oscillating force to each point of the
object. The localized force is produced by modulating the
intensity, and thereby the radiation force, of the ultrasound at
low frequencies (normally in kHz range). The resulting sound
emitted by the object is a function of object mechanical
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characteristics and the location of the excitation point. The
image is produced by mapping the amplitude or phase of this
sound, which is detected by a sensitive hydrophone, vs. posi-
tion. Fig. 1 illustrates this method. In the following section, we
describe the relationship between the USVA image and the
properties of the object.

THEORY

Generation of a Dynamic Radiation Force on a Target. The
acoustic radiation force is the time-average force exerted by an
acoustic field on an object. This force is an example of a
universal phenomenon in any wave motion that introduces
some type of unidirectional force on absorbing or reflecting
targets in the wave path. Radiation force is produced by a
change in the energy density of an incident acoustic field. For
a review of this phenomenon, refer to ref. 13. Consider a plane
ultrasound beam interacting with a planar object of zero
thickness and arbitrary shape and boundary impedance that
scatters and absorbs. The radiation force vector, F, arising
from this interaction has a component in the beam direction
and another transverse to it. The magnitude of this force is
proportional to the average energy density of the incident wave
^E& at the object, where ^ & represents the time average and S,
the projected area of the object (14)

F 5 drS^E&, [1]

where dr is the vector drag coefficient with a component in the
incident beam direction and another transverse to it. The
coefficient dr is defined per unit incident energy density and
unit projected area. For a planar object, dr is numerically equal
to the force on the object. Physically, dr represents the scat-
tering and absorbing properties of the object and is given by
(14)

dr 5 p̂S21 ~Pa 1 Ps 2 * g cosasdS! 1 q̂S21 * g sin asdS, [2]

where p̂ and q̂ are the unit vectors in the beam direction and
normal to it, respectively. The quantities Pa and Ps are the
total absorbed and scattered powers, respectively, and g is the
scattered intensity, all expressed per unit incident intensity.
Also, as is the angle between the incident and the scattered
intensity, and dS is the area element. The drag coefficient can
also be interpreted as the ratio of the radiation force magni-
tude on a given object to the corresponding value if the object
were replaced by a totally absorbing object of similar size. This
is because udru 5 1 for a totally absorbing object. This coeffi-
cient can be determined for objects of different shapes and
sizes. For simplicity, we assume a planar object normal to the
beam axis. In this case, the transverse component vanishes,
thus the drag coefficient (force) will have only a component
normal to the target surface, which we denote by scalar dr (F).
Values of dr for spheres, in terms of the diameter and the
wavelength, are given in ref. 14.

To produce a dynamic radiation force, one can use an
amplitude-modulated beam (15). Consider an amplitude-
modulated incident (ultrasonic) pressure field, p(t), as

p~t! 5 Pv0
cos~Dvty2! cosv0t , [3]

where Pv0
, Dvy2, and v0 are the pressure amplitude, modu-

lating frequency, and center frequency, respectively. In our
analysis and experiments, we assume that the condition Dv ,,
v0 holds. In such a case, the energy density of the incident field
has slow variations in time. To discriminate the slow time
variations of a function, let us define the short-term time average
of an arbitrary function j(t) over the interval of T seconds at
time instance t, as ^j(t)&T 5 1yT *t2Ty2

t1Ty2 j(t)dt, which is a
function of t. The long-term time average (or simply the time
average) is obtained by setting T 3 `. To compute the
short-term time average of the acoustic-energy density rele-
vant to field variations at Dvy2, we choose T longer than the
ultrasound wave period but much shorter than the modulation
period, that is 2pyv0 ,, T ,, 4pyDv. Under this condition,
the short-term time average of p2(t) is ^p2(t)&T 5 (Pv0

2 y4) (1 1
cos Dvt). The energy density is given by p2(t)yrc2, where r and
c are the density and propagation speed in the medium (16).
We are interested in the time-varying component of the
short-term time average of the energy density. Denoting this
component by eDv(t), we can write: eDv(t) 5 (Pv0

2 y4rc2)
cosDvt. This component of the energy density produces a
time-varying radiation force on the target (Eq. 1) at frequency
Dv. The amplitude of this force, FDv, is

FDv 5 Pv0

2 Sdry4rc2. [4]

This equation states that the time-varying force amplitude is
proportional to the square of incident ultrasound pressure, or
equivalently, to the incident power. If the object moves in
response to this force, then the high-frequency ultrasound
energy would convert to low-frequency mechanical energy.

Acoustic Emission from a Target Caused by a Dynamic
Force. The radiation force FDv vibrates the target object at
frequency Dv. Object vibration results in an acoustic field in
the medium (acoustic emission). This field is related to object
shape, size, and viscoelastic properties. To present a conclusive
analysis of this relationship, we have to assume an object with
specific characteristics. Here we assume that the vibrating
object has a circular cross-section of radius b and uniformly
vibrates back and forth like a piston. This choice allows us to
illustrate the concept in a simple form. We also consider an
area S # pb2 of the piston surface to be projected normally by
the beam. Similar solutions can be carried out for other
objects.‡

The steady-state normal velocity amplitude of a piston, UDv,
caused by a harmonic force FDv at frequency Dv, can be
described in terms of the mechanical impedance ZDv,

UDv 5 FDvyZDv , [5]

where ZDv 5 Z9m 1 Zr is comprised of the mechanical
impedance of the object in vacuum Z9m, and the radiation
impedance of the object Zr, all defined at Dv. Modeling the
object as a mass-spring system, Z9m can be written in terms of
Dv as (16, 17)

Z9m 5 R9m 2 j~mDv 2 K9yDv!, [6]

where m, R9m, and K9 are the mass, mechanical resistance, and
spring constants of the object, respectively. The radiation
impedance of the piston can be written (17) as Zr 5 pb2(Rr 2
jXr) [7], where Rr 5 rc[1 2 (cyDvb)J1(cy2Dvb)], [8], and Xr
5 (4rcyp) *0

py2 sin [(2bDvyc) cos a] sin2 ada [9], where J1(z)
is the first-order Bessel function of the first kind. In many
applications of our interest, the wavelength is much greater
than the object size, hence, (Dvyc)b 3 0. In such cases Zr
assumes a simpler form as Zr 5 pb3rDv(bDvy2c 2 j8y3p)

‡The theory can be extended to include arbitrary vibrating-part shapes
and nonuniform displacement of the object. Nonuniform displace-
ment would be an important issue when the vibration wavelength in
the object material is smaller than 2b.FIG. 1. Principle of ultrasound-stimulated vibro-acoustography.
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[10]. The mechanical impedance of the piston object can now
be written as

ZDv 5 ~R9m 1 pb2Rr! 2 j~mDv 2 K9yDv 1 pb2Xr!

< ~R9m 1 prb4Dv2y2c! 2 j~mDv 2 K9yDv

1 8rb3Dvy3!, b~Dvyc!3 0. [11]

Once we calculate UDv, we can calculate the pressure field
it produces in the medium. We assume that the acoustic
emission signal propagates in a free and homogenous medium.
The farfield acoustic pressure caused by a piston source of
radius b set in a planar boundary of infinite extent is given by
(17),

PDv 5 2jDvr
exp~jDvlyc!

4pl F2J1@~bDvyc! sin q#

~bDvyc) sin q
3

cos q

cos q 1 bB
G

3 ~2pb2UDv!, [12]

where l is the distance from the observation point to the center
of the piston, q is the angle between this line and the piston
axis, and bB is the specific acoustic admittance of the boundary
surface.§ The factor of two comes from the presence of the
boundary wall, which would be replaced by unity if the
boundary wall were not present (16). The acoustic emission
field resulting from object vibration can be written in terms of
the incident ultrasound pressure by combining Eqs. 4, 5, and
12, as

PDv 5 Hj
Dv

c2 3
exp~jDvlyc!

4pl F2J1@~bDvyc! sin q#

~bDvyc! sin q
3

cos q

cos q 1 bB
GJ

3 $1y@~R9m 1 pb2Rr! 2 j~mDv 2 K9yDv 1 pb2Xr!#%~2pb2!Pv0

2 Sdr.

[13]

For wavelengths long compared to the object size, i.e., when
bDvyc3 0, the term in the first brace approaches a constant,
hence we may consider the contents of the first brace to be an
object-independent function (the specific acoustic admittance
bB relates to the surrounding boundary surface). Under these
conditions, the first brace in the above equation represents the
effect of the medium on the acoustic emission field, which we
may call the medium transfer function, and denote it by

HDv~l! 5 j
Dv

c2 3
exp~jDvlyc!

4pl F2J1@~bDvyc! sin q#

~bDvyc! sin q
3

cos q

cos q 1 bB
G.

[14]

The second brace in Eq. 13 is 1yZDv, or the mechanical
admittance of the object at the frequency of the acoustic
emission (Dv), and we denote it by YDv. It is convenient to
combine this term with the next term (2pb2) in Eq. 13, as
QDv 5 2pb2YDv 5 2pb2yZDv, which is the total acoustic
outflow by the object per unit force (acoustic outflow is the
volume of the medium (e.g., the fluid) in front of the object
surface that is displaced per unit time because of object
vibration.). Function QDv represents the object characteristics
at the acoustic frequency. We may thus rewrite Eq. 13 in a
more compact form as

PDv 5 HDv~l!QDvPv0

2 Sdr. [15]

Eq. 15 indicates that the acoustic emission pressure is propor-
tional to: (i) the square of ultrasound pressure Pv0

; (ii) the
ultrasound characteristics of the object, dr, in the projected

area S; (iii) the acoustic outflow by this object, QDv, repre-
senting the object size b and its mechanical admittance at the
acoustic frequency, YDv; and (iv) the transfer function of the
medium at the acoustic frequency, HDv(l). The above equation
illustrates the basic nonlinear relationship between the ultra-
sound and acoustic emission pressure amplitudes. Note that
neither the medium nor the object needs to be nonlinear for
this relationship to hold. It is interesting to note that the
projection area S and the vibrating area pb2 play different
roles. The projection area determines the extent of the force
applied to the object (Eq. 4). The vibrating area, however,
influences the total acoustic outflow in the medium caused by
object vibration. The mechanism of object vibration is some-
what analogous to that of a loudspeaker, where the electro-
motive force is exerted at a small area of the membrane
(usually at the center), causing the entire membrane surface to
vibrate. In our method, the size of the vibrating area depends
on the object structure. For a free suspended point object,
smaller than the beam cross-section, the vibrating area would
be the same as the projected area. For a large stiff plate,
however, the vibrating area could be much larger than the
projected area (similar to a loudspeaker). In some cases, it is
more convenient to write the acoustic emission field in terms
of the applied force FDv. Referring to Eq. 4, we can rewrite Eq.
15 as

PDv 5 4rc2HDv~l!QDvFDv. [16]

Again in analogy to a loudspeaker, FDv, QDv, and HDv(l)
represent the electromotive force, dynamic characteristics of
the membrane, and propagation medium transfer function.

Beam Forming. To probe an object with the dynamic
radiation force at high spatial resolution, it is ideal to confine
the dynamic stress field to a very small region in three-
dimensional space. We may define the resolution cell of the
system as the volume within which the amplitude of the
modulated field is high enough to produce a stress field on a
target. The purpose of beam forming is to produce a resolution
cell as small as possible. An amplitude modulated single-
focused beam can provide a resolution cell that is small in
diameter but long in depth direction. A superior strategy that
can achieve a small resolution cell in all dimensions is to use
two unmodulated focused beams at slightly different frequen-
cies and allow them to cross each other at their focal regions.
This is accomplished by projecting two coaxial confocal con-
tinuous-wave (CW) ultrasound beams on the object. An am-
plitude-modulated field is produced only at the interference
region of the two unmodulated beams around their focal areas,
resulting in a small resolution cell. For this purpose, elements
of a two-element spherically focused annular array (consisting
of a central disc with radius a1 and an outer ring with the inner
radius of a92 and outer radius of a2) are excited by separate CW
signals at frequencies v1 5 v0 2 Dvy2 and v2 5 v0 1 Dvy2.
We assume that the beams are propagating in a lossless
medium, in the 1z direction of a Cartesian coordinate system
(x, y, z), with the joint focal point at z 5 0. The resultant
pressure field on the z 5 0 plane may be written as

p~t! 5 P1~r! cos~v1t 1 c1~r!! 1 P2~r! cos~v2t 1 c2~r!!, [17]

where r 5 =x21y2 is the radial distance. The amplitude
functions are (16, 18)

P1~r! 5 rcU01 ~pa1
2yl1z0! jinc~ra1yl1z0!, [18]

and

P2~r! 5 rcU02~pyl2z0! @a2
2 jinc~ra2yl2z0! 2 a29

2 jinc~ra92yl2z0!#, [19]

where li 5 2pyvi, i 5 1, 2, is the ultrasound wavelength, U0i
is the particle velocity amplitude at the i-th transducer element
surface, and jinc (X) 5 J1(2pX)ypX. The phase functions,

§The specific acoustic admittance is bB 5 rcyZB, where ZB, the
acoustic impedance of the boundary, represents the ratio between the
pressure and normal fluid velocity at a point on the surface.
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ci(r) 5 2pr2yliz0, for i 5 1, 2, are conveniently set to be zero
at the origin.

Now, we define a unit point target at position (x0, y0) on the
focal plane with a drag coefficient distribution as

dr~x, y! 5 d~x 2 x0, y 2 y0!, [20]

such that dr(x, y)dxdy is unity at (x0, y0) and zero elsewhere.
This equation is merely used as a mathematical model because
dr is physically finite. In this case, the projected area can be
considered to be S 5 dxdy. We replace drS in Eq. 1 with dr(x,
y)dxdy and follow the steps similar to those outlined in Eqs. 3
and 4 for the pressure field expressed by Eq. 17, then the
complex amplitude of the normal component of the force on
the unit point target can be found as

FDv~x0, y0!5 rU01U02 ~pa1
2y4l1z0! jinc~r0a1yl1z0!@~pa2

2yl2z0! jinc~r0a2yl2z0!

2 ~pa29
2yl2z0! jinc~r0a92yl2z0!#exp~2jr0

2Dvy2cz0!, [21]

where the arguments x0 and y0 are added to denote the position
of the point target and r0 5 =x0

2 1 y0
2. Eq. 21 describes the

spatial distribution of the force (the stress field). This equation
shows that the stress field is confined to the regions near the
beam axis (r0 5 0) and decays as the radial distance r0
increases. The lateral extent of the stress field, and hence the
resolution cell diameter, would be smaller at higher ultrasound
frequencies (smaller l1 and l2). One can calculate the total
force on an arbitrary object by integrating the force over the
projected area. The axial extent of the resolution cell (depth
resolution or the depth of field) can be determined by calcu-
lating the force FDv as a function of the depth variable, in a
fashion as outlined in Eqs. 17 to 21. For conciseness, we will
present only the measured values for the depth resolution in
Results.

Loss in the propagation path would attenuate both ultra-
sound beams, thus less radiation force would be generated by
the remaining ultrasound energy. In the case of soft tissues, the
force attenuation factor is A(z0) 5 exp[az0(v1 1 v2)], where
a is the attenuation coefficient of the tissue. Energy loss in the
medium would also result in generation of a separate radiation
stress on the medium along the ultrasound paths. However,
because the two beams propagate along separate paths in the
CW form, they exert mainly steady radiation stresses to the
medium, which does not cause object or medium vibrations.
Dynamic radiation force is produced only in the interference
region around the focal area, which is another advantage of
using two unmodulated beams over a modulated single beam.

Image Formation. To produce an image, we scan the object
in a plane and record the complex amplitude of the acoustic
emission, PDv, at different positions. In this process, we keep
Dv fixed. For transverse view images, the scan plane is the focal
plane (x–y). Alternatively, for the parallel view the scan plane
is the x–z plane. In the conventional ultrasound imaging
context, these two views are called the C-scan and B-scan,
respectively. Our main focus here is the transverse view
imaging. In this case, the acoustic emission data obtained by
vibrating the object at point (x, y) are assigned to the corre-
sponding point (x, y) in the image.

Before defining the image, we need to define the function
that represents the object. Referring to Eq. 15, the terms that
are object dependent are the drag coefficient dr and the
function QDv (assuming that HDv(l) is object independent).
The object function g(x, y) is thus defined as the spatial
distribution of these terms,

g~x, y! 5 QDv~x, y!dr~x, y!. [22]

Variables x and y are added to denote the dependency of dr and
QDv on position. In particular, QDv(x, y) implies the total

acoustic outflow by the object when unit force is applied at
point (x, y).

Commonly, an imaging system is studied through its point-
spread function (PSF), which is defined as the image of a point
object. To determine the PSF of our system, we consider a unit
point target at the origin with unit mechanical response,
QDv(x, y) 5 1. Hence, referring to Eqs. 20 and 22, we can write
g(x, y) 5 d(x, y). To obtain the PSF, we move this point object
to every possible position (x0, y0) on the z 5 0 plane and form
the image using the resulting acoustic emission field, PDv(x0,
y0). Because x0 and y0 are now being treated as variables, we
may replace them by variables x and y, respectively. We define
the normalized PSF of the coherent imaging system as the
complex function

h~x, y! 5 PDv~x, y!yPDv~0, 0!. [23]

Division by PDv(0, 0) cancels the constant multipliers. Refer-
ring to Eqs. 16 and 21, we can write

h~x, y! 5 ~a2
2 2 a29

2!21 jinc~ra1yl1z0!@a2
2 jinc~ra2yl2z0!

2 a29
2 jinc~ra92yl2z0!# exp~2jr2Dvy2cz0!. [24]

This equation illustrates that the system PSF is a circularly
symmetric function with the peak at the origin and decaying
amplitude with increasing the radial distance r. Amplitude
decays faster for higher ultrasound frequency. This function
will be discussed further in the next section.

EXPERIMENTS
The experimental setup is shown in Fig. 2. The confocal
transducer is constructed by using a spherical piezoelectric cap.
The two elements are constructed by dividing the back elec-
trode of the piezoelectric wafer into a central disc and the outer
ring, such that the elements have identical beam axes and focal
lengths. Radii of the elements are a1 5 14.8 mm, a2 5 22.5
mm, and a92 5 16.8 mm, and the focal distance is 70 mm.
Transducer elements were driven by two stable radio fre-
quency synthesizers [Hewlett–Packard 33120A and Analogic
2045 (Peabody, MA)] at frequencies of f0 2 Dfy2 and f0 1
Dfy2, where f0 5 3 MHz, and the value of Df 5 Dvy2p is
stated separately for each experiment. The object was placed
at the focal plane of the ultrasound beams in a water tank.
Sound produced by the object vibration was detected by an
audio hydrophone (International Transducer, Santa Barbara,
CA, model 680, sensitivity 2154 dB re 1VymPa) placed within
the water tank. The received signal was filtered and amplified
by a programmable filter (Stanford Research Sunnyvale, CA,
SR650) to reject noise, then digitized by a 12 bitsysample
digitizer (Hewlett–Packard E1429A) at a rate sufficiently
higher than the Nyquist rate for the particular Df used. Data
were recorded on a computer disc. For coherent imaging,
which requires the phase information, the reference signal
(i.e., cos Dvt) was obtained by electronic downmixing of the

FIG. 2. Ultrasound-stimulated vibro-acoustography system. The
confocal ultrasound annular array transducer with two elements is
shown on the left.
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two driving signals and was recorded along with the hydro-
phone signal. The relative phase of the acoustic emission data
was then calculated at each point by discrete Hilbert transform.
We conducted two experiments. The first experiment is de-
signed to verify the relationship between the acoustic emission
pressure and the ultrasound pressure (Eq. 15), and the second
is designed to experimentally measure the PSF stated in Eq. 24.
These experiments are presented to prove the principles of the
method. Further experiments, illustrating applications of the
method for evaluation of object mechanical properties and
tissue imaging, are presented in ref. 12.

RESULTS
Acoustic Emission vs. Ultrasound Pressure. Eq. 15 states

that the acoustic emission field amplitude is linearly propor-
tional to the square of the incident ultrasound pressure, or
equivalently, to the incident power. To test this hypothesis, a
calibrated 1-mm-diameter ultrasound needle hydrophone,
with its tip facing the ultrasound beam, was used to measure
the ultrasound field at the focal point. The tip of the hydro-
phone also served as an object to generate the acoustic
emission. Here, Df was set at 40 kHz, and the radial distance
from the tip of the needle hydrophone to the audio hydro-
phone was about 65 mm. The result is shown in Fig. 3. The
slope of the acoustic emission intensity vs. ultrasonic intensity
indicates that the intensity of the acoustic emission field is
proportional to the square of the ultrasound intensity, or
equivalently, the acoustic emission pressure amplitude is lin-
early proportional to the ultrasound power, as predicted by Eq.
15. In another experiment, a 450-mm-diameter glass bead was
used as a point object. In this case, Df was set at either 7 or 40
kHz. The radial distance from the glass bead to the audio
hydrophone was about 50 mm. Again, the data indicate a
quadratic relationship between the acoustic emission and
ultrasonic intensities. These glass-bead data also show that
increasing the frequency increases the acoustic intensity. This
can be better understood by investigating the theoretical model
presented in Eq. 13. If we assume that the mechanical admit-
tance of the object is approximately constant at these frequen-
cies, then the object behaves almost as a point source, and the
acoustic pressure amplitude is proportional to Dv. Hence the
acoustic emission intensities IDv1

and IDv2
at frequencies Dv1

and Dv2, respectively, are related by IDv2
yIDv1

5 (Dv2yDv1)2.
Now, letting Dv1 and Dv2 correspond to 7 and 40 kHz,
respectively, we can write the intensity ratio as: [IDv2

yIDv1
]dB 5

20 log (Dv2yDv1) 5 15 dB. The mean value of the intensity
ratio calculated from the glass-bead data at 7 and 40 kHz is 16
dB, which is in close agreement with the theoretical result.

PSF Measurement. To demonstrate the image-formation
process and support the theoretical derivation of the PSF (Eq.
24), we evaluated this function experimentally. For this pur-
pose, we used a 380-mm diameter glass bead as a model for a
point and placed it on a thin latex sheet. The latex sheet
produces only a small change in the incident energy, and hence
does not produce significant radiation force or acoustic emis-
sion. The entire object was placed in a water tank and the latex

sheet surface was scanned in a raster format at 0.2-mm
increments in either direction at Df 5 7.3 kHz. The amplitude
and phase of the acoustic emission signal were calculated at
each point relative to the reference signal data. The phase was
normalized to the phase value at the center of the bead. The
resulting in-phase, quadrature, phase, and magnitude images
are shown in Fig. 4A–D. Transverse image resolution, defined
as the 26-dB width of the bead image, is approximately 700
mm for the in-phase image in either dimension (refer to Fig. 5).
To compare the experimental results with those of the theory,
we calculated the profile of the PSF for the transducer
parameters used in this experiment according to Eq. 24. Fig.
5 shows the theoretical PSF profile and the glass-bead profile
obtained from the experiment (in-phase image profile, shifted
to center at zero). This figure shows excellent agreement
between theory and experiment for amplitudes above 20% of
the peak. The experimental data show some background offset
about 12% of the peak. We believe that this background offset
is caused at least by the following sources: (i) acoustic emission
by the latex sheet; (ii) the background acoustic noise in the
experimental setup caused by equipment fans and some struc-
tural and building vibrations; (iii) nonlinearity of water that
can produce a nonlinear mix of the two beams even in the
absence of the object; and (iv) streaming as a result of energy
absorption by water (14), which in turn can vibrate the latex
sheet blocking the stream. To evaluate the depth resolution (or
the slice thickness), we placed the glass bead on the beam axis
and scanned it in the z-direction about the focal point. The
depth resolution, defined as the distance between the points
where the amplitude of the acoustic emission field drops to 26
dB of its peak, was 9 mm.

DISCUSSION
System Properties. Spectral characteristics. In general,

USVA images represent object characteristics at two ends of
the spectrum: the drag coefficient at the ultrasound frequency
and the mechanical admittance at the low acoustic frequency
Df. The ultrasound frequency is usually set at a value suitable
to form the beam, whereas Df can vary in a wide range
depending on the application. If the two beams are produced
by similar ultrasound transducer elements, then the practical

FIG. 3. Acoustic-emission field intensity vs. the combined ultra-
sound intensity.

FIG. 4. USVA images of a 380-mm glass bead: (A) in-phase, (B)
quadrature, (C) phase, and (D) magnitude. The phase in C ranges from
2p radians (black regions) to 1p radians (white regions), and was
normalized to be zero at the center of the glass bead. (Modified with
permission from ref. 12, copyright 1998, American Association for the
Advancement of Science.)

FIG. 5. The theoretical PSF profile of the USVA system according
to Eq. 24 and the glass-bead in-phase image profile (Fig. 4A) obtained
from the experiment.
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upper limit for Df is about equal to the transducer bandwidth.
The lower limit of Df is zero.

Sensitivity. System sensitivity in detecting very small displace-
ments is an important practical issue, especially when the allow-
able ultrasound power is limited (for example, in medical imag-
ing). Motion measurement with ultrasound pulse echo has been
used previously to study ‘‘stiffness’’ of tissues (10). However, the
sensitivity of ultrasound pulse echo to motion, at common
medical ultrasound frequencies, is limited to several micrometers.
An advantage of USVA is its high displacement sensitivity. Cyclic
displacement of 100 nm at 10 kHz produces an acoustic intensity
of about 3.0 3 1023 wattsycm2. Hydrophones similar to the one
used in these experiments are sensitive to as little as 10215

wattsycm2 and therefore are capable of detecting very small cyclic
displacements. For instance, the hydrophone detected an acoustic
pressure of about 15 3 1023 Pa at a distance of 5 cm from the glass
bead shown in Fig. 4. Under assumptions of isotropic vibration,
this pressure would be produced by a similar-sized sphere vibrat-
ing with a displacement amplitude of about 6 nm. Sensitivity
increases at higher frequencies because the acoustic emission
pressure is proportional to frequency for constant mechanical
admittance (Eq. 13).

Comparisons with pulse–echo systems. Some contrasting
features of USVA with respect to the conventional ultrasound
pulse–echo imaging (B-mode and C-mode) are: (i) A pulse–
echo image represents object microstructure by displaying its
ultrasonic reflectivity distribution. The acoustic emission sig-
nal in a USVA system is proportional to the drag coefficient
dr(x, y), which is a local ultrasound parameter, and to the
function QDv(x, y), which represents the bulk response of the
object at acoustic frequency Dv. Hence, a USVA image, in
general, represents both the microstructure and macrostruc-
ture of the object. (ii) The echo signal in a pulse–echo system
is a linear function of the incident ultrasound pressure ampli-
tude and the amplitude reflection coefficient of the object. In
USVA, however, the acoustic emission signal is proportional
to the ultrasound power and the power reflection coefficient of
the object. (iii) Pulse–echo systems are not directly sensitive to
medium absorption. Absorption is indicated as relative
changes in the amplitude of the echoes resulting from the
scatterers within the medium. In a USVA system, the acoustic
emission can be produced directly as a result of energy
absorption by the medium, even if the medium is homogeneous
(refer to Eq. 2). (iv) Pulse–echo systems are generally broad-
band. The USVA method presented here is basically a nar-
rowband technique. (v) Pulse–echo systems achieve high
depth resolution by transmitting short wideband pulses. A
USVA system gains its depth resolution by tailoring beam
geometry to limit the depth of the region where the two beams
interfere. A USVA system does not require a wide bandwidth
signal to achieve a high depth resolution. (vi) The data of
USVA images are acquired one point at a time, which resem-
bles the data acquisition in C-mode pulse–echo systems.
B-mode pulse–echo systems, however, require much less ac-
quisition time because the data are collected one line at a time.

Applications. USVA promises applications in two general
areas: medical imaging and material evaluation.

Medical applications. USVA can be used to image tissues and
evaluate their mechanical characteristics. To use USVA for in
vivo applications, one must take into account limitations such as
safe (ultrasound) power limit, tissue attenuation, body noise, and
phase aberration. The ultrasound power required to generate a
detectable acoustic emission depends on the object, acoustic
noise, and receiver sensitivity. Experimental results shown in Fig.
3 demonstrate that ultrasound intensities as low as 30 mWycm2

are sufficient to detect the acoustic emission from a 1-mm-
diameter object with our hydrophone in the water tank. This
power value is much smaller than the FDA limit for safe
diagnostic ultrasound applications. Tissue attenuation reduces
the ultrasound intensity at the target, and hence the acoustic

emission [by the factor A(z0)]. Attenuation limits the usable
ultrasound frequency, and hence, lowers the resolution. It also
limits the signal-to-noise-ratio (SNR) because of the loss in the
acoustic emission energy as a result of ultrasound attenuation by
tissue. Direct effect of tissue attenuation on the acoustic emission
signal is probably negligible because attenuation of the compres-
sional waves at frequencies in the order of a few kHz in soft tissues
is low. Sources of biological noise of the human body include
cardiovascular and respiratory systems and muscle movements.
Body noise is usually concentrated below 1 KHz and can be
filtered out if Df is above this value. The SNR can be improved
by increasing the time duration of the signal recorded at each
point (to increase the signal energy) and by using very narrow-
band filters (to reject the noise), while keeping the ultrasound
power within the safe level. Phase aberration in tissue can reduce
the sensitivity of the system by decreasing the effective ultrasound
energy density at the beam interaction region. One may use
known phase aberration correcting methods to reduce such an
effect. The practical value of these methods for USVA remains
to be studied.

Material evaluation. Another field in which USVA can be
potentially useful is material characterization, including me-
chanical parameter evaluation, imaging, and nondestructive
testing of materials. USVA can be used for detection and
imaging flaws in materials. Also, one may use USVA to
evaluate the mechanical frequency response of an object at low
frequencies. In such case, we are interested in determining
QDv(x, y) vs. frequency. We assume that the object is uniform
within the projected area S. Then, the total radiation force on
this object, FDv, can be calculated by integrating FDv(x, y) over
S. Referring to Eq. 21, one can show that for Dv ,, v0, FDv

is virtually independent of Dv. If HDv(l) is known and nonzero,
then the function QDv(x, y) can be estimated using Eq. 16 as
QDv(x, y) 5 PDv(x, y)yFDvHDv(l). In practice, PDv(x, y) is
obtained by sweeping Dv in the range of interest and recording
the resulting acoustic emission (12).
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