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ABSTRACT The effect of intermediates on the rate of
protein folding is explored by applying Kramers’ theory of
diffusive barrier crossing in the high friction limit. Interme-
diates are represented as local minima in the transition
barrier. We observe that very large or very small additional
barriers created by the intermediates slow down the folding
process. The rate of folding markedly increases, however,
when the additional barriers become >1 kgT but leave the
overall barrier height unchanged. This rate-enhancing effect
is caused by a favorable entropic contribution to the free
energy of activation, and it increases with the number of
intermediates up to a limiting value. From these calculations,
we conclude that optimized transition barriers should contain
partially folded high energy intermediates.

Various models have been proposed to describe the mecha-
nism of protein folding. The experimental observation of
transiently populated, partially folded intermediates in many
proteins gave rise to the framework model, which assumes that
the native structure is formed in a hierarchical way on a linear
pathway involving several consecutive transition states (1, 2).
In this model, partially folded intermediates are essential for
protein folding by directing the chain to the native state. In
theoretical approaches, the folding process is conceived as a
movement of molecules on a rough, funnel-like energy land-
scape starting from the ensemble of unfolded conformations
and leading to the native state (3-5). In these models, tran-
siently populated intermediates often represent misfolded
structures trapped in local energy minima.

Based on these opposing views, the study of the role of
protein folding intermediates has been of major interest in
theoretical and experimental work. Recent experimental re-
sults provided evidence for the presence of metastable, high
energy states located in the transition barrier between the
native state and the ensemble of unfolded molecules. Native
state hydrogen exchange studies revealed partially unfolded
states in cytochrome ¢ (6) and RNase H (7), which are higher
in energy than the native protein. Although these intermedi-
ates were identified as fluctuations from the native structure
under equilibrium conditions, it was postulated that they might
represent intermediates on linear folding pathways (6). Local
energy minima in the transition barrier also were observed in
unfolding reactions of fast-folding proteins that reach the
native state without transient population of partially folded
intermediates. For the dimeric arc repressor (8) and staphy-
lococcal nuclease (9), a nonlinearity in the denaturant depen-
dence of the free energy of activation for the unfolding
reaction (AGL¥) was interpreted as evidence for two distinct
transition states on a sequential pathway. A similar observa-
tion was made for the formation of a helical intermediate in
lysozyme folding, which proceeds through a reactive high
energy intermediate (10). For chymotrypsin inhibitor 2, a
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was also interpreted as evidence for the presence of high
energy intermediates in the transition barrier (11).

The observation of metastable high energy intermediates
suggests that the transition barrier between the ensemble of
unfolded states and the native protein is broad, including
well defined local minima. This is in agreement with recent
lattice model simulations in which the observed intermedi-
ates were interpreted as “molten globules” (12). Other
theoretical models using the capillarity approximation of
protein folding also suggest high energy intermediates in the
fine structure of folding funnels (13, 14). To investigate the
kinetic consequences of partially folded states located on a
reaction pathway, we applied Kramers’ theory for diffusion
across a potential barrier in the high friction limit (15). The
reaction is described by a Brownian motion of a particle in
a potential force field. The rate of barrier crossing is
calculated via the mean first passage time required to move
from the initial well to the bottom of the final well. In this
paper, we focus on the question of how the rate of the
reaction changes when placing intermediates into the tran-
sition barrier. The calculations provided the surprising result
that the reaction rate can increase compared to the rate of
a single barrier transition without altering the height of the
barrier. The acceleration depends on the energy level of the
intermediate relative to the energy level of the initial state
and on the number of intermediates. These results can be
attributed to a favorable effect of the intermediates on the
entropy of activation and show that optimized folding land-
scapes should contain high energy intermediates.

METHODS

We investigated the effect of local minima in an energy barrier
on the dynamics of a chemical reaction that was simulated by
a Brownian motion of a particle in a potential force field. The
dynamics of the barrier crossing process were studied by using
the Langevin equation (16)

0 U(x) + f(2), [1]

] D

YT T kT
where x and U(x) denote the reaction coordinate [e.g., number
of native contacts or transition coordinate (17)] and the
potential of the force field, respectively. D represents the
diffusion coefficient, kg is the Boltzmann constant, and 7'is the
temperature. The thermal motion is represented by the fluc-
tuating force f(¢), which is assumed to be a Gaussian white
noise with zero mean, (f(¢#)) = 0 and uncorrelated amplitudes
at different time points, (f(¢)f(s)) = 2D8(t — s). In the high
friction limit appropriate for protein folding simulations (18),
the probability density p(x; ) to find the particle at position x
after time ¢ is expressed by the Smoluchowsky equation (19):

[2]
[3]

p(x; t) = Lp(x; 1),
L = d, exp(—BU(x))Da, exp(BU(x)),

Abbreviations: FP, Fokker-Planck; MFPT, mean first passage time.
§To whom reprint requests should be addressed: e-mail:
kiefhaber@ubaclu.unibas.ch.
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where L represents the Fokker-Planck (FP) operator and S is
1/kgT. The mean first passage time (MFPT) #(x) denotes the
average time required to cross the barrier starting from any
position x of a set of initial states to the final state at xg. The
MFPT is defined by the adjoint FP operator L1:

Ltt(x) = —1. [4]

Solving the equation for #(x) gives
Xs 1 y
)= | dypy | dzexp(BUG) ~ UG, 5]

where x, and xg denote the reflecting boundary with d,¢(x,) = 0
and the absorbing boundary with #(xs) = 0, respectively. In our
calculations, the MFPT is independent of the reflecting bound-
ary. The time scale of the reaction is given by the MFPT, which
is inversely proportional to the rate of escape k from the initial
well at x = —x( to the bottom of the final well at x = x:

i = 1
t(=xo)

[6]

To determine the folding rates for different scenarios, we
computed the mean first passage time for various potentials
V(x). All calculations are performed under the constraints that
energies are given in k37 and that the potentials are scaled by
a characteristic length of the system, o and transformed, so
that the minimum of the initial well and the final well are at
—xo = —1 and xo = 1, respectively. In this representation,
D/2c is given in 1/s, which was used to normalize the time. The
reflecting barrier was located at x, = —2, and the absorbing
barrier was set atx, = 1. We started the calculation by placing
the particle at the position x on the reaction coordinate and
calculated the MFPT for arriving at the final state xs = 1.

For barrier heights AU > 3 kgT, the rate of escape, k, can
be approximated by an Arrhenius type of equation (15):

k=E2 |=02.U(x,)95.U(—x0) exp(—BAU) [71
- 2 AY U Xo) O Xo) €Xp B 5

where x;, and xy denote the locations of the top and the bottom
of the barrier, respectively. The curvature of the potential at
position x is denoted by a2.U(x).

RESULTS

Effect of a Single Intermediate on the MFPT. The symmet-
ric double well potential U(x) = AU*(x* — 2x?) with minima
atx = —1 andx = 1 served as reference (Fig. 14) where AU
denotes the barrier height atx = 0. Using a value of AU = 10 kgT
to calculate the rate of barrier crossing for the simple two-state
process (Eq. 5) yields a mean first passage time of 2,550. The
applied barrier height of 10 kg7 corresponds to calculated
effective activation energies based on lattice simulations (20). It
is also similar to experimentally determined activation enthalpies,
which were shown to be ~15 kgT (21).

We assumed that an intermediate is represented by an
additional well in the potential represented by the polynomial
V(x) = ax® — bx* + cx?> + d, shown in Fig. 14. In all
calculations, the first barrier height was kept at AU, = 10 kT
whereas the relative height of the second barrier was varied by
varying the energy level of the intermediate. The reflecting
boundary and the absorbing boundary were set tox, = —2 and
xs = 1, respectively. Fig. 1B shows the MFPT dependence on
the starting point x on the reaction coordinate for the three
different scenarios. The first case displays a broad barrier with
only a minor minimum at x = 0 (AU, = 0.5 kgT). It can be
regarded as a rough energy barrier for a two-state process for

Proc. Natl. Acad. Sci. USA 96 (1999) 6717

energy (k_T]
h oW\
4
¥

s
=
T

—
)

—
9]
t

=

4000 2 10*
3000

2000 11 10*

MFPT

1000

reaction coordinate

Fic. 1. Effect of a single intermediate on the MFPT of barrier
crossing. (4) The potential V' = 10x* — 20x2 ( ) represents the
single barrier crossing with a barrier height of AU = 10 kgT. An
intermediate atx = 0 is simulated by an x° potential. The first barrier
height is kept constant at AU; = 10 kgT whereas the second barrier,
AU,, is varied. The three representative potentials are given by V1 =
28.4x6 — 47.4x* + 9.4x2 — 0.5 (AU2 = 0.5 kgT; =), V2 = 47.4x5 —
88.8x* + 35.5x2 — 4.0 (AU, = 4.0 kgT; ——-), and V3 = 76.2x° —
155.6x* + 82.3x2 — 13.0 (AU> = 13.0 kgT; —- -+ — ). The reaction
coordinate x was normalized and shifted so that the initial and the final
state are located at x = —1 and x = 1, respectively. The reflecting
boundary is at x, = —2 whereas the absorbing boundary is at x; = 1. The
MFPT is given in units of the inverse of the diffusion coefficient, which
was normalized by the length scale of the system. (B) MFPT for the
potentials V, V1, 2, and 13 in dependence of the starting point of the
simulation. The lines represent the same scenarios as in 4. The values on
the left ordinate are valid for potentials /1, 12, and V3. The right ordinate
is valid for I’3. The MFPTs for starting at x = —1 for the potentials V, V1,
12, and V3 are 2,550, 2,800, 1,480, and 17,000, respectively.

which a mean first passage time larger than that of a double
well potential is to be expected (22). Our calculations are in
accordance with this result, showing an increase in the MFPT
from 2,550 to 2,800 when starting in the initial well. We next
simulated a second barrier with AU, > 3 kgT. For the case of
AU, = 4 kgT, we surprisingly observed a decrease in the
MEFPT to 1,480 for the transition from the initial well to the
final well. In the third scenario, the second barrier becomes
larger than the first barrier (AU, = 13 kpT), which leads to a
drastic increase in the MFPT to 17,000 for the overall barrier
crossing. Comparing the results for the different scenarios
reveals that the broadening of the transition barrier as it occurs
for AU, = 0.5 kgT is reflected in a reduction of the slope of
the MFPT versus the starting point on the reaction coordinate
and therefore in an increase of the thermal length scale of the
transition (Fig. 1B). In contrast, when a defined local minimum
in the transition region exists, the reaction proceeds stepwise,
exemplified by the plateau region around the location of the
intermediate. When the second barrier exceeds the first bar-
rier, the reaction is drastically slowed down so that the first
barrier crossing can almost be neglected.

Fig. 2 presents the effect of the second barrier height (AU>)
on the MFPT for the overall barrier crossing starting in the
initial well atx = —1 and ending in the final well atx = 1. The
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obtained curve can be divided into three different regions. For
low barrier heights (AU, = 1072 kgT), we observe an increase
of the MFPT with increasing barrier height from 2,550 to a
maximum of 3,115 (Fig. 2 Inset). It corresponds to the decrease
of the diffusion constant for a particle moving in a rough
potential compared to that of a smooth potential (22). In the
second region (1072 kgT = AU, = 7.3 kgT), the MFPT
decreases. For AU, = 1 kgT, it decays even below the MFPT
for a single barrier (2,550) and exhibits a minimum at AU, =
7.3 kT with a value of 1,150. In the third regime (AU, = 7.3
kgT), the MFPT increases again because of dominance of the
second barrier. The minimum value of the MFPT is effected
very little by a change in the overall barrier height. For AU; =
20 kT, the minimum is located at 16.6 kzT. Accordingly, the
maximum effect is observed when the intermediate is 3.4 kgT,
less stable than the initial state compared to an energy
difference of 2.7 kgT for a barrier height AU, = 10 kpT.
Because the particle is absorbed in the final well, the depth of
the latter cannot be essential for the MFPT. This was fully
confirmed by our calculations observing only a minor change
in the MFPT while lowering the energy level of the final state
to a value 30 k3T below the energy level of the initial well.

In order to corroborate our results, we used classical reaction
rate equations to calculate the rate constants of the system. It
implies that both barriers must be >3 kT, and it allows the
simplification of our model system to a two-stage process. For the
triple well potential (Fig. 14), the transitions across AU; and AU,
from the initial state to the intermediate and from the final state
to the intermediate are k; and k3, respectively. The escape rates
from the intermediate state in the forward and backward direc-
tions are equal and denoted by k.

ki ky
l=2=3
ky ki

4000

3000

1000

0 2 4 6 8 10 12
second barrier height AU, [k T]

Fic. 2. MFPT in dependence of the second barrier height, AU>,
calculated by using the Kramers’ ansatz ( ), and approximation of
the barrier transitions by rate constants. For transitions from the initial
state to the intermediate across AU}, the rate is denoted by k1 whereas the
escape rate from the intermediate in the forward and the backward
direction is given by k,. The inverses of the rate constants 1/ky (- —-— )
and 1/k, (=) are shown as well as the inverses of the eigenvalues of the
overall system 1/); (- ——-). As a reference, the MFPT of a single barrier
crossing is also shown as a horizontal line at MFPT = 2,550. The inset
zooms on the second barrier height, AU>, within 1 kg7. The boundary
conditions and the units are described in Fig. 1.
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This leads to a linear differential equation system for the state
probabilities:

P1 —ky ks, 0 P1
a\p2| =| ki —2ka ks |*|p2f, [8]
D3 0 ky  —ki/ \p3

where p;(i = 1, 2, 3) denotes the probabilities of the initial
state (1), the intermediate (2), and the final state (3). Using the
approximation above (Eq. 7), we obtain for the rate constants

BD
ki =5 = 0RU(-xp)a2U(=x0) exp(—BAUY),  [9a]

BD 5 —

ky = 27 V= 0:U(x,)05.U(0) exp(—=BAU,), [9b]
BD 5 — U

ks 2 V=0 UG,)95U(xg) exp(—BAUY), [9c]

where *x; and *x;, denote the locations of the wells and the
barriers, respectively. The dynamics of the reaction is now
given by the eigenvalues A of the rate matrix:
1 1T —
)\1,2 = - E(k] + 2k2 + k';) + 5 \(k] - k';)z + 4k22. [10]

We consider two different limits for the eigenvalues:

(i) If AU; = 10 kgT and AU, is small, k, becomes much
larger than ky and k3 and the eigenvalues reads Ay = —(k; +
k3)/2 and Ay = —(ky + 4ky + k3)/2; and

(if) by increasing AU, and therefore decreasing k» so that k»
<< k; and ky << k3, Eq. 10 yields Ay = —(kz + k3) and A, =
— (k1 + k).

In the first case, A, is independent of k», reflecting the fact that
the intermediate can react quickly to either side. Although the
escape rate from the intermediate, k», is not explicitly in the
equation, it is contained in the curvature of U(x), which
depends on the energy level of the intermediate. The prefactor
1/2 is required because the transitions k; and k3 are only half
way on the reaction coordinate compared to a single barrier
crossing. The larger eigenvalue is given by the escape process
from the intermediate A, ~ —2k,. If, in the second case, the
free energy level of the intermediate drops below that of the
initial and the final state, the kinetics is given by the transition
rates from the initial state to the intermediate, A, ~ —ky, and
from the final state to the intermediate, Ay =~ —k3.

In order to compare the Kramers ansatz to the formulation
in terms of rate equations, we neglect the backflow of mole-
cules by setting k3 = 0. The MFPT corresponds either to the
lower eigenvalue of the transition matrix,

1 1 ERra]
)\=—§(k1+2k2)+§ Vki© + 4k 57, [11]

or it can be determined by using the transition matrix as FP
operator L in Eq. 4, yielding
2 1

MFPTuppmx = E + kiz [12]

The two approximations differ slightly in the region in which
AU, reaches its minimum. The influence of AU, on 1/k; and
1/k> is shown in Fig. 2. The comparison between MFPT and
—1/A reveals that the system is rather well represented by the
simplified model. The behavior of the system in the first regime
of AU, cannot be explained by the simplified model because a
prerequisite of the approximation is that the energy barriers
are >3 kpT. Fig. 2 shows the decrease of the MFPT in the
second region corresponds to the decrease of 1/k; in the
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simplified model whereas the rise of the MFPT for large values
of the second barrier AU, is caused by the increase in 1/k;. The
relative contribution of the amplitude of the fast phase for the
appearance of molecules in the final state is given by A;/(A; +
A2). The results show that the amplitude of the faster reaction
becomes significant (>1 %) for AU, > 6 kpT. Including the
back reaction from the final state to the intermediate in the
calculation for the MFPT, the rate-enhancing effect of the
intermediate remains conserved. There are observed differ-
ences: first, the apparent rate is doubled because it becomes
the sum of the forward and the backward rate constants, and,
second, there is no decrease of the apparent rate for values of
the second barrier height larger than the first one because the
system is allowed to accumulate in the intermediate state.

Proc. Natl. Acad. Sci. USA 96 (1999) 6719

and vy represents the ratio of the corresponding transmission
coefficients, y = ki/kz. As shown in Fig. 3, placing an inter-
mediate into a barrier raises the entropy of the first barrier
crossing reaction and thus increases the rate constant.

Effect of Multiple Intermediates on the MFPT. From the
above considerations, the question arises whether the accelera-
tion continues to increase with increasing number of intermedi-
ates. In order to simulate multiple intermediates, we used a cosine
function with the intrinsic property of equal transition rates
between intermediates. For the initial and the final state, x*
potentials were singled out, and the positions where the potentials
are glued, x = *=(1 — xp), were determined by equating the
curvature of the two functions, which yields for xz:

AU
The results obtained with the approximated system were 1—nmw 8 Al]2
entirely confirmed by computing the spectrum of the FP xp = L [15]
operator for the triple-well potential. The method we applied , 5 AU,
uses Hermite polynomials as basis functions and was already L= n*m 8AU,
extensively studied by Drozdov and Talkner (23). This ap-
proach is not confined to barrier heights >3 kT as in the Then, the potential reads:
x+1 4o x+1 2
AU, -1) -2 -1 x=—(1—-xp)
XB XB
1 nw
Ulx) = EAUz{cos[l PRt —xB))] - 1} —(1 —xp) <x < (1 —xp), [16]
~ 4B
x—(1—2x 401 -2 2
P [ TN ROV A R
B

approximation above so that two different regimes of the
lowest eigenvalue can be identified. First, the inverse of the
rate increases because of the roughening of the potential, and,
second, it decreases because of the effect of the intermediate.
Again, the third regime is not present because the second
barrier crossing is not mandatory any more, which results in an
accumulation of the molecules in the intermediate state.

Because the first barrier height AU, is kept constant through
all simulations, the decrease of 1/k; can be attributed to a
change in the preexponential factor in Eq. 9a, which is mainly
determined by the curvature of the potential at the bottom of
the initial well and the curvature at the top of the first barrier.
The curvature of the energy profile increases by lowering the
energy level of the intermediate, and, therefore, this preex-
ponential factor increases, too. While approaching the turning
point at AU, = 7.3 kT, the rate constant k; starts to decrease
and dominates 1/A; for AU, > 7.3 kT because of the increase
of the second barrier height. This behavior is expected because
the second barrier height appears in the exponent of Eq. 9b.
A comparison between the Arrhenius equation (Eq. 9b; k =
A exp(—AE/kgT) and the Eyring equation (k = p*
exp(—AG*/RT)) (24) for the same barrier crossing reveals
that the entropy of the reaction is essentially given by the
logarithm of the two preexponential factors, reduced by a term
originating from the transmission coefficient, k, in the pre-
factor of the Eyring equation

AS+—R(1 <4> 1 Taan) 13
= n o) VT ) [13]

The difference of the entropy contribution between a transi-
tion across the first barrier of a triple-well potential AS;” and
the transition to the top of a single barrier AS5 reads

T(AS," — AS,") = kBT[ln (?) ~In(y) — TaTln(y)], [14]
1

where 7 and 7, denote the MFPT from the initial state tox =
0 for a potential with and without intermediate, respectively,

where n denotes the number of intermediates. The potentials
for various numbers of intermediates are shown in Fig. 44.
Note the similarity between the MFPT for a single interme-
diate using a polynomial potential (Fig. 2) and a potential
described by Eq. 16 (Fig. 4B). The comparison shows that the
characteristic feature of a minimum at ~7 kg7 is well con-
served. Increasing the number of intermediates decreases the
minimum MFPT and shifts the minimum to lower values of the
second barrier height (Fig. 4B).

In terms of rate equations, the linear differential equation
system (Eq. 8) for multiple intermediates extends to the form:

Po —a 1 Po
. a -2 1 .
al - 1 -2 1 .
2=k S S .|, nm
Pk I -21 Pk
p" 1 _2 p"
1.2

[y
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e
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o
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©
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6 9 12
second barrier height AU , [k, T]

W

F1G6.3. Increase of the entropy across the first barrier of the double
barrier transition relative to the entropy of a half way single barrier
crossing. The data were calculated by using Eq. 13.
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FiG. 4. Effect of multiple intermediates on the MFPT. Three
examples for 1 (-—--), 4 (~), and 8 ( ) intermediates are
shown in 4 with energy barriers of AUy = 10 kgT and AU, = 3 kpT,
4 kgT, and 7 kgT, respectively. (B) MFPT calculations depending on
the second barrier height, AU>, for the potentials shown in A. The inset
zooms on the second barrier height, AU>, within 0.5 kgT. The
boundary conditions and the units are described in Fig. 1.

with @ = V2 exp(—(AU; — AU,)) = ki/k,, and py denotes
the probability to find the particle in the initial state where p;
(i = 1...n) are the state probabilities of the intermediates.
Including the final state, the system has n + 2 states in total.
Again, the backflow of molecules from the final state to the last
intermediate was omitted. In order to trace the question of
whether the rate can be increased to infinity with increasing
number of intermediates or if there is a limit for the rate, we
calculated the eigenvalues of the matrix of Eq. 17, which will
be denoted by M. The lowest eigenvalue of M X k, determines
the kinetics. It can be readily shown by using Eqgs. 9b and 16
that k, increases proportionally to n?. If a limit exists, the
lowest eigenvalue of M must be proportional to 1/n?. First, we
transpose M, which leads to the following eigenvalue problem:

M'x = \x, (18]

where A represents the eigenvalues, and x represents the
corresponding eigenvectors. We use the following ansatz for
the kth component of the eigenvector:

x, = A sin(kg) + B cos(ke), [19]

where A, B, and ¢ are constants to be determined. The ansatz
provides N equations for the components of the eigenvector.

Proc. Natl. Acad. Sci. USA 96 (1999)

Egs. 1 ton — 1 are fulfilled if
A =2 cos(e) — 2. [20]

The first and the last equation yield a homogeneous linear
system for the constants 4 and B:

(5 20 -
[21]

From the determinant, an equation for the ¢s that are related
to the eigenvalues by Eq. 20 can be derived (a # 0)

— a*tan<§> . [22]

The lowest p-value, emin, lies in the interval (0, w/(n + 1)) so
that, for large n, tan(¢/2) can be approximated by ¢/2, and the
right hand side of Eq. 22 tends to zero in this limit, yielding

2
cot((n + 1)p) =

o

Pmin = 30 1 1) [23]
By expanding cos(¢) in Eq. 20 in a Taylor series, the lowest
eigenvalue of M is approximated by

--5)
)\min = /) [24]

The result shows that the lowest eigenvalue of the matrix M is
proportional to 1/n2. As mentioned above, it must be multi-
plied by k> to obtain the apparent rate constant. Because k is
proportional to n?, the two factors cancel, which proves that the
rate enhancing effect becomes limited for large numbers of
intermediates.

As shown for a single intermediate, the boundary between
a mono- and a biexponential decay is ~6 kzT. This threshold
is expected to decrease when adding further intermediates into
the transition region. Applying the approximation of higher
moments of the MFPT, the decay of the initial state can be
described by multiexponential kinetics (19). The threshold
between single and double exponential kinetics was estimated
by the condition that the relative amplitude of the slow phase
is <99%. By using the first two moments, the boundary
decreases to ~5 kpT for eight intermediates.

DISCUSSION

Effect of Intermediates on the Kinetics of Barrier Crossing.
We simulated the process of protein folding in the presence of
intermediates with different energy levels by using Kramers’
theory. The results for different scenarios were compared with
classical reaction rate theory and with the eigenfunction
method of the FP operator by using Hermite polynomials. All
methods gave identical results and showed that intermediates
can have different effects on the rate of protein folding
depending on their energy level (Figs. 1 and 2). If an inter-
mediate has a similar energy as the transition state (AU, <
1072 kpT), the transition region becomes broader, and the
potential becomes rougher. In this scenario, the rate constant
decreases, which was already pointed out by Zwanzig (22). By
increasing the roughness of the potential, i.e. by stabilizing the
intermediate, the rate constant increases with decreasing
energy level of the intermediate. Above AU, = 1 kT, the
reaction surprisingly becomes even faster than for a single
barrier transition with the same maximum barrier height. For
a single intermediate, this effect can maximally lead to dou-
bling the rate constant (Fig. 2). The observed rate-
enhancement is, however, more pronounced when furnishing
the barrier with multiple intermediates (Fig. 4). With 16
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intermediates, we obtained a 10-fold increase of the rate
constant. Representing the system in terms of rate equations,
we were able to show that the rate-enhancing effect runs into
saturation for large numbers of intermediates. When the
intermediates become too stable, the rate constant decreases
again because of the prevailing effect of the increase of the
additional barriers (Figs. 1 and 2). The reaction becomes
slower than for a single barrier crossing when the energy of
intermediates drops below the level of the initial state.

The rate-enhancing effect of intermediates is attributable to
a broadening of the transition region in combination with the
appearance of defined local minima in the transition barrier.
This statement is strengthened by considering the conforma-
tional entropy of the forward reaction by using the stationary
probability density p(x) to find a molecule in the interval [x,
X + dx] on the reaction coordinate:

S = —f p()In(p(x))dx, [25]

whereby the stationarity is achieved by reinjecting the ab-
sorbed molecule in the final state to the initial state. Again,
three different regimes are recognized. If an intermediate
mainly increases the broadness of the barrier, the initial state
becomes more localized (the variance of the Gaussian distri-
bution decreases), which corresponds to an increase of the
order of the system and therefore results in a decrease in
entropy. While lowering the energy level of the intermediate,
the probability density is smeared out along the reaction
coordinate, leading to an increase of entropy and, therefore, to
an increase of the rate constant. When the intermediate is too
stable, the wells for the initial state and for the intermediates
become very narrow and thus localize the molecules in these
minima leading again to a decrease in entropy.

Implications for Protein Folding. Theoretical models sug-
gested that folding proceeds on a funnel-like energy landscape
and that experimentally observable transiently accumulating
partially folded states often represent intermediates trapped in
local energy minima. It was suggested that the direct folding
process may occur through metastable high energy interme-
diates (14) and that the rate-limiting step for the folding
process is mainly represented by an entropic barrier (5), which
is in contrast to experimental observations on the energetics of
the transition state. Experimentally observed barriers for
protein folding contain both enthalpic and entropic contribu-
tions at room temperature. Comparison of the barriers of
several small fast folding proteins showed that the enthalpy of
activation is about 10 kcal/mol for all proteins when the folding
reactions are compared at identical protein stability (21). The
origin of these barriers is unclear but a strong temperature
dependence of the activation parameters and an observed
enthalpy/entropy compensation suggests major contributions
from protein/solvent interactions (25).

Our results on the effect of rugged transition barriers on the
rate of kinetic processes suggest that the enthalpic barriers
encountered in protein folding are most efficiently crossed
when well defined local minima exist in the transition region.
It seems very likely that the high energy intermediates detected
by native-state hydrogen exchange and by nonlinearity in the
denaturant-dependence of AGY% of many two-state folders
represent such local minima in the transition region and thus
are evidence for an optimized transition barrier in a protein-
folding reaction. The role of these intermediates might be both
to direct the ensemble of unfolded states on a small number of
well defined pathways and to increase the rate of folding by
efficiently crossing the energy barriers caused by a favorable
entropic effect. One should keep in mind that our model
assumes a well defined saddle region between the ensemble of
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unfolded states and the native state. A quantitative extension
to more complex energy surfaces will be a difficult task.

The presented results raise the question of a useful defini-
tion for the transition state of protein folding reactions. It was
suggested that the transition state should be defined as the
ensemble of conformations with the probability P = 0.5 to go
to the native state (17). In our model with local minima in the
transition barrier, which is in agreement with many experi-
mental and theoretical observations, this state would be rep-
resented by a local minimum for an odd number of interme-
diates rather than by the top of the barrier (Fig. 1B). Because
our results show that the folding rates are strongly influenced
by the shape of the transition barriers, it is necessary to
characterize the properties of transition state regions rather
than thinking in terms of a well defined transition state.

Because we made no assumption on the nature of the energy
barrier and merely assumed that the barrier crossing has to
take place in the high friction limit of Kramers’ theory, the
results are applicable to all kinetic processes in solution that
encounter energetic barriers. A similar effect of metastable
intermediates on rate constants has been discussed qualita-
tively by Knowles and coworkers for enzyme catalysis (26). Our
calculations show that enzymes could facilitates barrier cross-
ing by creating local minima in the barrier region on binding
to the substrate and thus accelerate the reaction without
changing the height of the energy barriers.
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