Mutational Evidence for Control of Cell Adhesion
Through Integrin Diffusion/Clustering, Independent of
Ligand Binding

By Robert L.Yauch,* Dan P. Felsenfeld,® Stine-Kathrein Kraeft,*

Lan Bo Chen,* Michael P. Sheetz,® and Martin E. Hemler*

From the *Division of Tumor Virology, and the *Division of Molecular and Cellular Biology,
Dana-Farber Cancer Institute, Boston, Massachusetts 02115; and the $Department of Cell Biology,
Duke University Medical Center, Durham, North Carolina 27710

Summary

Previous studies have shown that integrin « chain tails make strong positive contributions to
integrin-mediated cell adhesion. We now show here that integrin o* tail deletion markedly im-
pairs static cell adhesion by a mechanism that does not involve altered binding of soluble vascu-
lar cell adhesion molecule 1 ligand. Instead, truncation of the o cytoplasmic domain caused a
severe deficiency in integrin accumulation into cell surface clusters, as induced by ligand and/
or antibodies. Furthermore, o tail deletion also significantly decreased the membrane diffusiv-
ity of o*B,, as determined by a single particle tracking technique. Notably, low doses of cy-
tochalasin D partially restored the deficiency in cell adhesion seen upon o tail deletion. To-
gether, these results suggest that o* tail deletion exposes the B, cytoplasmic domain, leading to
cytoskeletal associations that apparently restrict integrin lateral diffusion and accumulation into
clusters, thus causing reduced static cell adhesion. Our demonstration of integrin adhesive ac-
tivity regulated through receptor diffusion/clustering (rather than through altered ligand bind-
ing affinity) may be highly relevant towards the understanding of inside—out signaling mecha-

nisms for B, integrins.

Cell adhesion is a critical event in the initiation and
maintenance of a wide array of physiological pro-
cesses, including embryogenesis, hematopoiesis, tumor cell
metastasis, and the immune response. The integrin protein
family, which consists of 22 distinct « and B heterodimers,
mediates cell adhesion to extracellular matrix proteins, se-
rum proteins, and counterreceptors on other cells (1).
Through inside—out signaling, integrin adhesive activity can
be triggered by multiple agonists, and integrins display multi-
ple activation states within different cell types, independent
of changes in integrin expression levels (2). Many studies of
integrin regulation have focused on conformational changes,
altered ligand binding affinity, and/or modulation of postli-
gand binding events (e.g., cell spreading) (3—-6). However,
a novel mechanism was recently put forth, suggesting that
activation of adhesion may involve release of cytoskeletal
constraints, leading to increased integrin lateral mobility (7,
8). Implicit is the assumption that increased mobility is
proadhesive because it leads to increased integrin accumu-
lation at an adhesive site, and thus greater adhesion strength-
ening.

Here, we have used an «* integrin cytoplasmic domain
mutant to provide strong evidence for this hypothesis.
Upon truncation of the «* cytoplasmic domain, the o*B;
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integrin shows severe impairments in both constitutive and
phorbol ester—induced static cell adhesion (9, 10), and also
shows deficient adhesion strengthening under shear (11,
12). However, the reason for these defects was not previ-
ously understood. Because other integrin cytoplasmic do-
main mutations cause altered ligand binding (3, 13, 14), we
closely examined binding of soluble vascular cell adhesion
molecule (VCAM)-1! (15) to mutant and wild-type a*B,
integrin. Not finding any alterations in ligand binding, we
then examined receptor accumulation into cell surface
clusters, and integrin lateral mobility. The results strongly
support the hypothesis that integrin diffusion/clustering,
independent of alterations in ligand binding, can play a ma-
jor role in regulating integrin adhesive functions.

Materials and Methods

Cells. K562 erythroleukemia cells and Chinese hamster ovary
(CHO) cells transfected with cDNAs representing the wild-type

1Abbreviations used in this paper: AP, alkaline phosphatase; CHO, Chinese
hamster ovary; FBS, fetal bovine serum; MSD, mean square displacement;
rsVCAM, recombinant soluble vascular cell adhesion molecule; TBS,
Tris-buffered saline; VCAM, vascular cell adhesion molecule.
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human o# integrin (—a*wt), chimeric o* containing the extracel-
lular and transmembrane domains of o* with the cytoplasmic do-
main of a? (-X4C2), and a truncated o* integrin lacking a cyto-
plasmic domain (-X4C0), have been described elsewhere (9).
Untransfected or mock-transfected K562 and/or CHO cells were
used as negative controls. K562 transfectants were maintained in
RPMI-1640 containing 10% fetal bovine serum (FBS), 1 mg/ml
G418 sulfate (GIBCO BRL, Gaithersburg, MD), and antibiotics,
whereas CHO transfectants were maintained in MEMa~ media
containing 10% dialyzed FBS, 0.5 mg/ml G418 sulfate, and anti-
biotics.

Reagents and Antibodies.  The antibodies used in this study in-
clude anti-a#, B5G10 (16), and A4-PUJ1 (17); anti-CD32 (anti-
FcyRIN), 4.6.19 (18); fluorescein-conjugated goat anti-mouse
1gG (Cappel, Westchester, PA); fluorescein-conjugated goat anti—
mouse k (Caltag, San Francisco, CA); negative control mAb J-2A2
(19); and mAb 15/7, recognizing a B, epitope induced by manga-
nese or ligand (20). Fluoresceinated B5G10 was produced using
N-hydroxy succinimide (NHS)-fluorescein (Pierce, Rockford, IL),
as described by the manufacturer. Recombinant soluble VCAM
(rsVCAM) and alkaline phosphatase (AP)-conjugated VCAM-Ig
(VCAM-Ig-AP) were a gift from Dr. Roy Lobb (Biogen, Inc.,
Cambridge, MA) and prepared as described elsewhere (15). The
VCAM-Ig-AP contains the two NH,-terminal domains of hu-
man VCAM fused to the hinge, CH2, and CH3 domains of hu-
man 1gG1. A purified VCAM-mouse C k chain fusion protein
(VCAM-k) was a gift from Dr. Philip Lake (Sandoz Co., East
Hanover, NJ). VCAM-k was produced as a soluble protein from
sf9 cells and contains all seven human VCAM domains, except
the transmembrane and cytoplasmic domains, which have been
replaced by a 100-amino acid mouse C k segment. The CS-1
peptide (GPEILDVPST) derived from fibronectin was synthe-
sized at the Dana-Farber Molecular Biology Core facility (Bos-
ton, MA).

Flow Cytometry. Flow cytometric assays were performed as
described (21). For determination of 15/7 epitope expression,
K562 cells were preincubated (10 min) with 2 mM EDTA (in
PBS), washed and suspended in assay buffer (24 mM Tris, 137
mM NaCl, 2.7 mM KCI, pH 7.4 [Tris-buffered saline; TBS], 5%
BSA, 0.02% NaN,) with or without MnCl, and/or CS-1 pep-
tide. Then, mAb 15/7 or negative control mAb J-2A2 was added
and mean fluorescence intensities were determined. Results for
15/7 expression are given as a percent of B, levels (% 15/7 =
[15/7 — J12A2]/[A4-PUJL — J2A2] X 100). Untransfected K562
cells (expressing the o5, integrin) showed no constitutive or di-
valent cation-induced 15/7 expression.

VCAM-Ig—AP Direct Ligand Binding Assay. A detailed descrip-
tion of a high sensitivity, direct ligand binding assay has been de-
scribed elsewhere (15). In brief, cells in 96-well porous plates
were incubated with a VCAM-Ig fusion protein conjugated with
AP (VCAM-Ig-AP), and then washed using a Millipore Multi-
screen filtration manifold. Bound VCAM-Ig-AP was then de-
tected by colorimetric assay using p-nitrophenyl phosphate.

VCAM-k Indirect Ligand Binding Assay. Transfected K562 cells
were incubated for 10 min on ice with TBS containing 2 mM
EDTA, washed three times with assay buffer (TBS, 2% BSA), and
resuspended in assay buffer containing the desired concentrations
of VCAM-k and either MnCl, or 5 mM EDTA. Cells were in-
cubated at 4°C for 30 min, washed two times in assay buffer con-
taining 2 mM MnCl,, and subsequently incubated for 30 min at
4°C with assay buffer containing fluorescein-conjugated goat
anti-mouse k antibodies. Cells were washed two times and fixed
with 3% paraformaldehyde. VCAM-k binding on K562 cells was
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analyzed using a FACScan® flow cytometer to give mean fluores-
cence intensity units. Background binding of VCAM-k (i.e.,
VCAM-k binding in the presence of 5 mM EDTA) was sub-
tracted and data were also corrected for o* surface expression, if
applicable.

Cell Adhesion.  The effects of cytochalasin D on cell adhesion
were performed as previously described (7), with minor modifi-
cations. In brief, BCECF-AM (Molecular Probes, Eugene, OR)
—labeled cells were pretreated with various doses of cytochalasin
D (Sigma Chemical Co., St. Louis, MO) for 15 min at 37°C.
Cells were added to 96-well plates previously coated overnight
with «* ligands and blocked with 0.1% heat-denatured BSA for
45 min at 37°C. Plates were centrifuged at 500 rpm for 2 min and
analyzed in a Cytofluor 2300 measurement system (Millipore
Corp., Bedford, MA). Plates were incubated for an additional 15
min at 37°C, washed 3—4 times with adhesion media, and fluores-
cence was reanalyzed. Background binding to heat-denatured
BSA alone was typically <5% and was subtracted from experi-
mental values. Data is expressed as fold induction in cell adhesion,
and calculated (adhesion in the presence of cytochalasin D/adhe-
sion in the absence of cytochalasin D) from triplicate cultures.

Confocal Microscopy. K562 cells were incubated on ice for 10
min in PBS containing 2 mM EDTA, washed, and resuspended
in assay buffer (TBS, 5% BSA, 0.02% NaN,). For examination of
VCAM-induced clustering of o, cells were incubated with 5
rg/ml of mAb 4.6.19 to block FcyRII sites, and then with 500
nM rsVCAM and 2 mM MnCl, in assay buffer for 45 min. Cells
were washed two times in assay buffer containing 2 mM MnCl,,
incubated an additional 30 min in assay buffer containing fluores-
ceinated B5G10 mAb, washed, and fixed with 4% paraformalde-
hyde in PBS. For detection of a* clustering induced by secondary
antibodies, K562 cells were incubated for 30 min in assay buffer
(PBS substituted for TBS) containing purified B5G10, washed,
incubated an additional 30 min with fluorescein-conjugated goat
anti-mouse 1gG, washed, and fixed as above. All procedures were
done at 4°C in the presence of 0.02% NaNj, to prevent internal-
ization. Fixed cells were resuspended in Fluorosave reagent (Cal-
biochem Novabiochem, La Jolla, CA), mounted onto slides, and
fluorescence was analyzed using a Zeiss model LSM4 confocal la-
ser scanning microscope equipped with an external argon—kryp-
ton laser (488 nm). To evaluate cell surface fluorescence, optical
sections of 0.5-pum thickness were taken at the center and at the
cell membrane of representative cells. Images of 512 X 512 pixels
were digitally recorded within 4 s and printed with a Kodak 8650
PS color printer, using Adobe Photoshop software (Adobe Sys-
tems, Mountain View, CA).

Analysis of o3, Diffusion. 40-nm colloidal gold particles (EY
Laboratories, San Mateo, CA) were coated with antibody using a
biotin-avidin linkage as described (22). In brief, gold particles
were coated with ovalbumin (20 wg/ml gold suspension) at pH
4.7, followed by blocking with 0.05% PEG 20K. After washing
(three times with 0.05% PEG 20K/PBS; 16.5K g for 10 min),
particles were reacted with NHS-LC-biotin (20 wg/ml gold;
Pierce) overnight on ice. Particles were subsequently washed
three times (0.05% PEG 20K in PBS) and incubated with avidin
neutralite (Molecular Probes; 1 mg/ml gold, starting volume) for
3 h on ice. The gold solution was then washed three times as de-
scribed above and incubated for 3 h with biotin-B5G10 (60 g/
ml gold, starting volume) and blocked with 1 mg BSA biotin-
amido caproyl (Sigma) overnight on ice.

CHO cells were cultured on silane-blocked coverslips (23)
coated with vitronectin (5 wg/ml). Video experiments were car-
ried out in phenol red-free MEM « supplemented with 2 mM
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I-glutamine, 10% FCS, and 20 mM Hepes. Gold particles were
added to cell-conditioned culture medium and culture dishes were
sealed before mounting on a Zeiss Axiovert 100 TV inverted mi-
croscope equipped with Nomarski optics and a NA 1.3 100X
plan neofluar objective. Serial, recorded video frames were digi-
tized and analyzed for particle centroid position using previously
published hanometer-resolution techniques (24).

Mean square displacement (MSD) with respect to time was
calculated for each particle centroid trace and two-dimensional
diffusion coefficients were calculated by fitting MSD curves with
the equation MSD = 4Dt + V22 or by linear regression of the
first 0.5 s of the MSD curve (25). P values were calculated using
Student’s t test.

Results

Previously, it was shown that deletion of the o* cytoplas-
mic domain markedly decreased «*B,—dependent adhesion
of several cell types to multiple ligands (9-12). Here, we
sought to determine whether this mutation also altered the
ability of o*B, to bind soluble ligand. Wild-type o* (-a*
wt), truncated o* (-X4C0), and a chimeric «* containing
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Figure 1. Expression of a* cytoplasmic tail mutants on K562 and CHO
cells. Cells transfected with vector alone (top row) or with wild-type a?,
-X4C2, or -X4CO0 were stained with a negative control mAb, P3 (dotted
ling), or with anti-a* mAb, A4-PUJ1 (solid line). Mean fluorescence inten-
sity shown in logarithmic scale was determined by flow cytometry, as de-
scribed in Materials and Methods. Heterodimer assembly was not altered
by o tail deletion or substitution (9).
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Figure 2. Analysis of VCAM binding to K562 o* transfectants by direct
(A and C) and indirect (B and D) ligand binding assays. Recombinant
VCAM fusion proteins were cultured with mock-transfected or various
at-transfected K562 cells at 4°C, as described in Materials and Methods.
Direct binding of VCAM-Ig—AP was determined while varying ligand
(A) in the presence of 2 mM MnCl,, or by varying Mn2* (C) in the pres-
ence of 4 nM VCAM-Ig-AP. Bound VCAM was determined from AP
activity, measured at OD,gs. Indirect VCAM-k binding was analyzed by
varying ligand (B) in the presence of 2 mM MnCl, and by varying diva-
lent cation (D) in the presence of 500 nM VCAM-«. Fluorescein-conju-
gated goat anti-mouse  1gG was used to determine the level of VCAM-k
bound and results are expressed as mean fluorescence intensities (MFI).
The combined data are representative of six individual experiments.

the cytoplasmic domain of a? (-X4C2) were stably ex-
pressed at comparable levels on the surface of both K562
erythroleukemia and CHO cells (Fig. 1). In a direct ligand
binding assay (Fig. 2 A), comparable binding of an AP-
conjugated VCAM-Ig fusion protein was seen for cells ex-
pressing wild-type o, truncated o, or chimeric o*. The
concentration of VCAM-Ig-AP yielding half-maximal di-
rect ligand binding activity (EDsp) was 1-1.5 nM for all
three K562 transfectants, consistent with previously pub-
lished results showing EDs, values of ~1 nM (15). Again,
no essential difference between wild-type and mutant o*
was obtained in an indirect binding assay, using fluorescein-
conjugated goat anti-mouse k antibodies to detect bound
VCAM-k (Fig. 2 B). Minimal nonspecific binding of either
VCAM-Ig-AP or VCAM-k was detected on mock-trans-
fected K562 cells, confirming that binding is o* integrin-
dependent (Fig. 2, A and B).

Ligand binding was carried out in 2 mM manganese, be-
cause calcium and magnesium (either alone, or together, at
~ 1-2 mM) fail to support binding of soluble VCAM (15,
26). To alleviate concern that manganese might mask dif-
ferences in VCAM binding by inducing high affinity o*p;
(15, 26, 27), manganese was titrated over a range of con-
centrations, whereas VCAM was held constant at 4 nM
VCAM-Ig-AP (Fig. 2 C), or 500 nM VCAM-« (Fig. 2 D).
Manganese stimulated VCAM binding that was dose-
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Figure 3. Effect of Mn2* on binding of soluble VCAM (A and B) and adhesion to immobilized VCAM (C) in CHO «* transfectants. Direct binding of
VCAM-Ig-AP to o*-transfected CHO cells was determined while varying the divalent cation concentration in the presence of an optimal (A; 4 nM
VCAM-Ig-AP) or suboptimal (B; 1 nM VCAM-Ig—AP) dose of ligand, as described in Fig. 2. OD g5 ,m values were higher in B due to longer substrate
development times. The data are representative of four experiments. The adhesion of CHO cell transfectants to rsVCAM, coated at 2 p.g/ml (C), was

carried out as described previously (9, 10).

dependent and a*-specific, but again no differences were
apparent between K562—adwt, K562-X4C2 and, K562—
X4CO cells (Fig. 2, C and D).

In CHO cells, compared with K562 cells, a*B; is consti-
tutively more active with respect to mediating cell adhesion
(9, 10). Nonetheless, in the CHO cellular environment,
there were again no differences in direct VCAM binding to
a*wt and X4CO0 integrins at either optimal (Fig. 3 A; 4 nM
VCAM-Ig-AP) or suboptimal (Fig. 3 B; 1 nM VCAM-
Ig—-AP) doses of ligand. Half-maximal direct VCAM-Ig—
AP binding occurred at ~100 wM manganese for all trans-
fectants examined, consistent with previously published
manganese EDs, values for VCAM-«*B; binding (15). In
contrast with ligand binding, cell adhesion to immobilized
VCAM was markedly diminished for CHO-X4CO0 cells,
compared with a*wt cells (Fig. 3 C). For example, adhe-
sion at 0.1 and 1 uM Mn?* was reduced by 88 and 69%,
respectively.

To examine o tail deletion effects on very late antigen 4
conformation, we used the mAb 15/7, which recognizes a
B, integrin conformation induced by ligand occupancy or
manganese. When 15/7 epitope is induced by manganese,
it correlates with increased ligand binding affinity (20).
However, the 15/7 epitope also appears when the 3, cyto-
plasmic domain is deleted, and ligand binding is diminished
(28). Notably, 15/7 epitope expression is most readily in-
duced on o*B;, as compared with other B, integrins (Baz-
zoni, G., L. Ma, M.L. Blue, and M.E. Hemler, manuscript
submitted for publication), and thus is an especially useful
tool for evaluating altered o*B, conformations.

Negligible 15/7 epitope expression was seen for a*wt
and mutant o* integrins in K562 cells in the absence of
stimulation (Table 1). However, the percentage of o*B,
molecules expressing the 15/7 epitope increased dramati-
cally upon addition of CS-1 peptide or manganese or both
together to the K562—a*wt and K562—-X4C2 cells. Impor-
tantly, stimulation with manganese and/or CS-1 peptide
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also resulted in comparably increased 15/7 epitope on
K562-X4CO0 cells (Table 1). No 15/7 epitope was detected
in mock-transfected K562 cells (stimulated or unstimu-
lated), demonstrating that 15/7 was specifically reporting
a*B; conformational changes.

Having found that o* tail deletion does not alter ligand
binding or integrin conformation, we then sought alterna-
tive explanations for why tail deletion impairs cell adhe-
sion. To this end, confocal laser microscopy was used to
examine o* tail deletion effects on accumulation of «*B; in
clusters. As illustrated, wild-type o* (Fig. 4 d) and X4C2
(Fig. 4 ¢) were detected in clusters on the surface of K562
cells after addition of recombinant soluble VCAM in the
presence of manganese. In sharp contrast, X4CO showed
hardly any VCAM-induced accumulation in clusters (Fig. 4
b). The X4CO0 subunit was present on the cell surface at
levels comparable to a*wt and X4C2 (see Fig. 1), suggest-
ing that differences in signal strength reflect aggregated re-
ceptor and not differences in total receptor number. Cell

Table 1. 15/7 Epitope Expression on K562 Transfectants
Percent of a*B, expressing 15/7*

Cell line No stimulation CS-1 Mn?* CS-1 + Mn?*

K562 0 0 0 0

K562—awt 0 36 45 64

K562-X4C2 3.6 62 69 71

K562-X4C0 0 56 64 70

*15/7 expression was determined in the presence of no divalent cations
or ligand (no stimulation), 100 wM CS-1 peptide, 5 mM MnCl,, or 5
mM MnCl, + 100 wM CS-1. Results are presented as the percent of
B, expressing the 15/7 epitope, as described in Materials and Methods.

a4 Cytoplasmic Domain Regulation of Cell Adhesion
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Figure 4. Clustering of a* on the surface of K562 cells as examined by confocal microscopy. (a—¢) Mock-transfected and «*-transfected K562 cells were
pretreated with antibodies to FcyRII and subsequently incubated at 4°C with 500 nM rsVCAM in the presence of 2 mM MnCl,. Then, ligand-induced
o* distribution was determined by adding fluorescein-conjugated anti-a* mAb B5G10, followed by confocal microscopy. The data are representative of
four individual experiments. (f—j) Untransfected and o*-transfected K562 cells were incubated at 4°C with the anti-o* mAb B5G10, and then clustering was
induced by adding a secondary fluorescein-conjugated goat anti-mouse 1gG. The data are representative of six individual experiments. e and j represent
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transverse

transverse sections, whereas all other images represent surface sections. Bar, 10 um.

surface staining was specific for a#, as shown by the lack of
staining on mock-transfected K562 cells (Fig. 4 a). The dis-
tribution of o into clusters was dependent upon the addi-
tion of VCAM, because manganese alone (at 2 mM) did
not induce clustering of «* (data not shown).

Experiments were carried out at 4°C in the presence of
sodium azide to prevent receptor internalization. Transverse
sections of K562—a*wt cells (Fig. 4 e) showed peripheral,
but not intracellular staining, consistent with cell surface
clustering without receptor internalization. Also, transverse
sections of K562—-X4C0 cells showed no evidence for in-
tracellular staining (data not shown). Furthermore, levels of
cell surface o* (X4CO0) were unaltered after incubation with
VCAM, as determined by flow cytometry (data not shown).

To extend our findings, we also examined o* clustering
induced by anti-a* mAb, followed by polyclonal secondary
antibody (Fig. 4, f—j). As indicated, clustering was again
pronounced on K562—a*wt (Fig. 4, i and j) and K562-
X4C2 (Fig. 4 h) cells, whereas minimal clustering was ob-
served when the o tail was deleted (K562—-X4C0 cells;
Fig. 4 g) or when no o* was present (Fig. 4 f). Results in
Fig. 5, showing 9-15 cells/panel, confirm the single cell re-
sults shown in Fig. 4. As indicated, nearly all of the K562—
o*wt cells exhibit pronounced clustering, induced either by
VCAM (Fig. 5 a) or by antibody (Fig. 5 ¢). In contrast, the
X4C0 mutant was much less clustered (Fig. 5, b and d), de-
spite being expressed on the cell surface at levels nearly
equivalent to a*wt (see Fig. 1).

The failure of truncated o* to form cell surface clusters
raises the possibility that increased or altered associations
with the underlying cytoskeleton may impair the lateral
mobility of truncated «*, restricting its redistribution into a
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cluster. Because restricted lateral movement of integrin re-
ceptors will likely be reflected by a lower integrin diffusion
rate (22, 23), next we directly measured the diffusion coef-
ficients of wild-type and truncated «* in CHO transfectants
at 37°C. The two-dimensional diffusivity of 40-nm gold
particles, coated with anti-a* mAb, was measured on the
lamellipodia of CHO-a*wt and CHO-X4CO0 cells spread
on an «*-independent substrate, vitronectin. Movement of
gold particles was viewed by high magnification, video-
enhanced differential interference contrast microscopy and
particles were tracked by computer with nanometer-level
accuracy (23). A nonperturbing anti-a* mAb, B5G10, was
used because this mAb neither blocks nor stimulates o*B;-
mediated functions (29). It was shown elsewhere that non-
perturbing antibodies coupled to 40-nm gold can report
the random diffusion of integrins without stimulating the
cross-linking and directed movement of these receptors (22).

As illustrated in Fig. 6, A and C, gold particles bound to
the lamella of CHO-a*wt cells diffused freely with a mean
diffusion coefficient of 0.03 wm?2/s (Fig. 6 E), consistent
with the diffusion rate observed for other B, integrins (22),
as well as other cell surface glycoproteins (30). However,
truncation of the «* cytoplasmic domain resulted in a sig-
nificant decrease in the «*B, diffusion rate (P <0.01). Par-
ticles bound to CHO-X4CO cells exhibited reduced lateral
mobility (Fig. 6, B and D), with a diffusion coefficient that
was sixfold lower (0.005 wm?/s) than wild-type a*B;. No
binding of gold particles was detected on mock-transfected
CHO cells, demonstrating that the binding is o*B; specific
(data not shown).

The association of integrins with cytoskeletal elements
can restrain the random diffusivity of integrins and thus
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Figure 5. Distribution of o* on multiple K562—a*wt and K562—-X4C0 cells. Confocal microscopy was used to examine the cell surface distribution of
o upon treatment of K562—«“wt (a and ¢) and K562-X4CO0 (b and d) transfectants with soluble VCAM (a and b) or with secondary antibodies (¢ and d),

as described in Fig. 4. Bar, 10 um.

contribute to a diminished adhesive state (7). To examine
whether the actin cytoskeleton may contribute to the defi-
ciency in adhesion mediated by truncated o*, we disrupted
actin filament organization with cytochalasin D and mea-
sured its effect on a*B,—mediated adhesion. At high doses
(>10 p.g/ml) of cytochalasin D, adhesion of both CHO-
o*wt and CHO-X4CO0 to o* ligands was dramatically re-
duced (data not shown), as seen many times previously.
However, at low doses, cytochalasin D stimulated mark-
edly the adhesion of CHO-X4CO cells to two different o*
ligands, FN40 (Fig. 7 A) and VCAM (Fig. 7 B), without
much increasing the adhesion of wild-type «* transfectants.
Adhesion was o* specific, as mock-transfected CHO cells
did not adhere under these conditions (data not shown).
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Discussion

Although o tail deletion has a profound negative effect
on cell adhesion (9, 10; Fig. 3 C), and on adhesion
strengthening under shear conditions (11, 12), we show
here that it does not alter ligand binding. Ligand binding
was unaltered by o tail deletion (a) as measured either di-
rectly or indirectly, (b) as measured on either K562 cells or
CHO cells, and (c) as shown either by manganese titration
(at constant ligand) or by ligand titration (at constant man-
ganese). Previous results also suggested that o* tail deletion
did not alter ligand binding, but that study was done only
indirectly, and under single cation conditions, on a single
cell line (18). In addition, o* tail deletion was shown previ-
ously not to alter cell tethering in hydrodynamic flow (11,

a4 Cytoplasmic Domain Regulation of Cell Adhesion
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Figure 6. Analysis of o* integrin diffusivity in a*-transfected CHO cells.
40-nm gold particles coated with nonperturbing, anti-a* mAb (B5G10)
were bound to the surface of a*-transfected CHO cells and tracked in the
plane of the membrane at 37°C, as described in Materials and Methods.
Representative tracks (x versus y; wm) are shown for particles on CHO-
a’wt (A) and CHO-X4CO (B). All tracks were rotated to orient cell with
leading edge facing left. Also, x and y coordinates with respect to time are
shown for CHO-awt (C) and CHO-X4CO0 (D) cells (x coordinates, fine
line, 00; y coordinates, bold line, ||). (E) Two-dimensional diffusivity (D;
wm?/s) determined from a plot of MSD versus time of particles tracked
on CHO-a*wt (n = 6) and CHO-X4CO0 (n = 9) transfectants (P <0.01).
Data are represented as mean deviation = SD. No binding of anti-a*-
coated particles was detected on mock-transfected CHO cells.

12), a function that is likely dependent on univalent inte-
grin—ligand bond formation. Thus, our results argue strongly
against affinity modulation as a mechanism for o* tail regu-
lation of cellular adhesion. Consistent with these findings,
o tail deletion also did not decrease the ability of divalent
cations or ligand to induce «*B; conformations detected by
mAb 15/7. Similarly, «* tail deletion was shown previously
to have no effect on induction of an epitope defined by
mAb 9EG7 (10), that maps to a B, site distinct from the
15/7 site (28, 31).

It is, perhaps, not surprising that replacement of the o*
tail with the o tail had no effect on ligand binding or inte-
grin conformation, because previously that mutation had
no effect on cell adhesion, or tethering under flow (9, 12).
Notably, replacement of the «''® cytoplasmic domain with
that of o2 did cause an increase in «'"B; integrin ligand
binding (14), suggesting that different rules may apply to
regulation of the a''°B; integrin.

The defect in cell adhesion seen for the X4CO0 mutant is
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Figure 7. Effect of cytochalasin D on adhesion of a*-transfected CHO
cells to o* ligands. BCECF-AM-labeled CHO-a*wt (closed squares) or
CHO-X4CO0 (open circles) were pretreated with various concentrations of
cytochalasin D for 15 min at 37°C and subsequently allowed to adhere to
surfaces coated at 4 wg/ml of FN40 (A) or 2 pg/ml of rsVCAM (B), as
described in Materials and Methods. Results are presented as fold in-
creases in adhesion calculated due to the presence of cytochalasin D. Ac-
tual adhesion values in the absence of cytochalasin D were 104.2 cells
bound/mm? for CHO-a*wt and 22.8 cells bound/mm? for CHO-X4C0
on VCAM, respectively.

not due to altered ligand binding, but rather appears to arise
from a reduced diffusion rate. Presumably, a lower rate of
diffusion prevents the passive accumulation of integrin re-
ceptors into clusters. After initial cell contact with immobi-
lized ligand, a dynamic, diffusion-dependent accumulation
of clustered integrins may be needed to augment the over-
all cellular avidity for the ligand-coated surface. Notably,
clustering deficiencies for the X4CO integrin, directly mea-
sured here at 4°C, are consistent with an indirectly measured
deficiency in X4CO clustering seen previously at 37°C (18).
In that case, X4CO was defective in mediating antibody-redi-
rected cell adhesion, a process dependent on mAb bridging
between Fc receptors and clustered integrins (18).

How might « tail deletion cause decreased diffusivity
leading to reduced clustering? We propose that the « chain
cytoplasmic domain covers a negative site in the integrin 8
chain tail. Consistent with this model, it was previously
shown that various integrin « chain tails can shield g chain
tails from critical interactions with cytoskeletal proteins
(32-34), whereas at the same time, o chains tails often
make positive contributions to cell adhesion (9, 10, 35-37).
Most likely, the unshielded and unregulated interactions of
B tails with cytoskeletal proteins may lead to increased con-
stitutive cytoskeletal anchoring, and thus diminished diffu-
sion and clustering at adhesive sites. Supporting this notion,
low doses of cytochalasin D markedly increased adhesion of
truncated «*p;, but not wild-type o*B;. The range of cy-
tochalasin D concentrations that promoted X4CO0 adhesion
(0.01-1 pg/ml) is consistent with previously published cy-
tochalasin D concentrations that stimulated o-3,—~mediated
adhesion (7).

The overall importance of both diffusion and clustering
to cell adhesion has been noted previously. For example,
increases in the diffusion and lateral mobility of o8, (7)
and LFA-3 (38) correlate with increases in cell adhesion
and adhesion strengthening, respectively. Furthermore, in-



tegrin clustering is necessary for full integrin signaling (39),
and clustering of aMB, and o, integrins promoted by
phorbol ester or calcium also correlates with increased inte-
grin-mediated adhesion (40, 41).

Regulation of integrin diffusion/clustering may be highly
relevant towards the understanding of inside—out signaling
mechanisms for B, and B, integrins, especially when affin-
ity modulation is not involved. For example, stimulation of
o*B,—mediated adhesion with macrophage inflammatory
protein-1@ or with anti-CD3 or anti-CD31 antibodies did
not detectably induce binding of soluble VCAM (26), and
phorbol esters stimulated adhesion mediated by o5B,,
aMB,, and B, without affecting soluble ligand binding
(42-45). Notably, the effects of phorbol ester stimulation
and integrin o* tail deletion show a striking parallel. Like
o tail deletion, phorbol esters also (a) fail to alter integrin
affinity for ligand, (b) fail to alter «*B,—dependent tethering
under shear (11, 12), but (c) markedly regulate static cell ad-
hesion and adhesion strengthening under hydrodynamic
flow (11), and (d) regulate integrin diffusion rates (7).

However, whereas o* tail deletion leads to increased cy-
toskeletal restraints and diminished lateral diffusion, phorbol
ester appears to release active cytoskeletal restraints, thereby
increasing lateral diffusion of the a'B, integrin (7). To-
gether, these results emphasize that a diffusion/clustering
mechanism may be of general importance for regulating
adhesion, especially in the absence of changes in ligand
binding (26). Also, impaired integrin diffusion/clustering
may at least partly explain loss of cell adhesion observed
upon the deletion of other integrin « chain cytoplasmic
domains (35-37).

In conclusion, this report demonstrates that an integrin
mutation can alter cell adhesion by a selective effect on re-
ceptor diffusion and clustering. In addition, the results strongly
suggest that integrin cytoplasmic domains are critical for
control of integrin diffusivity and clustering. We propose
that control of cell adhesion at the level of integrin clustering
is likely to be an important component of inside—out sig-
naling, especially in cases when ligand binding is not altered.
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