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Open-heart surgery triggers an inflammatory response that is largely the result of surgical trauma, cardiopulmonary bypass,
and organ reperfusion injury (e.g. heart). The heart sustains injury triggered by ischaemia and reperfusion and also as a result of
the effects of systemic inflammatory mediators. In addition, the heart itself is a source of inflammatory mediators and reactive
oxygen species that are likely to contribute to the impairment of cardiac pump function. Formulating strategies to protect the
heart during open heart surgery by attenuating reperfusion injury and systemic inflammatory response is essential to reduce
morbidity. Although many anaesthetic drugs have cardioprotective actions, the diversity of the proposed mechanisms for
protection (e.g. attenuating Ca2þ overload, anti-inflammatory and antioxidant effects, pre- and post-conditioning-like
protection) may have contributed to the slow adoption of anaesthetics as cardioprotective agents during open heart surgery.
Clinical trials have suggested at least some cardioprotective effects of volatile anaesthetics. Whether these benefits are relevant
in terms of morbidity and mortality is unclear and needs further investigation. This review describes the main mediators of
myocardial injury during open heart surgery, explores available evidence of anaesthetics induced cardioprotection and
addresses the efforts made to translate bench work into clinical practice.
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Introduction

The predominant underlying cause of coronary heart disease

is atherosclerosis, which can result in myocardial infarction.

Clinical interventions used to reperfuse the acutely or

chronically ischaemic myocardium, include thrombolysis,

percutaneous coronary angioplasty and/or coronary bypass

surgery (Verma et al., 2002; Bolli et al., 2004). However,

reperfusion of the ischaemic heart can induce myocardial

injury. This injury can be further exacerbated during open-

heart surgery when the myocardium is exposed global

ischaemic cardioplegic arrest (Verma et al., 2004). Myocardial

reperfusion injury activates neutrophils (Petzelbauer et al.,

2005), which trigger an inflammatory response resulting in

generation of reactive oxygen species (ROS), cytokine release

and complement activation, which further induce more

cardiac injury (Jordan et al., 1999; Franke et al., 2005). In

addition to the inflammatory response generated as a result

of tissue reperfusion injury, there is a significant systemic

inflammatory response that is triggered by cardiopulmonary

bypass (CPB) during open-heart surgery. The CPB-induced

inflammatory response could further contribute to myo-

cardial injury, as surgery without CPB appears to be associated

with reduced myocardial injury. Formulating strategies to

protect the heart during open-heart surgery by attenuating

reperfusion injury and systemic inflammatory response is

essential to improve clinical outcome. The concept that

selected anaesthetic drugs may provide additional cardio-

protective effects during open-heart surgery is relatively new.

This review summarizes the current literature and knowledge

on triggers and mediators of myocardial injury during open-

heart surgery, and different strategies to protect the heart,

with special emphasis on the role of anaesthetics.

Triggers of myocardial injury during open-heart
surgery

Systemic inflammatory response

Open-heart surgery with CPB is associated with an acute

inflammatory response, which has implications for
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postoperative recovery and myocardial function (Freyholdt

et al., 2003). Despite significant changes and improvements

in surgical techniques, inflammation remains a significant

problem. Therefore, the development of strategies to control

the inflammatory response continues to be the focus of

extensive experimental research and clinical studies (Raja

and Dreyfus, 2005). In addition to CPB, reperfusion injury of

the myocardium and the lungs, and surgical trauma are also

important triggers of the inflammatory response (Wan et al.,

2004; Franke et al., 2005; Prondzinsky et al., 2005). However,

other factors such as temperature, anaesthesia, oxidative

stress and genetic predisposal may also contribute. Recent

and interesting evidence suggests that the inflammatory

response during open-heart surgery is at least in part related

to the genetic background of the individual (Lehmann et al.,

2006).

Myocardial ischaemia and reperfusion

Myocardial ischaemia describes a condition of reduced

coronary blood flow resulting in a decrease in the supply

of oxygen and nutrients to the heart (reviewed in Suleiman

et al., 2001). This in turn provokes a fall in energy production

by the mitochondria, which is quickly followed by abnormal

accumulation and depletion of several intracellular metabo-

lites (for example, a fall in ATP and a rise in lactate). These

metabolic changes lead to a decrease in intracellular pH and

an increase in the intracellular concentrations of Naþ and

Ca2þ , which further consumes ATP. Several membrane ionic

pumps and channels are disrupted, leading to membrane

depolarization and loss of excitability. If coronary flow is

restored quickly, then metabolic and ionic homeostasis

are re-established, the plasma membrane repolarizes and

recovery occurs. However, reperfusion following prolonged

ischaemia can result in irreversible damage (death by

necrosis or apoptosis). The main causes of reperfusion injury

are cytosolic Ca2þ loading and generation of ROS, both of

which exacerbate mitochondrial dysfunction and can result

in opening of the mitochondrial permeability transition

pore. Consequences of reperfusion injury include ventricular

fibrillation, myocardial stunning and loss of intracellular

proteins. Furthermore, cardiac generation of ROS and their

release to the extracellular space can further compromise the

cardiac function by, amongst other things, promoting an

inflammatory response.

In view of the fact that a reduction in myocardial infarct

size improves myocardial function and reduces infarct-

related acute mortality (Miller et al., 1998), the translation

of diverse experimental cardioprotective interventions into

clinical settings has been limited (Bolli et al., 2004; Cannon,

2005). Reasons like availability of relevant models and

species-related differences may be responsible for this.

Cardiac cytokines and oxidative stress during ischaemia and

reperfusion

The controversial views regarding the role of CPB in

triggering an inflammatory and oxidative response during

open-heart surgery have significantly shifted the focus away

from the potential role of myocardial reperfusion injury as a

source of inflammatory mediators.

Whether oxidative stress is a cause or an effect of

myocardial injury during open-heart surgery is not known,

but has been implicated in postoperative complications

(Christen et al., 2005). The primary source of ROS during

open-heart surgery on CPB is thought to be the neutrophils

(Vinten-Johansen, 2004), which also release several proteo-

lytic enzymes. Neutrophils are activated by agents derived

from the systemic circulation, coronary vasculature and

myocytes. Cytokines stimulate the upregulation of adhesion

molecules on cardiomyocytes that allow neutrophils to

adhere and release ROS and proteolytic enzymes (Ren

et al., 2003). Neutrophils accumulate in the ischaemically

damaged and/or reperfused area of the myocardium.

In addition to CPB, the myocardium generates inflamma-

tory mediators and ROS during ischaemia–reperfusion,

which would contribute to cardiac functional depression

and apoptosis (Wang et al., 2005). In a variety of experi-

mental models, cardiac myocytes, when exposed to ischae-

mia (hypoxia)-reperfusion have been shown to produce

interleukin (IL)-6 (Sawa et al., 1998; Chandrasekar et al.,

1999). This cytokine is also produced by the myocardium

arrested using cold crystalloid cardioplegia in an experi-

mental model of CPB (Dreyer et al., 2000), and in the

coronary bed of patients undergoing coronary artery bypass

graft (CABG) surgery (Zahler et al., 1999). Other inflamma-

tory cytokines can be produced locally in the heart,

including IL-8 that is released in the ischaemic myocardium,

which would stimulate the upregulation of adhesion

molecules on different cell types (Ren et al., 2003). This in

turn allows neutrophils to adhere to the myocytes and

release ROS and proteolytic enzymes. Other proinflamma-

tory cytokines produced by the heart during cardiac insults

include IL-18 and IL-1b (Matsumori et al., 1999; Pomerantz

et al., 2001; Deten et al., 2003). In addition, heart cells

produce IL-10, which is a potent anti-inflammatory cytokine

(Jones et al., 2001). It is evident therefore that the

myocardium is a source of cytokines particularly during

ischaemia and reperfusion. What is not known, however, is

whether the cytokines synthesized in heart cells are released

and therefore could be involved in modulating the inflam-

matory response. More interestingly would be to know

whether cytokines and their action on membrane receptors

would alter the myocyte response to cardiac insults.

The cardiac actions of cytokines

It is evident from the above discussion that cytokines,

depending on their type, can contribute to either myocardial

injury or protection. This effect could be direct on the

myocardium or via altering the levels of mediators of cardiac

injury. In this respect, proinflammatory cytokines would

influence the heart differently from anti-inflammatory ones.

IL-6 production has been associated with negative inotropic

effects (Finkel et al., 1992) and myocardial stunning (Zahler

et al., 1999). It has been suggested that the acute cardiode-

pressant (negative inotropic) effect of cytokines is related

to enhanced production of nitric oxide (NO) (Stangl

et al., 2002). NO increases intracellular cyclic guanosine
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monophosphate, which activates cyclic guanosine mono-

phosphate-dependent protein kinase that inhibits L-type

Ca2þ channels inducing negative inotropic effects (Kojda

et al., 1999). In addition, IL-6 has been implicated in

reperfusion injury, where its levels correlated with the extent

of left ventricular dysfunction and poor clinical outcome in

patients undergoing thrombolysis after myocardial infarc-

tion (Bennermo et al., 2004; Ikonomidis et al., 2005). An

effect on neutrophil infiltration may underlie the action of

IL-6 as mice deficient in IL-6 showed a reduced neutrophil

infiltration in intestine (Cuzzocrea et al., 1999). IL-6 has also

been shown to inhibit cardiac myocyte apoptosis (Dreyer

et al., 2000). However this antiapoptotic effect was not

confirmed by infusing IL-6 into rat heart but was seen upon

infusing an IL-6/soluble IL-6 receptor complex (Matsushita

et al., 2005). This complex stimulates several cell types not

stimulated by IL-6 alone, a process called trans-signalling

(Jones et al., 2005). Thus, based on currently available data,

the role of IL-6 in reperfusion injury has to remain open, but

several lines of evidence suggest that high IL-6 plasma levels

positively correlate with myocardial damage following

reperfusion. Contrary to all this is a proposal (Deten et al.,

2003) suggesting that proinflammatory cytokines produced

by the ischaemic myocytes may be involved in the initiation

of wound healing of the necrotic area.

In addition to IL-6, other inflammatory cytokines that

originate locally or from the systemic circulation, particu-

larly IL-8, that would also exacerbate cardiac injury by

enhancing leukocyte activation and accumulation. In fact,

postoperative levels of cardiac troponin-I have been shown

to correlate with IL-8 levels in patients undergoing CABG

surgery (Wan and Yim, 1999). Another cytokine, IL-18 has

been shown to activate proapoptotic signalling pathways

and induces endothelial cell death (Chandrasekar et al.,

2004). In addition to the effects of proinflammatory

cytokines, the heart is also influenced by anti-inflammatory

ones. For example IL-10 deficiency augments reperfusion

injury possibly by enhancing the infiltration of neutrophils

into the myocardium (Jones et al., 2001).

Cardioprotective strategies during open-heart
surgery

The anti-inflammatory approach

Several anti-inflammatory techniques and pharmacological

agents (largely aimed at coping with CPB) have been used in

recent years in cardiac surgery. These include leukocyte

filtration, corticosteroids, aprotinin, heparin and NO donor

compounds (Harig et al., 2001; Paparella et al., 2002;

Asimakopoulos and Gourlay, 2003; Goudeau et al., 2007).

Despite the relatively small number of studies investigating

the effects of reducing the inflammatory response on

myocardial reperfusion injury, majority of these studies have

shown evidence of myocardial protection. For example,

aprotinin (serine protease inhibitor) pretreatment has been

shown to reduce reperfusion injury in patients undergoing

cardiac surgery (CABG and valvular) on CPB (Goudeau et al.,

2007). The administration of sodium nitroprusside (NO

donor compound) at a non-vasodilatory dosage in patients

undergoing CABG on CPB reduces the myocardial inflam-

matory response and improves postoperative cardiac pump

function (Freyholdt et al., 2003). Reducing the inflammatory

response by leukocyte filtration has also been shown to

improve clinical and biochemical indices of myocardial

reperfusion injury after elective coronary revascularization

with CPB (Matheis et al., 2001; Palatianos et al., 2004).

Heparin-coated circuits were found to reduce inflammatory

responses to CPB and myocardial injury in patients under-

going heart or heart–lung transplantation (Wan et al., 1999),

and in patients undergoing elective CABG with CPB (Harig

et al., 1999). More recently, this technique was found to

reduce reperfusion injury in patients undergoing cardiac

surgery on CPB (Goudeau et al., 2007). Corticosteroids are

used during cardiac surgery to reduce CPB-induced systemic

inflammatory response (for example, Harig et al., 2001). in

children undergoing open-heart surgery on CPB and pre-

treated with dexamethasone, this anti-inflammatory re-

sponse has been associated with a reduction in cardiac

reperfusion injury (Checchia et al., 2003). Although major

reviews of clinical studies have indicated that such interven-

tion has little clinical benefit (Chaney, 2002; Asimakopoulos

and Gourlay, 2003), a recent randomized, multicentre trial

demonstrated that intravenous hydrocortisone significantly

reduces atrial fibrillation after cardiac surgery (Halonen et al.,

2007).

Whether the cardiac actions of these techniques and

pharmacological agents are directly due to a reduction in

inflammatory response remains to be determined, as this

issue is complicated by the fact that there are several

myocardial factors (changes) that could influence reperfu-

sion injury following on-pump cardiac surgery. For example

there are haemodynamic and osmotic changes that can

result in oedema in the heart (Simonardottir et al., 2006).

Off-pump coronary artery bypass surgery

It has been proposed for many years that excluding CBP

circuit and avoiding cardioplegic ischaemic arrest would

significantly reduce the stress response associated with open-

heart surgery. It is now widely accepted that beating heart

surgery performed without the aid of CPB significantly

attenuates cytokine and stress response (Ganapathy et al.,

2001; Raja, 2004; Yamaguchi et al., 2005; Lehmann et al.,

2006). The reduced inflammatory response has been asso-

ciated with improvement in organ function (Ascione et al.,

2000, 2001, 2002a, b; Caputo et al., 2002b) and postoperative

bleeding (Raja and Dreyfus, 2006). However, as the inflam-

matory response is only reduced and not prevented, it is

likely to continue to influence cardiac function and clinical

outcome (Quaniers et al., 2006). The main source is likely to

be surgical trauma, which will continue to trigger a stress

response mediated by the release of various cytokines and

stress hormones. Therefore, not employing CPB and cardio-

plegic arrest does not necessarily mean the absence of

inflammatory response.

Although the relationship between inflammation and

clinical outcome after off-pump coronary artery bypass

(OPCAB) has been addressed (Aljassim et al., 2006; Raja and

Dreyfus, 2006), little work has investigating the relationship
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between inflammatory response and cardiac function been

done. The use of a miniature bypass system (beating-heart

surgery) was not effective in improving haemodynamic

performance or reducing myocardial injury compared to

on-pump surgery (Rex et al., 2006). However, an early study

investigating the safety of OPCAB revascularization demon-

strated that this procedure also reduced myocardial injury

(Ascione et al., 1999).

A block of cardiac sympathetic activity is an interesting

route to reduce inflammation and myocardial injury during

OPCAB surgery (Ganapathy et al., 2001). In fact it has been

suggested that differences in the changes in plasma catecho-

lamines may explain why outcome during an inflammatory

response is different. Catecholamines increase intracellular

cyclic adenosine monophosphate (cAMP), which in rat

cardiac myocytes induces IL-6 production (Briest et al.,

2003). In humans, adrenaline infusions have been shown

to stimulate plasma IL-6 production both in healthy adult

volunteers and in HIV-infected patients (Sondergaard et al.,

2000; Keller et al., 2004).

Cardioplegic solutions

Major advances have been made in the preservation of

myocardial function during open-heart surgery since the

introduction of cardioplegic arrest (Melrose et al., 1955).

However, despite variation in the composition of cardioplegia,

myocardial protection has been based primarily on high-

potassium cold cardioplegic solution. Although cardioplegia

does confer protection, human hearts still suffer damage.

This is because under these conditions the heart is rendered

ischaemic and therefore susceptible to reperfusion injury.

More recent strategies for myocardial protection include one

or more combinations of warm- versus cold-blood cardio-

plegia, antegrade versus retrograde delivery, intermittent

versus continuous perfusion, and the inclusion of various

additives that aim at reducing Ca2þ overload, provide

energy substrates and remove harmful ROS (Demmy et al.,

1994; Buckberg, 1995; Caputo et al., 1998a, b, 2002a; Liebold

et al., 1999; Thourani et al., 1999; Matsuda et al., 2000; Imura

et al., 2001; Ascione et al., 2002; Lotto et al., 2003; Ji et al.,

2006; Kacila et al., 2006; Pouard et al., 2006; Susumu et al.,

2006).

Ischaemic conditioning (pre- and post-conditioning)

Hearts can be protected from reperfusion injury by subject-

ing them to brief ischaemia/reperfusion cycles before

(preconditioning) or after (post conditioning) starting the

prolonged period of ischaemia (see recent reviews, Bolli,

2007; Hausenloy and Yellon, 2007). The mechanisms

responsible for this protection are not fully understood,

but several processes have been implicated (Tsang et al.,

2004, 2005; Hausenloy et al., 2005; Vinten-Johansen et al.,

2005; Yellon and Hausenloy, 2005; Hausenloy and Yellon,

2006, 2007; Yellon and Opie, 2006; Bolli, 2007). The signal

transduction pathways underlying classical preconditioning

involve ‘triggers’ that activate ‘mediators’ (for example,

protein kinases), which in turn activate effectors. In addi-

tion, heart cells appear to have a memory so that several days

later the protection is still detectable. This delayed precon-

ditioning involves the stimulation of transcription of distal

mediators and effectors. More recently, the concept of

conditioning has been extended to post-conditioning, which

describes the cardioprotection resulting from brief ischae-

mia/reperfusion cycles during reperfusion (Hausenloy and

Yellon, 2007). Conditioning (pre and post) are potentially

useful in cardiological and cardiac surgical settings

(Hausenloy and Yellon, 2007). In addition to ischaemia-

related protective conditioning, other conditioning-type

interventions (for example, pharmacological, temperature)

before or after prolonged ischaemia have also been reported

(Bolli, 2007; Khaliulin et al., 2007).

Ischaemic conditioning has strong clinical implications

both in cardiology and during cardiac surgery. The human

myocardium can be preconditioned (reviewed in Yellon

and Downey, 2003) as shown in vitro (for example, muscle

preparations) and in vivo (for example, angioplasty and

surgical studies). There is also evidence that the human

myocardium can undergo remote and post-conditioning

(Hausenloy and Yellon, 2007). However, despite the potential

benefits of these phenomena and an array of conditioning

agents, clinical applications and use remains controversial.

Anaesthetics as cardioprotective agents

A large number of anaesthetic agents have been implicated

in protecting the heart against ischaemia and reperfusion

injury. Several mechanisms have been proposed to explain

their cardioprotective action, which include preconditioning,

antioxidant and anti-inflammatory activities (Kato and

Foex, 2002; Kevin et al., 2005; Riess et al., 2005).

Cardioprotection with inhalation anaesthetics

Volatile anaesthetics to various degrees have been shown to

decrease myocardial contractility and myocardial oxygen

demand, a property that has been suggested to explain

cardioprotection against ischaemia and reperfusion (Coetzee

et al., 1993; Mattheussen et al., 1993; Schlack et al., 1998).

However, these anaesthetics were also found to induce

cardioprotection via mechanisms that are similar to

pathways involved in ischaemic preconditioning (Cope

et al., 1997). It is, however, a combination of alteration in

contractility and metabolism, as well as a preconditioning-

like effect, that appears to be responsible for the protective

properties against ischaemia and reperfusion damage

(reviewed in De Hert, 2006).

Isoflurane. The use of isoflurane during cardiac surgery has

been complicated by a controversial issue associated with

isoflurane-induced coronary steal. This phenomenon de-

scribes a redistribution of collateral blood flow away from

ischaemic regions, thus suggesting that isofluarne would

exacerbate the ischaemic insult in an already compromised

myocardial region. Although isoflurane has been shown to

cause coronary steal in experimental models of chronic

coronary occlusion (for example, Buffington et al., 1987),

most clinical studies did not (reviewed in Agnew et al., 2002).
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Key factors responsible for this controversy have been poor

control of haemodynamics and lack of evidence supporting

steal-prone anatomy. For example, in patients undergoing

CABG, adequate control of haemodynamics was not asso-

ciated with isoflurane-induced coronary artery steal (Leung

et al., 1991, 1992).

The role of isoflurane in myocardial protection has been

extensively studied. Earlier studies have attributed its

protective action to improving metabolism possibly by

blocking L-type Ca2þ channels (Coetzee et al., 1993),

preserving energy-rich phosphates (Mattheussen et al.,

1993), vasodilation of coronary vessles (Crystal et al., 1996)

and to reduce expression of the adhesion molecules (Heindl

et al., 1999b). However, there were reports that isoflurane

offered no protection against reperfusion injury in vivo

(Preckel et al., 1998a).

In recent years there has been a shift in interpreting the

mechanisms underlying the cardioprotective action of

isoflurane and other halogenated anaesthetics as triggers of

a preconditioning-like phenomenon. This started from work

showing that isoflurane activates ATP-dependent potassium

channels (KATP) channels (Kersten et al., 1996) and its

cardioprotection appears to involve the opening of mito-

chondrial KATP channels and generation of ROS that are

upstream of protein kinase C activation (Shimizu et al., 2001;

Dworschak et al., 2004; Ludwig et al., 2004). Isoflurane

cardioprotection triggers partial mitochondrial uncoupling

and reduces mitochondrial Ca2þ uptake (Ljubkovic et al.,

2007). Interestingly, the pro-survival signalling pathways

seen during classical ischaemic preconditioning are also

involved in this cardioprotection (reviewed in Pratt et al.,

2006). Activation of these pathways and modulation of the

expression of pro- and antiapoptotic proteins may play a role

in isoflurane (and other volatile anaesthetics)-induced

myocardial protection (Raphael et al., 2006). The differences

between classical ischaemic preconditioning and isoflurane-

induced preconditioning-like cardioprotection are not well

understood. For example, the combination of ischaemic

preconditioning and isoflurane did not improve haemo-

dynamic recovery, but did increase preservation of ATP

(Boutros et al., 1997). Cardioprotection by isoflurane can

be augmented by adenosine and NO donor possibly

involving mitochondrial KATP channel (Wakeno-Takahashi

et al., 2004). Interestingly, isoflurane cardioprotection has an

additive protective effect when used with cardioplegia or

with Naþ /Ca2þ exchanger inhibition (Preckel et al., 1998b;

An et al., 2006). Cardioplegia protects by arresting the heart

and preserving metabolites, thus delaying Ca2þ overload,

which is essentially similar to what happens as a result of

inhibiting Naþ /Ca2þ exchanger.

In addition to its preconditioning-like effect, isoflurane

has been shown to produce a second window of precondi-

tioning in mice in vivo (Tsutsumi et al., 2006). This effect

could be mediated by cyclooxygenase-2 (Tanaka et al., 2004),

or through overexpression and activation of iNOS (Wakeno-

Takahashi et al., 2005). There are, however, reports that

isoflurane does not produce a second window of precondi-

tioning in dogs in vivo (Kehl et al., 2002). An interesting and

clinically relevant effect (for example, infarct-remodelled

myocardium) is the finding that isoflurane is cardioprotec-

tive when present during reperfusion (Chiari et al., 2005;

Tessier-Vetzel et al., 2006). The mediators involved in this

protection include NO, activation of phosphatidylinositol-3-

kinase signal transduction and phosphorylation of protein

kinase B/Akt (Feng et al., 2006; Tessier-Vetzel et al., 2006).

Finally, availability of gene chips has enabled researchers to

show that ischaemic preconditioning and isoflurane cardio-

protection appear to differentially modulate gene expression

in rat hearts suggesting trigger-dependent transcriptome

variability (Sergeev et al., 2004).

Sevoflurane. Although there are reports that sevoflurane

does not induce preconditioning-like cardioprotection

(Piriou et al., 2002), others have reported that it does and

the effect is mediated by mitochondrial KATP channel

opening (Hara et al., 2001; Riess et al., 2002). This type of

preconditioning occurs after long-term hypothermic

ischaemia (Chen et al., 2002), and is independent of the

cardioplegic solution used (Ebel et al., 2002). It has also been

suggested that this protection is triggered by ROS/nitrogen

species (Novalija et al., 2002), and like ischaemic precondi-

tioning, it reduces Ca2þ loading (An et al., 2001).

Myocardial protection by sevoflurane could also be related

to its anti-inflammatory effect. For example, pretreatment of

hearts with sevoflurane reduces intracoronary platelet adhe-

sion most likely via an endothelial mechanism (Heindl et al.,

1999a). During cardiac surgery, sevoflurane was found to

suppress the production of IL-6 and IL-8, but not IL-10 and

IL-1Ra, indicating that sevoflurane protects the heart by

modulating the levels of pro- and anti-inflammatory cyto-

kines (Kawamura et al., 2006). Furthermore, the addition of

sevoflurane to cardioplegia has been associated with an

inhibition of neutrophils activity after CPB (Nader et al.,

2006).

Desflurane. Desflurane does not induce coronary steal in

experimental models (Hartman et al., 1991; Warltier and

Pagel, 1992). However, desflurane, like other volatile anaes-

thetics, has been shown to be cardioprotective (Preckel et al.,

1998a, b). Furthermore, the onset of functional recovery

following ischaemia and reperfusion in isolated rat heart was

much earlier with desflurane than with other anaesthetics

(Schlack et al., 1998). There is also strong recent evidence

demonstrating that desflurane confers a preconditioning-

like cardioprotection (Toma et al., 2004; Tsai et al., 2004;

Smul et al., 2006). This protection appears to involve both

sarcolemmal and mitochondrial KATP channels (Toller et al.,

2000) and mediated by NO (Smul et al., 2006), but does not

involve tyrosine kinase activation (Ebel et al., 2004). Recently

it has been suggested that signal transduction pathways

associated with b1-adrenergic receptor mediate anaesthetic

preconditioning for desflurane and sevoflurane (Lange et al.,

2006). Such signalling involves an increase of intracellular

cyclic adenosine monophosphate, which is likely to improve

contractility and Ca2þ cycling. In addition to its precondi-

tioning effect, desflurane also has a post-conditioning-like

effect, as the drug is protective when administered before,

during or after ischaemia, or throughout the experiment

(Haelewyn et al., 2004).
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An interesting observation was made while investigating

whether desflurane can be used to augment cardioplegic

protection (Preckel et al., 1999). Addition of desflurane (or

sevoflurane) during the early reperfusion period confers

additional protection against reperfusion injury in isolated

rat heart.

The administration of desflurane to human volunteers can

lead to substantial activation of the neurohumoral axis

(sympathetic activation and hypertension), which can be

reduced by propofol induction (Lopatka et al., 1999).

However, in multicentre randomized controlled study in

which OPCAB patients received either desflurane or propofol

in addition to an opiate-based anaesthesia, desflurane

significantly reduced myocardial damage and improved

clinical outcome (Guarracino et al., 2006).

Other volatile anaesthetics. Several other volatile anaes-

thetics have been implicated in myocardial protection.

These include nitrous oxide (N2O), halothane and xenon.

However, these are hardly used in cardiac surgery and appear

to have diverse and different cardiac actions. N2O is without

preconditioning effect on the heart and it does not alter

isoflurane-induced preconditioning (Weber et al., 2005a).

Halothane is cardioprotective and this effect has been

initially attributed to its antiarrhythmic (depressant) effect

(Deutsch et al., 1990; Oguchi et al., 1995), possibly by

reducing Ca2þ loading (Drenger et al., 1994). In addition, it

has been shown to inhibit the production of hydroxyl

radicals (Glantz et al., 1997), which could in turn prevent

disruption in intracellular Ca2þ mobilization during reper-

fusion (re-oxygenation) (Siegmund et al., 1997). The rele-

vance of its post-ischaemic effect has been confirmed using

an in vivo model, which was independent of the haemody-

namic effect of halothane (Schlack et al., 1997). The link to

intracellular Ca2þ mobilization has been recently high-

lighted by data suggesting that at low ATP levels the

ryanodine receptor sensitivity increases in the presence of

halothane (Yang et al., 2005). Like other volatile anaes-

thetics, halothane has also been shown to induce precondi-

tioning (Piriou et al., 2002) and to reduce post-ischaemic

adhesion of neutrophils in the coronary system (Kowalski

et al., 1997).

The chemically inert and anaesthetic gas xenon induces

preconditioning of the heart possibly by eliciting partial

mitochondrial uncoupling and reducing mitochondrial

Ca2þ uptake (Weber et al., 2005b, 2006). In addition to its

preconditioning-like effect, xenon is protective when admi-

nistered during early reperfusion in the rabbit heart in vivo

(Preckel et al., 2000).

Cardioprotection with intravenous anaesthetics

Examples of injected drugs that are used during anaesthesia

are barbiturates, propofol, ketamine and etomidate, as well

as larger doses of opioids (for example, fentanyl) and

benzodiazepines. In contrast to inhalation anaesthetics,

some of theses anaesthtics (for example, pentobarbital,

ketamine–xylazine or propofol) are not as effective at

protecting the heart against reperfusion injury, and their

action is not related to ischaemic preconditioning.

Etomidate (carboxylated imidazole) is a popular choice for

the induction of anaesthesia in cardiac compromised patients,

as it does not alter cardiovascular activity (Bovill, 2006).

Ketamine. A number of earlier experimental studies have

indicated that ketamine is not cardioprotective, and there

has been suggestions that ketamine itself contributes to

generation of radicals (Reinke et al., 1998). Ketamine inhibits

the KATP channel activity in a concentration-dependent

manner in rat heart, thus raising the possibility that

ketamine may attenuate the cardioprotective effects of the

KATP channel during ischaemia and reperfusion (Ko et al.,

1997). In fact, ketamine has been shown to attenuate the

cardioprotective effects of ischaemic preconditioning in an

enantiomer-specific manner, with R(�), and not S(þ ), being

the isomer responsible for this blockade (Molojavyi et al.,

2001; Mullenheim et al., 2001a, b).

More recently, work on isolated human atrial myocardium

has shown that ketamine confers preconditioning-like

protection that is similar to inhalation anaesthetics (Hanouz

et al., 2005). Ketamine has an anti-inflammatory effect and

has been shown to reduce ROS generation by neutrophils

and to decrease endotoxin-stimulated IL-6 production in

human whole blood (Weigand et al., 2000). Although it

does not impair neutrophil function (Nishina et al., 1998),

ketamine reduces post-ischaemic adhesion of neutrophils in

the coronary system of isolated perfused guinea pig hearts at

clinically relevant concentrations (Szekely et al., 2000).

Propofol. Propofol is a general anaesthetic used widely for

induction and maintenance of anaesthesia during cardiac

surgery and in postoperative sedation (reviewed in Bryson

et al., 1995; Kato and Foex, 2002; Bovill, 2006). It has also

been shown to protect the heart against cardiac insults in

a variety of experimental models (Kokita and Hara, 1996;

Kokita et al., 1998; Javadov et al., 2000). These effects were

attributed to its ability to act as a free-radical scavenger

(Stratford and Murphy, 1998), enhancing tissue antioxidant

capacity (Xia et al., 2003a, b), and through inhibition of

plasma membrane calcium channels (Buljubasic et al., 1996;

Li et al., 1997). Some of these effects (for example,

antioxidant) could be responsible for its inhibitory action

of mitochondrial permeability transition pore opening in

the Langendorff perfused rat heart (Javadov et al., 2000), and

its antiapoptotic properties (Roy et al., 2006). Cardioprotec-

tion by propofol could also be due to its ability to increase

protein kinase C activity in cardiomyocytes (Wickley et al.,

2006).

Although there is extensive evidence that propofol

provides cardioprotection against ischaemia and reperfusion,

its benefits when used in models of cardiac surgery have not

been demonstrated (Coetzee, 1996; Thompson et al., 2002).

Reports of the benefits of its use in cardiac surgery are

conflicting (De Hert et al., 2002; Sayin et al., 2002). It has

been suggested that its use in cardiac surgery could be

beneficial when used after the onset of ischaemia (Kato

and Foex, 2002). More recently however, a pig model of

cardiopulmonary bypass and cardioplegic arrest demon-

strated the cardioprotective action of propofol when used
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at clinically relevant concentrations (Lim et al., 2005).

However, the clinical benefits appear to be more evident at

higher doses of propofol as shown by Ansley et al. (1999),

who demonstrated that propofol’s antioxidant capacity is

enhanced and maintained during CPB when using relatively

high dose of the drug. The group later demonstrated that

such a dose (plasma levels of approx 4.2 mg ml�1) used as

maintenance anaesthesia during CPB in patients undergoing

CABG surgery attenuated postoperative myocardial cellular

damage, improved cardiac pump function and clinical

outcome compared with isoflurane or small-dose propofol

anaesthesia (Xia et al., 2006).

Fentanyl. Fentanyl is one opioid that has been closely

linked to inflammatory mediators and myocardial protec-

tion. It reduces the CPB-induced inflammatory response

and ischaemic reperfusion injury during cardiac surgery

(Liu et al., 2005). Its analogues were shown to reduce the

inflammatory response during surgery (Elena et al., 2006)

and oppose the negative inotropic effect induced by

inflammatory mediators on rat ventricular myocytes (Duncan

et al., 2007). These effects are related to improvement in

intracellular Ca2þ mobilization and do not seem to be related

to adhesion of neutrophils in the coronary system (Szekely

et al., 2000).

Thiopental. It is a commonly used injected barbiturate

anaesthetic. Thiopental protects the myocardium during

hypoxia and low-flow ischaemia only when the pH is kept at

7.4 (Ruigrok et al., 1985). However, in isolated rat heart–lung

preparation, thiopental was not cardioprotective, and at

high doses it aggravated injury (Kashimoto et al., 1987).

Thiopental inhibits the inward and delayed rectifier Kþ

currents in myocytes and therefore increases the action

potential duration (Martynyuk et al., 1999). These changes

could increase Ca2þ loading and would explain the reported

deleterious effects. Paradoxically, thiopental has an anti-

inflammatory response, as it reduces post-ischaemic adhe-

sion of neutrophils in the coronary system of isolated

perfused guinea pig hearts (Szekely et al., 2000), and at

clinically relevant concentrations, it impairs neutrophil-

induced ROS production (Nishina et al., 1998).

Anaesthetics, the inflammatory response and cardioprotection

As already discussed, several anaesthetics appear to alter

the systemic inflammatory response. This is likely to be a

direct effect on the inflammatory mediators or indirectly

by reducing myocardial reperfusion injury and associated

inflammatory response or both. Unfortunately this issue is

likely to remain controversial for the time being, as clinical

studies investigating different anaesthetic regimen on

systemic inflammatory response and myocardial injury

during CPB cardiac surgery are few. In one study comparing

sevoflurane and propofol in patients undergoing CABG

surgery, Kawamura et al. (2006) showed that sevoflurane

was associated with less production of cytokines and reduced

myocardial injury. The beneficial effects of sevoflurane are

also seen when the drug is added to the cardioplegia, where

it decreases the inflammatory response and improves

myocardial function after CPB in CABG patients (Nader

et al., 2004, 2006). On the other hand, propofol controlled

infusion (compared with saline) immediately before aortic

cross-clamp release and during reperfusion in patients

undergoing CABG was found to reduce systemic inflamma-

tory response without attenuating myocardial injury

(Corcoran et al., 2006).

An earlier study investigating the effect of anaesthesia on

inflammatory response during CABG surgery has shown no

difference in cytokine production using high-dose fentanyl

or low-dose opioid anaesthesia (Brix-Christensen et al.,

1998). More recently, the administration of morphine, but

not fentanyl, as part of standardized opioid–isoflurane

anaesthetic technique suppressed the inflammatory re-

sponse to CABG surgery and CPB (Murphy et al., 2007)

The effects of volatile anaesthetics have also been

associated with preventing the neutrophil-induced coronary

endothelial dysfunction. This relationship has been demon-

strated in a series of experimental studies by Crystal and

co-workers (Hu et al., 2003, 2004, 2005a, b). More recently,

a clinical study on patients undergoing CABG surgery on CPB

has shown that the addition of sevofluarne to cardioplegia

reduces neutrophils activity (Nader et al., 2006). The finding

that desflurane induces greater systemic proinflammatory

response than sevoflurane during anaesthesia for ear surgery

(Koksal et al., 2005), suggests that the latter would be a better

choice in clinical settings like OPCAB surgery.

Anaesthetics and cardioprotection: clinical
implications

Experimental research described thus far supports the view

that most of the anaesthetics used during open- heart

surgery are cardioprotective against cardiac insults like

ischaemia and reperfusion. However, it is also evident that

the efficacy of these anaesthetics is different with some

providing significant protection. In contrast, little evidence

comes from clinical research, and the extensive experimental

research has not been translated to clinical settings. The

diversity of the proposed mechanisms for protection by

anaesthetics (for example, ischaemic preconditioning-like

effect, interference in the neutrophil/platelet–endothelium

interaction, blockade of Ca2þ overload and antioxidant

effect) may have contributed to the slow adoption/utiliza-

tion of certain anaesthetics as cardioprotective agents during

open-heart surgery. However, volatile anaesthetics are widely

selected in clinical practice for being cardioprotective.

A recent extensive systematic overview and meta-analysis

of randomized trials comparing volatile with non-volatile

anaesthesia in CABG surgery has shown that volatile

anaesthetics are associated with better myocardial protection

compared with intravenous anaesthetics (Symons and

Myles, 2006), as shown by improvement in cardiac index

and a reduced level in troponin I release. The anti-

inflammatory effect of volatile anaesthetics (for example,

sevoflurane) seen during CABG surgery is likely to be an

important cardioprotective characteristic and supports its

use (Kawamura et al., 2006). Sevoflurane when used to
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induce and maintain anaesthesia was associated with better

haemodynamic stability and relatively less cardiac injury

compared with propofol (De Hert et al., 2002; Samarkandi

and Mansour, 2004; Bein et al., 2005). Furthermore, using

sevoflurane in patients undergoing minimally invasive direct

CABG surgery conferred better cardiac protection than

propofol (Conzen et al., 2003; Bein et al., 2005). Even though

clinical research suggests that sevoflurane is cardioprotective

in patients with ischaemic disease, several factors (for

example, old age, diabetes and duration of myocardial

ischaemia) may limit the benefits under clinical conditions

(Riess et al., 2004) and therefore more clinical research is

needed before recommending it as an anaesthetic of choice.

An additional aspect that adds support to its use is the

finding that sevoflurane is not influenced by the type of

cardioplegia used (Ebel et al., 2002), and that patients

undergoing valve surgery had better cardioprotection when

sevoflurane was used (Xu et al., 1998; Van Der Linden et al.,

2003; Cromheecke et al., 2006).

Propofol protects the myocardium against ischaemia–

reperfusion injury, due to its antioxidant effect and inhibi-

tion of the mitochondrial permeability transition pore. A

recent review focusing on the use of anaesthesia during

surgery on a failing heart suggests that the most commonly

used intravenous anaesthesia is a combination of propofol

and an opioid (Bovill, 2006). Unlike propofol, opioids do

not cause myocardial depression and protect the heart by

preconditioning-like mechanism and therefore both agents

can have an additive effect.

Conclusions

Anti-inflammatory interventions during cardiac surgery are

likely to be incorporated into strategies aimed at reducing

myocardial injury. The experimental literature suggests that

most of the anaesthetic drugs used during open-heart

surgery are cardioprotective against ischaemia and reperfu-

sion injury. Although there has been significant progress in

selecting anaesthetic drugs that are also cardioprotective,

this issue remains controversial. The diversity of the

proposed mechanisms for protection by anaesthetics and

whether they have anti-inflammatory effects may have

contributed to this controversy. Clinical trials have suggested

that volatile anaesthetics in general and sevoflurane in

particular are good cardioprotective and anti-inflammatory

agents when used during open-heart surgery. Whether this is

relevant in terms of morbidity and mortality is unclear and

needs further investigation.
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