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Abstract. We have purified peroxisomal membranes 
from Saccharomyces cerevisiae after induction of 
peroxisomes in oleic acid-containing media. About 30 
distinct proteins could be discerned among the HPLC- 
and SDS-PAGE-separated proteins of the high 
salt-extracted peroxisomal membranes. The most 
abundant of these, Pmp27p, was purified and the cor- 
responding gene PMP27 was cloned and sequenced. 
Its primary structure is 32% identical to PMP31 and 
PMP32 of the yeast Candida biodinii (Moreno, M., 
R. Lark, K. L. Campbell, and M. J. Goodman. 1994. 
l, bast. 10:1447-1457). Immunoelectron microscopic lo- 
calization of Pmp27p showed labeling of the perox- 
isomal membrane, but also of matrix-less and matrix 
containing tubular membranes nearby. Electronmicro- 

scopical data suggest that some of these tubular exten- 
sions might interconnect peroxisomes to form a perox- 
isomal reticulum. Cells with a disrupted PMP27 gene 
(Apmp27) still grew well on glucose or ethanol, but 
they failed to grow on oleate although peroxisomes 
were still induced by transfer to oleate-containing me- 
dia. The induced peroxisomes of Apmp27 cells were 
fewer but considerably larger than those of wild-type 
cells, suggesting that Pmp27p may be involved in par- 
celing of peroxisomes into regular quanta. Apmp27 
cells cultured in oleate-containing media form multiple 
buds, of which virtually all are peroxisome deficient. 
The growth defect of &prop27 cells on oleic acid ap- 
pears to result from the inability to segregate the giant 
peroxisomes to daughter cells. 

NbLY a few integral proteins of the peroxisomal mem- 
ranes have been molecularly characterized in uni- 

and multicellular eukaryotes, using either genetic 
or reverse genetic methods. Pas3p from Saccharorayces 
cerevisiae, as well as PAF1 and PMP70 from mammalian 
cells, have been shown to be essential for peroxisome forma- 
tion (Kamijo et al., 1990, 1992; Hbhfeld et al., 1991, 
Tsukamoto et al., 1991; Shimozawa et al., 1992). A defect 
in the ALD protein causes X-linked adrenolenkodystrophy 
(Mosser et ai., 1993). Functions for mammalian PMP22 
(Kaldi et al., 1993) and PMP31, PMP32, and PMP47 from 
Candida biodinii (McCammon et al., 1990a: Moreno et al., 
1994) have not yet been described. Hence, the peroxisomal 
membrane remains among the least characterized of the cel- 
lular membranes. A further challenge arises from the hy- 
pothesis by Lazarow et al. (1980) that peroxisomes of mam- 
mals are interconnected and form a peroxisomal reticulum. 
Lazarow proposed that this peroxisomal reticulum consists 
of at least two distinct domains: the classical bulbous peroxi- 
somes and tubular extensions that interconnect the bulbous 
regions. Morphological evidence consistent with this pro- 
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posal has been presented (Gorgas, 1984; Lazarow and 
Fuyiki, 1985; Yamamoto and Fahimi, 1987; I.azarow, 1988; 
Baumgart et al., 1989; Leurs et al., 1993). At present, it is 
not known whether these morphologically distinct mem- 
brane domains are also biochemically and functionally dis- 
tinct. 

In yeasts grown under normal laboratory conditions, 
peroxisomes are among the least conspicuous organelles, 
consisting only of a few small and irregularly shaped entities 
with no evidence for a peroxisomal reticulum (Avers and 
Federman, 1968; Osumi et al., 1974; Veenhuis et al., 1979, 
1987; Veenhuis and Goodman, 1990). Not surprisingly, 
these structures have resisted purification by conventional 
cell fractionation methods since their size and density are 
indistinguishable from other membrane-derived vesicles 
found in a postnuclear supernatant of a cell homogenate 
(Szabo and Avers, 1969). However, the situation changes 
dramatically after induction of peroxisome proliferation as 
a result of growing certain yeast species on certain carbon 
sources (Osumi et al., 1974; van Dijken et al., 1975; Rog- 
genkamp et al., 1975; Fukui et al., 1975; Veenhuis and 
Harder, 1991). This peroxisome proliferation is character- 
ized by an increase in the size and number of the organelles. 
The large size and dense matrix of induced peroxisomes (of- 
ten containing paracrystalline bodies) has made it possible 
to separate them efficiently from other organelles of a post- 
nuclear supernatant (Roggenkamp et al., 1975; Kamiryo et 
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al., 1982; Douma et al., 1985; McCammon et al., 1990b; 
Gould et al., 1992). This, in turn, has allowed molecular 
characterization of a few peroxisomal membrane proteins 
from C. biodinii by reverse genetic methods (McCammon et 
al., 1990a; Moreno et al., 1994). 

In the yeast S. cerevisiae, proliferation of peroxisomes can 
be induced by growth in oleic acid-containing media (Veen- 
huis et al., 1987). Failure to grow on oleic acid has previ- 
ously been used to characterize a number of genes, termed 
PAS (peroxisomal assembly) genes, whose products are in- 
volved in aspects of peroxisome biogenesis (Erdmann et al., 
1991; Hthfeld et al., 1991; Wiebel and Kunau, 1992; van der 
Leij et al., 1993). Only one of these, Pas3p, is an integral 
membrane protein. While the function of Pas3p is still un- 
known, it remains the only integral peroxisomal membrane 
protein of S. cerevisiae that has been molecularly character- 
ized. Moreover, although o~-Pas3p antibodies decorate Pas3p 
on immunoblots, they failed to give detectable signals by im- 
munofluorescence or immunoelectron microscopy (Hthfeld 
et al., 1991). Hence, an ultrastructural characterization of 
the membranes delimiting the peroxisomal compartment of 
S. cerevisiae, using antibodies as probes, has not yet been ac- 
complished. 

In this paper, we report the purification and characteriza- 
tion of peroxisomes from oleate-induced S. cerevisiae. The 
gene coding for one of the most abundant peroxisomal mem- 
brane proteins, Pmp27p (peroxisomal membrane protein of 
27 kD), was cloned and sequenced. Immunolocaiization of 
Pmp27p allowed us to detect membranes that extended from 
bulbous peroxisomes and that are likely to represent tubu- 
lar peroxisomal appendices. Deletion of the PMP27 gene 
yielded cells that grew normally on glucose or ethanol, but 
that were growth impaired on oleate. Unlike wild-type ceils, 
where oleate induction typically yields 20-30 small peroxi- 
somes, oleate-induced Apmp27 cells showed only a few, but 
very large peroxisomes. Moreover, Apmp27grown on oleate 
showed multiple buds, most of which were peroxisome 
deficient. These data suggest that Pmp27p is essential for the 
maintenance of peroxisome morphology and inheritance in 
oleic acid-induced S. cerevisiae. 

Materials and Methods 

Strains, Growth Conditions, and General Methods 

The yeast strains used in this study were S. cerevisiae wild-types UTL-7A 
(MATa, ura3-52, trpl/his3-11,15, 1eu2-3,112), SKQ2N (MATalcx, adel/+, 
+/ade2, +/hisl) and W303 (MA~hx, ade2-1/ade2q, ura3-1/ura3-1, his3- 
ll,151his3-11,15, trpl-lltrpl-1, leu2-3,11211eu2-3,112, canl-lOOIcanl-lO0). 
Yeast complete (YPD) and minimal (SD) media have been described previ- 
ously (Erdmann et al., 1989). Oleic acid medium (YNO) contained 0.1% 
oleic acid, 0.02% Tween 40, 0.1% yeast extract, and 0.67% yeast nitrogen 
base. For oleic acid induction, ceils were precultured in SD containing 
0.3 % dextrose to midlog phase, shifted to YNO medium, and incubated for 
9-12 h. When necessary, auxotrophic requirements were added according 
to Ausubel et al. (1992). 

Whole cell yeast extracts were prepared from 30 nag of cells according 
to Yaffee and Schatz 0984). 

Common recombinant DNA techniques, including enzymatic modifica- 
tion of DNA, Southern blotting, and double-stranded sequencing of plasmid 
DNA, were performed essentially as described by Ausubel et al. (1992). 
Yeast transformations were done according to Bruschi et ai. (1987). 

Isolation of Peroxisomes 

Ceils were collected by centrifugation (5 g wet wt/L5 liter medium), washed 

twice with H20, and incubated for 10 rain in 100 mM Tris/HC1, pH 9.4, 
10 mM DTT at 30°C. Cells were washed with 1.2 M sorbitol, and cell wall 
digestion was performed with 0.75 mi 1.2 M sorbitol, 0.2 ml Glusulase (Du 
Pont Pharmaceuticals, Inc., Wilmington, DE), 2 mi 0.5 mg/ml Zymolyase 
100T (ICN, Costa Mesa, CA) in 1.2 M sorbitol, 0.075 ml 10 mg/ml 
Mutanase (Novo Nordisk, Danbury, CT) in 1.2 M sorbitol/g of cells for 
1-2 h at 30°C with occasional shaking. Spheroplnsting was monitored 
microscopically. Cells were washed twice with 1.2M sorbitol, loaded on 
a 10-mi cushion of 1.1 M sorbitol, 7.5% Ficol1400, and centrifuged for 20 
rain at 5,000 g (HB4 rotor; Sorvall Instruments, Wilmington, DE). The cell 
pellet was resuspended in buffer A (5 mM MES, pH 6.0, 0.6 M sorbitol, 
0.5 mM EDTA, 1 mM KC1, 1 mM PMSF, 1.25 ~g/ml pepstatin, 1.25 ~g/mi 
antipaln, 1.25 pg/ml chymostatin, and 1.25 ~g/ml leupeptin), and was 
homogenized at 4°C with a potter homogenizer (1,500 rpm). Unbroken cells 
were removed by 10 rain centrifugation at 1,600 g (sorvall H-1000B, 3,000 
rpm). For high yield peroxisome preparations, SKQ2N homogenates from 
60 g cells were sedimented for 30 min at 25,000 g (sorvall HB4, 13,000 
rpm) onto 5-ml cushions of 2 M sucrose in buffer B (5 mM MES, pH 6.0, 
1 mM EDTA, 1 mM KCI, and 0.1% ethanol). Organelle pellets were 
resuspended in 40 ml buffer B and loaded onto eight continuous 24-mi 
36-68% (wt/vol) sucrose gradients above cushions of 1.5 ml Purdenz (Ac- 
curate Chemical & Scientific Corp., Westbury, NY) and 1.5 mi 76.5% 
(wt/vol) sucrose. Centrifugation was performed for 2 h at 24,000 rpm 
(48,000 g) in a Sorvall TV850 rotor. Fractions (1.8 ml) were collected from 
the bottom, and aliquots prepared for SDS-PAGE. As judged by SDS- 
PAGE, immunoblotting, and cataiase activity measurements, the peroxi- 
somai peak fractions (fractions 4-6) were pooled and diluted fivefold by 
dropwise addition of 0.5 M sorbitol in buffer B. Organelles were sedimented 
onto a cushion of 2 M sucrose in buffer B at 2%000 g for 40 rain (Sorvall 
HB4, 13,000 rpm). The organellar pellets were carefully resuspended in 20 
ml 0.5 M sorbitol in buffer A, and they were loaded onto continuous 24 
ml 20-40% (wt/vol) Accudenz gradients (formerly Nycodenz', Accurate 
Chemical & Scientific Corp.) containing an inverse 4.25-8.5 % (wt/vol) su- 
crose gradient above cusions of 1.5 mi Purdenz and 1.5 ml 45% (wt/vol) 
Accudenz, 4.25% sucrose. Gradient centrifugation was performed as de- 
scribed above. 1.8-ml fractions were collected from the bottom, and aliquots 
were prepared for SDS-PAGE. As judged by SDS-PAGE and immunoblot- 
ting the peroxisomal peak fractions (fractions 5 and 6) were pooled, diluted 
fivefold with 0.SM sorbitol in buffer B, and centrifuged (sorvail SAt00, 
13,500 rpm, 26,000 g, 40 rain). Sedimented peroxisomes were processed 
for electron microscopy and membrane preparation. 

For the subcelhilar localization of Pas3p at different timepoints of induc- 
tion (see Fig. 2), UTL-7A homogenates (each 5 ml) were loaded onto con- 
tinuous 25-ml 15-35% (wt/vol) Accudenz gradients with inverse 4.25- 
8.5% (wt/vol) sucrose gradients and cushions of 2 ml Purdenz and 2 ml 
45% (wt/voD Accudenz, 8.5% (wt/vol) sucrose. Gradients were in buffer 
B. Gradient centrifugation was performed as described above. The Purdenz 
was discarded, and 1.2-mi fractions were collected from the bottom. Taking 
the sucrose concentration into account, the density of the fractions was de- 
termined. 150 ~1 of each fraction was diluted in 1.35 ml 11.2% TCA, pre- 
cipitated for 2 h on ice, and prepared for SDS-PAGE. 

Successive Extraction of  Peroxisomes 

Peroxisome pellets (30 mg protein) were resuspended in 10 mM Tris/HCl 
pH 8.0, 1 mM PMSE pooled, and incubated for 2 h on ice. The suspension 
was centrifuged for 10 rain in a TLA 100.2 rotor (TLI00; Beckman Instru- 
ments, Inc., FuUerton, CA) at 100,000 rpm (356,000 gay). The supernatant 
was saved, the pellet was resuspended in 0.5 ml 10 mM Tris/HCl, pH 8.0, 
1 mM PMSF, and incubated on ice for 1 h. The suspension was loaded on 
a 0.5 nd cushion of 10 mM Tris/HCl, pH 8.0, I miVl PMSE 250 mM sucrose 
and centrifuged as above. The supernatant was saved, the pellet was 
resuspended in 1 mi 10 mM Tris/HCl, pH 8.0, 0.5 M KC! incubated on ice 
for 30 min, and centrifuged as above. The supernatant was saved, the pellet 
was resuspended in 0.5 ml 10 mM Tris/HCl, pH 8.0, 0.5 M KCI, and in- 
cubated on ice for 30 rain. 25 ~l of the solution were sedimented for 60 
min in a Beckman TLA-45 rotor at 109,000 g (45,000 rpm) and the mem- 
brane pellet was processed for electron microscopy. The remaining 475 ~1 
were loaded on a cushion of 0.5 mi 10 mM Tris/HCl, pH 8.0, 250 mM su- 
crose, and centrifuged in the TLA 100.2 rotor as above. The resulting pellet 
was resuspended in 0.5 mi 0.1 M sodium carbonate (Fuyiki et al., 1982) 
and incubated for 30 rain on ice, loaded on a 0.5-ml cushion of 0.1 M sodium 
carbonate, 250 mM sucrose, and centrifuged as above. All corresponding 
supernatants were pooled and, together with the final membrane pellet, 
processed for SDS-PAGE and immunoblotting. 
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Purification and Amino Acid Sequencing of Pmp27p 
High salt-extracted peroxisomal membranes were prepared from oleic 
acid-induced SKQ2N cells. Further separation of the peroxisomal mem- 
brane proteins was achieved by reverse-phase HPLC. The peroxisomal 
membranes ("~1 nag protein) were solubilized in 4% SDS, 10 mM Tris/HCl, 
pH 7.4, diluted fivefold in 200 mM Tris/HCl, pH 7.4, 20 mM DTT, and 
heated for 10 rain at 60°C. Insoluble debris was removed by centrifugation 
in a microfuge for 10 rain, and the soluble fraction was loaded onto a Aqua- 
pore butyl (C4) column (100 x 10 mm; Brownlee Labs, Applied Bio- 
systems, Inc., Foster City, CA) equilibrated with 60% formic acid. After 
a 5-min linear increase to 9.9% acetonitrile in 60% formic acid, the column 
was eluted with a linear gradient of 32 ml 9.9%-33.0% acetonitrile in 60% 
formic acid, and 0.4-ml fractions were collected. Eluted fractions were 
dried in a Speed Vac concentrator (Savant Instruments Inc., Hicksville, 
NY), and pellets were solubilized in SDS sample buffer and analyzed by 
SDS-PAGE. 

For sequencing of Prnp27p, the SDS samples of HPLC fractions contain- 
ing this protein (fractions 52-57) were pooled and separated on a 12 % poly- 
acrylamide gel. Polypeptides were electrophoretically transferred on a poly- 
vinyldiene difluoride membrane and visualized with 0.1% amidoblack in 
10% acetic acid. Pmp27p was excised and subjected to NH2-terminal se- 
quence analysis on a gas phase sequenator (Applied Biosystems). 

Isolation and Sequencing of PMP27 
A PMP27-specific probe was generated by the PCR. According to the ob- 
tained NH2-terminal sequence of Pmp27p, degenerate sense [5ATGGAT- 
CCGA(CT)ACITT(AG)GT(AC-CT)TA(CT)CA(CT)CC3'] and antisense 
[5CKAGAATTC (CT)AAIAC (CT)TT(CT)TC (CT)CT(AGCT)CC3'] oligo- 
nucleotide primers were synthesized, and the corresponding genomic re- 
gion of the PMP27 gene was amplified by the polymerase chain reaction 
with yeast genomic DNA (100/xg; Promega Corp., Madison, WI) as tem- 
plate. The amplification product of the expected size was isolated and sub- 
cloned into pBluescript KS(+) (Stratagene, La Jolla, CA), resulting in 
pKS27-1. The authenticity of the insert was confirmed by sequencing. The 
[32p]dATP-labeled 90-bp insert was used to screen a genomic library (Rose 
et al., 1987), as well as a subgenomic library from S. cerevisiae. FOr the 
construction of the subgenomic library, S. cerevisiae genomic DNA was 
digested with EcoRI, and fragments of 3-4 kb were isolated and subcloned 
into pBluescript SK(+) (Stratagene), yielding ,~50,000 independent clones. 
The screenings were performed in aequous solution according to Ausubel 
et al. (1992). Plasmid DNAs from positive clones were isolated, and the 
presence and location of PMP27were confirmed by restriction analysis and 
Southern blotting (Ausubei et al., 1992). Plasmid p27-1, containing a 3.8-kb 
EcoRI fragment, was isolated from the subgenomic library. A 2.2-kb 
ClaI/SpeI fragment of p27-1, which correspond to the entire PMP27 gene 
plus 5' and 3' noncoding regions, was subcloned into pBluescript SK+, 
resulting in p27-10. DNA sequence analysis was performed by using the 
DNAstar software programs (DNAstar, Madison, WI). For complemeuta- 
tion studies, the 2.2-kb insert of p27-10 was subcloned into the yeast CEN- 
plasmid pCS20 (Erdmann, 1994), resulting in pCSp27. 

Epitope Tagging of Pmp27p 
For immunolocalization studies on Pmp27p, an epitope tag encoding 10 
amino acid residues from the influenza virus hemagglutinin antigen (HA) t 
(Wilson et al., 1984; Field et al., 1988) plus two flanking glycines as a 
spacer were inserted at the COOH terminus of the protein. For the insertion 
of the epitope tag into Pmp27p, a BglH site was introduced in front of the 
stopcodon of the PMP27gene by the polymerase chain reaction. In parallel, 
a BamHI site was introduced behind the stop codon to facilitate further sub- 
clonings. The two complementary oligonucleotides, yHA-1 and yHA-2 
(Wozniak et al., 1994), with the following sequence 

5' gat  c t t  gg t  tac  cca tac  sac g tc  tea  ga t  tac  gc~ age SS t S' yaA-1 
3' aa  cca a t g  gg t  a t g  c t g  cag ggt  c ta  a t s  cga t c s  cca g 5' yHA-2 

G V P Y D V P O Y A S G amino acid 
residues 

were annealed and inserted into the BglII site. Clones containing the se- 

1. Abbreviations used in this paper: HA, hemagglutinin antigen; PMP, 
peroxisomal membrane protein. 

quence in the proper orientation were identified by DNA sequencing. For 
expression in yeast, the fragment encoding the tagged Pmp27p was sub- 
cloned in front of the CYC1 terminator of the yeast CEN plasmid pCS20 
(Erdmann, 1994), resulting in pCSp27TAG. Transformation of Apmp27 
mutant cells with either pCSp27 or pCSp27TAG resulted in a functional 
complementation of the mutant phenotype. The corresponding transfor- 
mants were named Apmp27 [Pmp27p] or [Pmp27p-HA], respectively. 

Disruption of the PMP27 Gene 
Disruption of the PMP27gene was performed by integrative transformation 
using the procedure of Rothstein (1991). In the construct used for the gene 
replacement, the 537-bp XbaI/PstI fragment of p27-10, encoding amino 
acids 19-198 of Pmp27p, was replaced by the LEU2 containing 1.8 kb 
XbaI/PstI fragment of pJJ282 (Jones and Parkash, 1990). In the construct 
for integration, the LEU2 gene was flanked by 710 bp oftbe 5' side and by 
973 bp of the 3' side from the PMP27genomic locus. The linearized frag- 
ment was transformed into the S. cerevisiae diploid strain W303, and Leu + 
transformants were isolated. Heterozygous diploids carrying the integrated 
pmp27::LEU2 disrupted gene and the wild-type PMP27 were identified by 
Southern blotting. Blots were probed with the 90 bp 32P-labeled PCR prod- 
uct described above under conditions described for the library screenings. 
Cells were sporulated, and tetrad analysis was performed. The expected 2:2 
segregation for the Leu + marker was observed, and spores were tested for 
their ability to grow on oleic acid medium. One of the spores that contained 
theprap27::LEU2 disruption gene was designated Apmp27, and it was used 
for further studies. 

lmmunofluorescence Microscopy 
Immunofluorescence microscopy was performed essentially according to 
Rout and Kilmartin (1990) with modifications described by Erdmann 
(1994). When the maintenance of cell buds was desired, cells were washed 
extensively and fixed with 3.7% formaldehyde for 10 rain at 200C before 
cell wall digestion. Rabbit antiserum against the yeast thiolase (Erdmaan 
and Kunau, 1994; dilution = 1:3000), monoclonal 12CA5 antiserum 
against the HA-tag (BAbCO, Richmond, CA; dilution = 1:20), and 6-1zg/ml 
solutions of Texas red-conjugated donkey anti-rabbit IgG (ICN) or FITC- 
conjugated donkey anti-mouse IgG (ICN) were used for the detection. 

Electron Microscopy 
For the morphology of peroxisomes and high salt-extracted peroxisomai 
membranes, pellets were fixed in 2.5 % glutaraldehyde in 0.1 M cacodylate, 
postfixed with 1% osmium tetroxide, and stained with uranyl actetate (Far- 
quhar and Palade, 1965). The pellets were dehydrated with ethanol, treated 
with propylene oxide, and embedded in Epon 812. Silver sections were 
stained with uranyl acetate and lead citrate (Reynolds, 1963). 

For cryoimmunogold labeling of whole cells, cells were fixed in 3% 
paraformaldehyde/0.5% glutaraldehyde in 0.1 M cacodylate, pH 7.4. The 
cell wall of fixed cells was removed by incubation with 0.5 mg/ml zymolyase 
20T (ICN) in 1.2 M sorbitol, 0.1 M phosphate-citrate, pH 7.0. Pellets were 
washed with 0.6 M sorbitol in the same buffer, embedded in 10% gelatin, 
and refixed as above. Pellets were infused with 2.3 M sucrose in PBS, and 
samples were frozen in liquid nitrogen until use (Tokuyasu, 1973). Ultrathin 
sections were made with glass knives in a Reichert-Jung FC-4E cryo- 
ultramicrotome. The sections were collected on Formvar-carbon coated 
nickel grids, treated with 1% BSA in PBS, and incubate with rabbit antithio- 
lase (dilution = 1:5,000) or monoclonal 12CA5 antiserum against the HA- 
tag (dilution = 1:10). After buffer washes, the grids were incubated with 
goat anti-rabbit or anti-mouse IgG-gold (5 or 10 nm; Amersham Life 
Science, Arlington Heights, IL). The grids were processed and stained ac- 
cording to Grifliths et al. (1983). 

For the immunolabeling of purified peroxisomes (see Fig. 11) and high 
salt-extracted peroxisomal membranes (see Fig. 3), the organelle or mem- 
brane pellets were fixed as described above, dehydrated in ethanol, and em- 
bedded in Lowicryl. Pale gold sections were collected on Formvar-carbon 
nickel grids. The sections were blocked with PBS containing 1% BSA and 
incubated with rabbit anti-Poxlp, anti-Fox3p (dilution = 1:5,000), or mono- 
clonal 12CA5 antiserum against the HA-tag (dilution = 1:5). Characteriza- 
tion of the anti-Poxlp antibodies will be published elsewhere (Will G., and 
W. H. Kunau, personal communication). After washings, the grids were in- 
cubated with goat anti-rabbit or anti-mouse IgG-10 um gold (Amersham) 
and stained with uranyl acetate. 

Sections were viewed in an electron mnicroscope (100 CX; JEOL U.S.A. 
Inc., Peabody, MA) operated at 80 kV. 
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Figure 1. Tune course of induction ofa pemxisomal membrane pro- 
tein (Pas3p) and a peroxisomal matrix protein (Fox3p). Ceils were 
shifted to oleic acid-containing medium and were cultured for the 
indicated time points. (.4) Whole-cell extracts were prepared for 
SDS-PAGE and Pas3p, Fox3p, and Kar2p (a marker for the en- 
doplasmic reticulum; Rose et al., 1989) were detected by immtmo- 
blot analysis. The amounts analyzed were 1% of the homogenates 
from 30 mg of cells. (B) Relative concentrations of the proteins as 
determined by laser densitometry of the immunoblot data. The con- 
centration at 24 h postinduetion was set at 100%. 

Immunoblots 
Western blot analysis was performed according to standard protocols (Tow- 
bin et al., 1979) using anti-rabbit or anti-mouse IgG-coupled HRP as sec- 
ond antibody (Amersham). Protein-antibody complexes were visualized by 
treamtent with HRP chemoluminescence developing reagents (ECL system; 
Amersham). Western blots were quantitated by laser densitometry. Poly- 
clonal rabbit antibodies against Fox3p (Erdmann and Kunau, 1994), Kar2p 
(Rose et al., 1989), and p32 (Pain and Blobel, 1990) were used at dilutions 
of 1:50,000. Pas3p was detected with a nondiluted affinity-purified rabbit 
antiserum against the protein (H6hfeld et al., 1991). HA-tagged Pmp27p 

was detected with monoclonal 12CA5 antiserum against the HA-'l~ag 
(BAbCO; dilution -- 1:3,000). 

Analytical Procedures 

Catalase (EC 1.11.1.6) was assayed according to Moreno de al Garza et al. 
(1985). Protein was measured by laser densitometry of proteins separated 
by SDS-PAGE and stained with Coomassie blue, as well as by the method 
of Bradford (1976) with bovine serum albumin as standard. 

Results 

Oleate Induction of Peroxisomal Proteins 

S. cerevisiae cells were shifted from growth in glucose- 
containing media to growth in oleate-containing media. At 
various time points, cell homogenates were prepared, and 
the proteins were separated by SDS-PAGE, transferred to 
nitrocellulose, and probed with antibodies against either 
Pas3p (a peroxisomal membrane protein), Fox3p (a peroxi- 
somal matrix protein), or Kar2p (a matrix protein of the en- 
doplasmic reticulum) (Fig. 1). Even before shift to oleate- 
containing media, cells contained readily detectable levels 
of Pas3p (H6hfeld et al., 1991; Fig. 1, lane I in this manu- 
script), whereas Fox3p was not detectable (Fig. 1, lane 1 ). 
During a 24-h induction period, Pas3p increased about four 
to fivefold, whereas Fox3p increased from nondetectable to 
clearly detectable levels (Fig. 1). The levels of Kar2p, serv- 
ing as a control, remained essentially unchanged during the 
24-h induction period. 

Peroxisome Induction Causes Shift of Pas3p from 
Light to Heavy Membranes 

As Pas3p could be used as a peroxisomal membrane marker 
that is detectable in noninduced cells, it became possible to 
assess physical characteristics of the peroxisomes before and 
after various times of induction. This was done by grad- 
ient centrifugation of postnuclear supernatants of cell ho- 
mogenates. We found that before induction, most of the 
Pas3p-reactive membranes banded at a density of 1.15 g/ml 
(Fig. 2, f rac t ion/ / ) .  At the 3-h point, the bulk of Pas3p- 
reactive membranes shifted to a broad band of higher density 
between 1.16 and 1.20 g/ml. (Fig. 2). This bulk shift to 
higher density continued at the 6-h point, and it was com- 
pleted at the 12-h point when the bulk of the Pas3p-reactive 
membrane equilibrated at 1.21 g/ml (Fig. 2, fraction 3). 
However, a fraction of the Pas3p- reactive membrane re- 
mained at 1.15 g/ml and at the broad region between 1.15 and 
1.21 g/ml (this was clearly evident after overexposure of the 

~gure 2. Isopycnic gradient 
centrifugafion analysis of Pas3p 
reactive membranes of cells 
shifted to oleate containing 
media and cultured for the in- 
dicated times. Cell homoge- 
hates were fraefionated on con- 
tinuous 15-35% Nycodenz 
gradients (see Materials and 
Methods), and gradient frac- 
tions were analyzed by immu- 
noblots with ,Pas3p. Fraction 

numbers are indicated and each lane corresponded to 1.25 % of the fraction volume. Peroxisomes from noninduced cells peaked at a density 
of 1.15 g/cm 3 (fraction 11), but at later stages of induction, peroxisomes were mainly obtained at 1.21 g/cm 3 (fraction 3). 
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Figure 3. Electron microscopy of isolated peroxisomes before (A) and after (B) extraction with high salt. (A) The ultrastructural appearance 
of purified peroxisomes from S. cerevisiae that had been induced for 9 h on oleic acid medium is characterized by the presence of finger-like 
membrane extensions (black arrowheads). Some of the peroxisomes appear to be broken (asterisks). Few mitochondria (m) were found 
in the preparation. A higher magnification of a peroxisome is shown in the inset, showing the continuity of the peroxisomal membrane 
between the bulbous peroxisome and its extended domain. Bars, 1 #m and 0.1 #m (inset). (B) Ultrastructural appearance of acyl-CoA 
oxidase crystals in"high salt'--extracted peroxisomal membranes (see Materials and Methods). The inset shows the localization of acyl-CoA 
oxidase within the crystals by immunoelectron microscopy. Sections were probed with a polyclonal antibody against the acyl-CoA oxidase 
from S. cerevisiae and goat anti-rabbit antibodies coupled to 10 nm gold. Bars, 0.5 #m. 
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blot in Fig. 2 (data not shown). Thus, in noninduced cells, 
the bulk of the Pas3p-reactive peroxisomes consisted of light 
membranes (comparable to smooth endoplasmic reticulum 
derived membranes). 

Purification of Peroxisomes 

A 9-h point of induction was chosen for the isolation of 
peroxisomes since this was about the earliest time point at 
which the bulk of the Pas3p-reactive membranes had shifted 
to the heavy density of 1.21 g/ml (Fig. 2). Only these dense 
membranes can be expected to be readily separable from mi- 
tochondria and ER membranes. 

Using two consecutive gradient centrifugation procedures 
(see Materials and Methods), we obtained highly purified 
peroxisomes (Fig. 3 A). Much of the peroxisomal matrix was 
lost since most peroxisomes appeared empty. By electron 
microscopy, some peroxisomes appear broken and unsealed 
(Fig. 3 A); however, two ultrastructural features stand out. 
First, there is the presence of a dense cortical layer of mate- 
rial apposed to the lumenal side of the peroxisomal mem- 
brane (Fig. 3 A). This cortical layer may represent some or- 
ganization of the peripheral matrix with respect to the 
peroxisomal membrane, and it could be the principal reason 
for the high density of the isolated peroxisomes in spite of 
the apparent loss of a fraction of matrix proteins. Second, 
finger-like membrane extensions and small vesicles were of- 
ten associated with the peroxisomal membrane (Fig. 3 A). 
In favorable sections, the attached small vesicle membrane 
is continuous with the peroxisomal membrane (Fig. 3 A, in- 
set). Moreover, the membrane of the attached vesicles does 
not contain the dense cortical layer that is characteristically 
apposed only to the bulbous peroxisomes. We believe that 
these smooth surfaced vesicles are remnants of tubular ex- 
tensions of the peroxisomal membrane that were not sheared 
off during the homogenization and gradient centrifugation 
procedures and that, therefore, copurified with the bulbous 
peroxisomes. 

Extraction of Purified Peroxisomes; Subfractionation 
of Integral Membrane Proteins 

The purified peroxisomes were consecutively extracted at 
low salt, high salt, and at pH 11.0 (see Materials and 
Methods). The proteins of the starting material, the various 
extracts, and the remaining membranes were separated by 
SDS-PAGE, and they were visualized by Coomassie blue 
staining (Fig. 4 A). Most of the major proteins of the peroxi- 
somal membranes were extracted, some at low salt and 
others at high salt (Fig. 4 A). These proteins are likely the 
components of the dense cortical layer aassociated with the 
peroxisomal membrane (see Fig. 3). Immunoblot analysis 
(Fig. 4 B) showed that Fox3p was among the extracted ma- 
trix proteins (Fig. 4 B). However, one of the major peroxi- 
somal proteins, identified as acyl-CoA oxidase (Poxlp, Dmo- 
chowska et al., 1990) by peptide sequencing (data not 
shown), was only partially extracted by high salt, most likely 
as a result of extraction-induced formation of paracrystals 
(Fig. 3 B). As expected, the integral membrane protein 
Pas3p remained associated with the membrane, even after 
alkali extraction (Fig. 4 B). 

Electron microscopic analysis of the high salt extracted 
membranes showed the presence of largely smooth mem- 
branes (Fig. 3 B) without the dense cortical layer that is 

Figure 4. Successive extraction of peroxisomes and immunological 
detection of peroxisomal marker proteins in subfractions. (A) 
Coomassie stain of total peroxisomal proteins (lane 1 ) and proteins 
of peroxisomal subfractions obtained by successive treatment of to- 
tal purified peroxisomes with low salt, high salt, and pH 11.0 (see 
Materials and Methods). Lane 5 shows the protein content of the 
final membrane pellet. (B) Immunological detection of the peroxi- 
somal matrix marker Fox3p and the peroxisomal membrane marker 
Pas3p by Western blot analysis of the subfractions. The amount of 
the peroxisomal subfractions loaded in lanes 2-5 corresponded to 
four equivalents of the total peroxisomal protein in lane 1. 

characteristic of nonextracted peroxisomes (Fig. 3 A). How- 
ever, some of the membranes were assocaited with striking 
paracrystaUine structures that must have formed during ex- 
traction (Fig. 3 B). These paracrystalline structures contain 
Poxlp as shown by immunogold labeling (Fig. 3 B, inset). 

High salt extracted peroxisomal membranes were solubi- 
lized in SDS and the proteins separated by HPLC. Proteins 
in various HPLC fractions were separated by SDS-PAGE 
and visualized by Coomassie blue (Fig. 5). About 30 distinct 
polypeptides can be discerned. One of the major proteins of 
an apparent molecular mass of 27 kD (Fig. 5) was subjected 
to partial protein sequencing in preparation for DNA cloning 
and sequencing of the corresponding PMP27 gene (see 
Materials and Methods). 

DNA-deduced Primary Structure of Pmp27p 

The PMP27 open reading frame encodes a polypeptide of 
236 amino acid residues with a calculated molecular mass 
of 26,879 D (Fig. 6 A) in good agreement with the molecular 
mass estimated by SDS-PAGE (Fig. 5). Hydrophilicity plots 
according to Kyte and Doolittle (1982) revealed several hy- 
drophobic regions, but none of them appeared to fulfill the 
requirements for a membrane spanning e¢ helix (data not 
shown). However, using a manual ~ turn identification pro- 
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Figure 5. Preparative chro- 
matographic separation of 
peroxisomal membrane pro- 
teins. High salt-extracted 
peroxisomal membranes (1 mg 
protein) were solubilized in 
SDS and separated by reverse 
phase HPLC (see Materials 
and Methods). Polypeptides 
of selected fractions were sep- 
arated by SDS-PAGE and vi- 
sualized by Coomassie blue 

staining. The position of Pmp27p is indicated by an arrowhead. The position of aeyl-CoA oxidase, identified by peptide sequencing (data 
not shown), is marked by an asterisk. The amount per lane corresponded to 12.5% of the total fraction. 
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cedure (Paul and Rosenbusch, 1985) and on the assumption 
that the bulk of PMP27p is embedded in the bilayer, Pmp27p 
could have as many as nine transmembrane segments (data 
not shown). Pmp27p contains none of the peroxisomal tar- 
geting signals that have so far been identified (Gould et 
al., 1989; Swinkels et al., 1991; Aitchison et al., 1991; 
Subramani, 1992). 

A search of the database revealed similarity to two peroxi- 
somal membrane proteins (PMPs) of C. biodinii, termed 
PMP31 and PMP32 (Moreno et al., 1994). cbPMP31 and 
cbPMP32 are 92 % identical and scPmp27p is 32 % identical 
to cbPMP31 (Fig. 6 B). Thus scPmp27p could be the 
S. cerevisiae homologue of cbPMP31/cbPMP32. 

Pmp27p is Essential for Growth on Oleate 

One genomic copy of PMP27 in the diploid wild-type W303 
was replaced with LEU2. The proper integration of the dele- 
tion construct into the genome was confirmed by Southern 
blotting (data not shown). Tetrad analysis showed a 2:2 
segregation for Leu +. All spores derived from the tetrads 
were viable, indicating that Pmp27p is not essential for 
growth on YPD medium. However, on oleic acid medium, 
a 2:2 segregation for growth ability was observed. The 
growth defect on oleic acid medium cosegregated with the 
Leu + marker, therefore indicating that the PMP27 gene 
product is essential for growth on oleic acid medium. How- 
ever, Apmp27 mutant cells grew normally on ethanol 
medium (data not shown). The imparied growth phenotype 
on oleate of a haploid Apmp27 strain, derived from this 
tetrad analysis, is shown in Fig. 7 A. Apmp27 cells regained 

Figure 6. Nucleotide and deduced amino acid sequence of the S. 
cerevisiae PMP271ocus (A) and comparison with PMP31 from C. 
boidinii (B). (,4) A putative oleic acid responsive element 
(Einerhand et al., 1993) and a presumptive TATA sequence (Struhl, 
1987) in the 5' noncoding region, as well as presumptive termina- 
tion sequences in the 3' noncoding region (Zaret and Sherman, 
1982), are underlined. The underlined amino acid sequence was 
obtained by peptide sequencing of the purified Pmp27p. (B) Identi- 
cal residues are indicated by vertical bars. Two dots represent simi- 
lar residues. The identity betwen both proteins is 32%, and the 
similarity 59%. Similarity rules: G=A=S, P=A=S, S=T=A, 
D=E=Q=N,  K=R, V=I=L=M=F, F=Y. These sequence data 
are available from EMBL/GenBank/DDBJ under accession No. 
X81465. 
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Figure 7. Pmp27p is essential for growth on oleic acid medium. (A) Wild-type W303a, Apmp27mutant, and Apmp27mutant cells expressing 
Pmp27p or HA-tagged Pmp27p from single-copy plasmids were plated on oleic acid medium and incubated for 7 d at 30"C. (B) Growth 
curve of wild-type, Apmp27, and complemented Apmp27 in oleic acid liquid culture. The growth defect of the Apmp27 mutant becomes 
obvious after 12 h, when wild-type and the complemented strain enter the logarithmic growth phase. At this timepoint, the growth of the 
mutant ceased. 

the ability to grow on oleic acid medium when transformed 
with the wild-type copy of PMP27 (Fig. 7 A). The growth 
defect of Apmp27 could also be complemented by expression 
of a tagged Pmp27p-HA, indicating that the tagging had no 
obvious effect on the function of the protein (Fig. 7 A). Fig. 
7 B shows the rate of growth of the various strains after trans- 
fer from glucose-containing media to oleate-containing me- 
dia. Complemented Apmp27 cells grew as well as wild-type 
cells, whereas mutant Apmp27 cells ceased to grow after 
transfer to oleate. 

Immunolocalization of Pmp27p 
The cellular location of epitope-tagged Pmp27p (Pmp27p- 
HA) was examined by immunofluorescence microscopy, im- 
munoblot analysis of subcellular fractions, and immunoelec- 
tron microscopy. The tag, which consisted of a 10-amino 
acid epitope derived from the hemagglutinin antigen (HA), 
was introduced at the extreme COOH terminus of Pmp27p. 
The tagged protein was expressed in Apmp27 cells, which 
contain a chromosomal disruption of the wild-type PMP27 
gene (see Materials and Methods). Expression of the tagged 
Pmp27p was under the control of its own promoter on a 
single-copy plasmid. As expression resulted in functional 
complementation of the mutant phenotype of Apmp27 (see 
Figs. 7, 12, and 14), the tagging apparently did not influence 
the function of Pmp27p. Thus, subcellular localization of the 
tagged Pmp27p can be expected to closely mirror that of 
wild-type Pmp27p. 

The HA-tagged Pmp27p was readily identified among the 
SDS-PAGE-separated polypeptides of a total homogenate of 
cells grown for 12 h in oleate containing medium with a l i a  
monoclonal antibodies (Fig. 8 A). 

To examine whether PMP27 expression is induced by 
growth in oleate-containing medium, cells were grown on 

low glucose medium and were subsequently shifted to oleate 
containing medium. At various time points, cell homoge- 
nates were prepared and analyzed by immtmoblotting with 
ctHA mAbs and otFox3p. Pmp27p was found to be highly in- 
ducible by oleate (Fig. 8 B) and its induction appeared to 
precede that of Pox3p by 1-2 h (Fig. 8 B). All further analy- 
ses were done with cells at the 12-h time point of induction. 

Double immunofluorescence microscopy using c~Fox3p 
and ¢xPmp27p-HA showed an identical staining pattern, 
demonstrating that Pmp27p is a peroxisomal protein (Fig. 9). 

Figure 8. Immunological detection of HA-tagged Pmp27p (A) and 
time course of Pmp27p induction by oleic acid (B). (A) Equal 
amounts of whole-cell lysates from oleic acid induced Apmp27cells 
expressing Pmp27p (lane 1 ) and HA-tagged Pmp27p (lane 2) were 
subjected to Western blot analysis with rabbit antiserum against 
Fox3p and mAb against the HA-tag (see Materials and Methods). 
The amount loaded per lane corresponds to 0.5 % of extracts from 
30 mg of cells. (B) Apmp27 [Pmp27p-HA] cells expressing the HA- 
tagged Pmp27p were shifted to oleic acid containing medium. At 
indicated timepoints, whole-cell extracts were prepared and sub- 
jected to Western blot analysis with mAb against the HA-tag. 
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Figure 9. Double immunofluorescence microscopy localition of Fox3p and HA-tagged Pmp27p. Oleic acid induced Z~pmp27cells expressing 
the HA-tagged Pmp27p were processed for double immunofluorescence microscopy using mAb against the HA-tag (anti-Pmp27p-HA) and 
a rabbit antibody against peroxisomal thiolase (anti-thiolase). Secondary antibodies were FITC-conjugated anti-mouse IgG and Texas 
red-conjugated anti-mouse IgG. Bar, 5 #m. 

Immunoblot analyses of cell fractions that were obtained 
by differential centrifugation of a homogenate are shown in 
Fig. 10 A. Although most of the Pmp27p-HA-reactive mem- 
branes that were present in a postnuclear supernatant (lane 
1) sedimented at 25,000 g (lane 3), a significant amount 
remained in the corresponding supernatant (lane 2). This 
latter material may represent tubular membranes that were 
sheared off from the peroxisomai membrane during ho- 
mogenization. The membranes that were pelleted at 25,000 g 
were resuspended and further fractionated by sucrose gra- 
dient centrifugation. Immunoblot analysis of fractions 
probed with otHA, otFox3p, and otp32 (p32 being a mito- 
chondrial marker) is shown in Fig. I0 B. As expected for per- 
oxisomal components (see Fig. 2), most of the o~Pmp27p- 

HA- and otFox3p-reactive membranes peaked at a density of 
1.21 g/ml (Fig. 10 B, fraction 9) clearly separated from mi- 
tochondria that peak at a density of 1.17 g/ml (Fig. 10 B, frac- 
tion 17). However, a significant amount of the otPmp27p- 
HA-reactive membranes banded at lighter densities (Fig. 
10 B). Again, these lighter membranes could be derived 
from tubular membranes sheared off from the peroxisomes. 

Pmp27p-HA that is associated with the purified membrane 
fraction behaves as an integral membrane protein since most 
of it was not extracted at pH 11.0 (Fig. 10 C). 

Immunoelectron microscopy of isolated peroxisomes us- 
ing otPmp27p-HA showed gold labeling of the peroxiso- 
mal periphery consistent with Pmp27p being a peroxisomal 
membrane protein (Fig. 11 A). Immunoelectron microscopy 

Figure 10. Coenrichment of 
HA-tagged Pmp27p and 
peroxisomal thiolase during 
peroxisome isolation (A and 
B) and intraperoxisomal lo- 
calization of Pmp27p-HA 
(C). (A) Immunoblot analysis 
of cell fractions that were ob- 
tained by differential centrifu- 
gation (see Materials and 
Methods) of the cell homoge- 
nate from oleic acid induced 
Apmp27 cells expressing the 
HA-tagged Prnp27p. (B) The 
organelles of the 25,000-g pel- 
let were separated on a 36- 

68 % (wt/vol) sucrose gradient (see Materials and Methods). 1.2-ml fractions were collected from the bottom of the gradient. Localization 
of HA-Pmp27p, as well as peroxisomal thiolase and mitochondrial p32 (Pain et al., 1990), in fractions was monitored by immunoblot 
analysis. Peroxisomes peaked in fraction 9 at a density of 1.23 g/cm 3. Mitochondria peaked in fraction 17 at a density of 1.17 g/cm 3. 
Pmp27p-HA as well as Fox3p were mainly found in the peroxisomal peak fractions. (C) The isolated peroxisomes (fraction 9 in B) were 
extracted by low salt, high silt, and pH 11.0 treatments (see Materials and Methods). As most of the Pmp27p-HA was not extracted by 
either means (lane 5), it behaves as an integral membrane protein. Equivalent amounts of proteins were loaded per lane. HA-Pmp27p 
and thiolase amounts in peroxisomal subfractions were monitored by Western blot analysis (see Materials and Methods). 
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Figure 11. Immunoelectron microscopy localization of Pmp27p in isolated peroxisomes (A) and 12 h oleic acid induced Apmp27 cells ex- 
pressing the HA-tagged Pmp27p (B). A double labeling of the cells for thiolase (5 nm gold) and Pmp27p (10 nm gold) localization is shown 
in (C and D). (A) Immunogold labeling of the peroxisomal periphery is consistent with Pmp27p being a peroxisomal membrane protein. 
(B) Pmp27p was found to be associated with the peroxisomal membrane, but additional labeling of membrane loops or tubules was fre- 
quently found in the proximity of peroxisomes (black arrows). (C) Double labeling showed Pmp27p labeling of thiolase-negative membrane 
structures extending from the spherical peroxisomes (black arrowhead). (D) Interconnection of bulbous peroxisomes by a thiolase- 
containing tubular region. Localization of the HA-tagged Pmp27p was monitored with mAb against the tag, and thiolase was localized 
with rabbit antibody against the protein. Isolated peroxisomes were from 9 h oleic acid induced Apmp27 cells expressing HA-tagged 
Pmp27p. Bars, 0.2/zm. 

of frozen thin sections of spheroplasts using c~ Pmp27p-HA 
showed gold labeling in the peroxisomal periphery, as ex- 
pected for a membrane protein (Fig. 11 B). However, there 
also was gold labeling of a region in the vicinity of the per- 
oxisomes that coincided with tubular membrane loops (Fig. 
11 B, black arrows). Double immunoelectron microscopy of 
frozen thin sections of cells using ctPmp27p-HA (10 nm 
gold) and ctFox3p (5 nm gold) showed the expected gold 
labeling of the peroxisomal membrane and the peroxisomal 
matrix, respectively (Fig. 11 C). In addition, there was 
labeling with only 10 nm gold (Fig. 11 C, black arrowheads) 
in what appear to be matrixless, peroxisome-attached tu- 
bules. In some sections, an interconnection of bulbous per- 
oxisomes by a tubular matrix-containing region could be de- 
tected (Fig. 11D). 

Morphological Characterization of Apmp27 Cells 
Immunofluorescence microscopy using c~ Fox3p was done 
with methanol-fixed spheroplasts of wild-type cells, Apmp27 
cells, and Apmp27 cells complemented with a copy of the 
wild-type PMP27 gene (Fig. 12). Analysis was after cells 
were shifted to growth in oleate-containing media for a 
period of 0-24 h. When induced for 12 h, in wild-type 

spheroplasts, a characteristic punctate pattern of 10-20 
small spots was observed. (Fig. 12 A, upper panel). In the 
mutant Apmp27 cells, however, there was a striking reduc- 
tion in the number of spots with a considerable increase in 
the size of the individual spots (Fig. 12 A, middle panel). 
Complementation of the mutant cells with the wild-type 
gene gave a pattern (Fig. 12 A, lower panel) indistinguish- 
able from that of wild-type cells (Fig. 12 A, upper panel). 
A time course of oleic acid induced peroxisome proliferation 
of Apmp27 cells and complemented mutant cells is shown in 
Fig. 12 B. Peroxisomes were detected in both strains, even 
from the very beginning of induction, and no significant 
difference with respect to the size and number of detected or- 
ganelles was observed (Fig. 12 B, 0 and 3 h). However, as 
early as 6 h after the start of induction, the mutant pheno- 
type, indicated by fewer but bigger peroxisomes, became ob- 
vious. Most striking was the difference at later stages of in- 
duction, when the complemented strain was filled with small 
dots, but only one to a few giant peroxisomes were detected 
in the Apmp27 mutant cells (Fig. 12 B, 24 h). 

Electron microscopy (Fig. 13, A and B) and immunoelec- 
tron microscopy (Fig. 13, C and D) of thin sections of 
Apmp27mutant cells and complemented Apmp27cells using 
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Figure 12. Immunofluorescence microscopy localization of thiolase in wild-type, ~pmp27 mutant, and ~pmp27 mutant cells expressing 
Pmp27p. (A) Ceils were induced for 12 h on oleic acid medium. The panels show either thiolase localization by immunofluorescence, 
DAPI staining of DNA by fluorescence, or phase contrast micrographs of the same cells. Bar, 10 #m. (B) Comparison of oleic acid induced 
peroxisome proliferation in ~omp27 mutant and z~pmp27 mutant cells expressing Pmp27p. Thiolase localization was determined using 
a polyclonal antiserum against the enzyme and Texas red-labeled donkey anti-rabbit antiserum. Bar, 5/~m. 
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Figure 13. Electron microscopy (,4 and B) and immune,electron microscopy (C and D) of 12-h oleic acid-induced Apmp27 mutant cells 
(A and C) and complemented Apmp27 cells (B and D). The mutant phenotype (A and C) was characterized by the presence of fewer, 
but larger peroxisomes. Sections were probed with polyelonal antiserum against thiolase and goat anti-rabbit antibodies coupled to 10 
nm gold. p, pemxisome; m, mitoehondrion; n, nucleus; l, lipid droplet. Bars, 0.5/~m. 

o~ Fox3p confirmed the immunofluorescent images of Fig. 
12. Peroxisomes in the mutant cells were considerably larger 
and less abundant than those in the complemented strain. 

Apmp27 Cells Are Defective in 
Peroxisomal Inheritance 

Apmp27 cells cultured in oleic acid liquid medium showed 
multiple buds (Fig. 14). Electron microscopical investiga- 
tion of these cells showed that giant peroxisomes could easily 
be detected in the majority of mother cells but no peroxi- 
somes were found in cell buds. Other cell organelles (mito- 
chondria, nuclei) showed normal morphology, and they were 
nearly always detected in the buds (data not shown). Im- 
munofluorescence microscopy of the mutant cells incubated 
for 48 h in oleic acid medium showed the presence of one 
to a few,giant peroxisomes in mother cells and confirmed the 
absence of peroxisomes in virtually all cell buds (Fig. 15). 

Discussion 

We have identified an integral membrane protein, Pmp27p, 
of S. cerevisiae peroxisomes. This protein served as a mem- 
brane marker for immunoelectron microscopy analysis of 
the peroxisomal compartment ofS. cerevisiae, providing evi- 
dence for the existence of tubular extensions of the peroxi- 
somal membrane. Yeast cells lacking Pmp27p possess giant 
peroxisomes, and they are defective for peroxisomal in- 
heritance. 

Pmp27p is only the second integral membrane protein of 
S .  cerevisiae that has been molecularly cloned and se- 
quenced, Pas3p (H6hfeld et al. 1991) being the first. In 
peroxisomal membranes that were purified from cells in- 
duced for peroxisome proliferation by growth on oleate, 
Pmp27p was the most abundant peroxisomal membrane pro- 
tein (Fig. 5). Analysis of its DNA-deduced primary structure 
did not yield any clues as to its function. So far we have no 
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Figure 14. Multiple buds in Aprap27 mutant cells after long-term 
incubation in oleic acid medium. Phase contrast micrographs of 
W303a wild-type cells (A), Apmp27 mutant cells (B), and com- 
plemented Apmp27 cells (C) incubated for 5 d in oleic acid liquid 
medium. Bar, 5 t~m. 

data on the topology of Pmp27p in the peroxisomal mem- 
brane. Searches in the data banks showed similarity to two 
integral peroxisomal membrane proteins of C. biodinii, 
PMP31 and PMP32 (Moreno et al., 1994). It remains to be 
seen whether cbPMP31 or cbPMP32 can compensate for 
the loss of scPmp27p in Apmp27 cells. The function of 
cbPMP31p or cbMPM32p is unknown. 

Morphologically Distinct Peroxisomal Domains 

Not surprisingly, immunoelectron microscopy yielded local- 
ization of Pmp27p-HA to the periphery of isolated peroxi- 
somes, consistent with Pmp27p being a membrane protein 

(Fig. 11 A). However, immunoelectron microscopy of frozen 
thin sections of oleate induced cells showed not only labeling 
of the membrane surrounding the dense spherical peroxi- 
somes, but also labeling of closely associated tubular regions 
(Fig. 11, B and C). These extensions might correspond to 
the reported catalase negative loops and tubular extensions 
of spherical peroxisomes that have been seen before in mam- 
malian cells (l.azarow et al., 1980; Lazarow and Fujiki, 
1985; Yamamoto and Fahimi, 1987; Baumgart et al., 1989). 
Thus, S. cerevisiae peroxisomes, as mammalian peroxi- 
somes, appear to consist of morphologically distinct do- 
mains. Some of the tubular peroxisomal extensions observed 
might interconnect bulbous peroxisomes in S. cerevisiae 
(Fig. 11 D) to form a peroxisomal reticulum as found in 
mammalian organisms (l.azarow et al., 1980; Gorgas, 1984; 
Yamamoto and Fahimi, 1987). 

Consistent with the presence of tubular extensions in 
peroxisomes of S. cerevisiae are the finger-like and vesicular 
extensions that we found to be associated with isolated 
peroxisomes (Fig. 3). Similar extensions of peroxisomal 
membranes have been observed in isolated mammalian 
peroxisomes (Liiers et al., 1993). These structures could be 
interpreted as buds pinching off mature peroxisomes. How- 
ever, these structures could also be remnants of tubular ex- 
tensions of peroxisomes or tubular connections between 
peroxisomes that remain attached to the peroxisomes during 
homogenizatin and cell fractionation. More distal regions of 
the tubular peroxisomal domains might be fragmented into 
small, light vesicles. Our data also suggest that peroxisomes 
of increased density arise from lighter preforms during in- 
duction (Fig. 2). One interpretation of this results could be 
that the observed light membranes represent small spherical 
organdies that increase in density during induction as a con- 
sequence of massive protein import and enlargement. How- 
ever, if the light fraction would represent tubular mem- 
branes, much of the inconspicuous peroxisomal compartment 
in noninduced S. cerevisiae may consist of tubular per- 
oxisomal domains rather than bulbous peroxisomes. Dur- 
ing oleic acid induction in S. cerevisiae, bulbous peroxi- 
somes might arise by local dilations of tubular peroxisomal 
segments. 

Besides the finger-like extensions, the isolated peroxi- 
somes also showed the presence of a dense submembranous 
layer that was absent in the finger-like extension (Fig. 3 A). 
This dense layer may prevent tight resealing of the surround- 
ing peroxisomal membrane after injury during homogeniza- 
tion and cell fractionation, particularly if this layer is rigid 
and not readily deformable. The membrane leakiness that is 
ascribed to isolated peroxisomes could be caused by rup- 
tured and incompletely resealed membranes overlying this 
cortical layer. Poxlp is among the major constituents of this 
cortical layer. It remains to be seen whether this layer 
represents a physiologically relevant interaction of the ma- 
trix with the overlying membrane. 

Function of  Pmp27p 

Deletion of the PMP27 gene yielded cells with normal 
growth on glucose or ethanol, but with impaired growth on 
oleate. When grown under noninducing conditions, wild- 
type and Apmp27 mutant cells did not differ with respect to 
size and number of peroxisomes (Fig. 12 B), suggesting that 
Pmp27p is not required for the division and inheritance of 
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Figure 15. Immunofluorescence microscopy localization of thiolase in multibudded Apmp27 mutant cells. Cells were induced for 48 h on 
oleic acid medium. The panels show either thiolase localization by immunofluorescence, DAPI staining of DNA by fluorescence, or phase 
contrast micrographs of the same ceils. The mutant phenotype was characterized by the presence of giant peroxisomes in mother cells 
but absence of peroxisomes in cell buds. Nuclei were present in both, mother cells and buds. Thiolase localization was determined using 
a polyclonal antiserum against the enzyme and FITC-labeled donkey anti-rabbit antiserum. Bar, 10 #m. 

peroxisomes under noninducing conditions. During oleic 
acid induction, however, a progressive decrease in the num- 
ber of peroxisomes per mutant cell was observed, and at later 
stages of induction, the few mutant peroxisomes were con- 
siderably larger than those in induced wild-type cells (Figs. 
12 and 13). Failure of the Apmp27 ceils in parceling mature 
peroxisomes into smaller quanta may be the reason for 
their overproportional enlargement during induction. The 
Apmp27 mutant phenotype is also characterized by the for- 
marion of multiple buds upon growth in oleic acid medium 
(Fig. 14). This result does not only indicate that the mother 
cells survived on oleic acid medium, but it also suggests that 
the cells metabolize oleic acid, which requires functional 
peroxisomes. Thus the giant peroxisomes observed might 
still fulfill their function in oleic acid metabolism. This is 
also in agreement with the comparison of the protein compo- 
sition of purified wild-type and mutant peroxisomes which, 
except for the absence of Pmp27p, did not reveal significant 
differences (data not shown). As the majority of the cell buds 
of oleic acid-induced APmp27 mutant cells do not contain 
peroxisomes (Fig. 15), the inability of the mutant ceils to 
grow on oleic acid is more likely caused by a defect in peroxi- 
somal inheritance. However, as distribution of peroxisomes 
to daughter cells in Apmp27mutant ceils still occurs to some 
extent at early time points of induction (data not shown), 
Pmp27p does not seem to be directly involved in migration 
of peroxisomes during mitosis. One simple explanation for 
the inheritance defect could be that the peroxisomes in 
Apmp27 mutant ceils may be too large to pass into the bud. 
However, even if the giant peroxisomes could become in- 
herited, because of the suggested defect in parceling of ma- 
ture peroxisomes, there would be no peroxisomes left to in- 
herit after a few generations. Recently two yeast mutants 
with a defect in mitochondrial inheritance have been de- 
scribed (Sogo and Yaffe, 1994; Burgess et al., 1994). These 
mutants are characterized by the presence of giant mitochon- 
dria that cannot be inherited to the daughter cells. In both 
cases, this phenotype is caused by defects in mitochondrial 
outer membrane proteins. It was suggested that mitochon- 
drial morphology is maintained by binding of these proteins 
to the cytoskeleton. Likewise, if in S. cerevisiae the structure 
of peroxisomes or of a peroxisomal reticulurn is maintained 
by the cytoskeleton, Pmp27p may serve as a peroxisomal 
membrane anchor to the cytoskeleton. The identification of 

proteins that interact with Pmp27p will provide further in- 
sight into molecular mechanisms regulating the morphology, 
proliferation, and inheritance of peroxisomes. 
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